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Series III: Mathematics and Computer Science, Vol. 3(65), No. 2 - 2023, 143-152

https://doi.org/10.31926/but.mif.2023.3.65.2.12

ON THE ITERATES OF UNI- AND MULTIDIMENSIONAL
OPERATORS

Radu PRECUP∗,1
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Abstract

The problem of the convergence of the iterates of operators or of a se-
quence of operators is discussed in a general framework related to the fixed
point theory, but with a permanent look towards the theory of linear approx-
imation operators. The results are obtained for operators not necessarily lin-
ear. Some examples including the class of approximation operators defined
by H. Brass are given.
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1 Iterates of unidimensional operators

1.1 Iterates of a single operator

Any discussion about the iterates of an operator should start with the notion
of a contraction operator and Banach’s contraction principle.

Let (X, d) be a metric space and let L : X → X an operator. One says that
L is Lipschitz continuous with Lipschitz constant λ if

d (L (x) , L (y)) ≤ λd (x, y) for all x, y ∈ X.

If λ < 1, then L is a contraction operator. Observe that if L is Lipschitz
continuous with Lipschitz constant λ, then any iterate Lk of L, where Lk =
L
(
Lk−1

) (
k ≥ 1, L0 being the identity operator I

)
, is also Lipschitz continuous

with Lipschitz constant λk. With this remark, we have the following proposition.
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Theorem 1. Let L : X → X be such that:

(i) L is a contraction operator with Lipschitz constant λ < 1;

(ii) L has the (unique) fixed point x∗.

Then for every x ∈ X, the sequence
(
Lk (x)

)
of the iterates of L calculated at

x is convergent to x∗.

Proof. Clearly Lk (x∗) = x∗ for all k. Then

d
(
Lk (x) , x∗

)
= d

(
Lk (x) , Lk (x∗)

)
≤ λkd (x, x∗) .

Since λ < 1, one has λk → 0 and then d
(
Lk (x) , x∗

)
→ 0 as k → ∞. Thus Lk (x)

converges to x∗ as claimed.

This proposition is useful in case that the fixed point x∗ is known for a con-
traction operator L. This happens for all many linear approximation operators
L : C [0, 1] → C [0, 1] leaving invariant the functions 1 and x, that is with L (1) = 1
and L (x) = x. Then, restricted to a set

Xα,β := {f ∈ C [0, 1] : f (0) = α, f (1) = β} ,

the operator L maps Xα,β into itself and the function

f∗ (x) = α+ (β − α)x

belongs to Xα,β and is a fixed point of L as can easily be seen. It remains to be
clarified the contraction property of L. This aspect in the context of the theory of
linear approximation operators was first highlighted by Rus [15] for Bernstein’s
operators. The contraction property was later highlighted for other well-known
classes of operators (see, e.g., [1], [2], [3], [6], [7]).

The proposition above is given in the idea of a priori knowledge of the fixed
point. For a contraction operator on a complete metric space, the existence and
uniqueness of the fixed point is guaranteed by Banach’s contraction principle
which in addition gives an estimate of the approximation error, namely

d
(
Lk (x) , x∗

)
≤ λk

1− λ
d (L (x) , x) . (1)

In case of linear approximation operators, when metric d is given by the uniform
norm ∥.∥ of the space C [0, 1] , this estimate reads as∥∥∥Lk (f)− f∗

∥∥∥ ≤ λk

1− λ
∥L (f)− f∥ (2)

for all k ≥ 1 and f ∈ Xα,β. Thus the error
∥∥Lk (f)− f∗∥∥ of the approximation

of f∗ by the k-th iterate is expressed by the error ∥L (f)− f∥ with which the
arbitrary start function f is approximated by the operator L. This error is known
for many operators beginning with Bernstein’s ones, in terms of some smoothness
modules (see [13]).
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1.2 Iterates of a sequence of operators

Assume now that (Ln)n≥1 is an approximation process in X, in the sense that

Ln (x) → x as n → ∞ for every x ∈ X.

For such a sequence of operators, one has

Theorem 2. Assume that every Ln is a contraction operator with a Lipschitz
constant λn < 1 and x∗ is the unique fixed point of all operators Ln. Then

(a) λn → 1 as n → ∞;

(b) For each x ∈ X, a sequence of iterates
(
Lkn
n (x)

)
n≥1

converges to x∗ if (kn)n≥1

is such
λkn
n

1− λn
≤ C, for all n ≥ 1 (3)

and some constant C.

Proof. (a) Let λ be any limit point of the sequence (λn)n≥1 . Obviously λ ≤ 1.
Passing eventually to a subsequence, we may assume that λn → λ. Choose two
different element x, y ∈ X. From

d (Ln (x) , Ln (y)) ≤ λnd (x, y) ,

letting n → ∞ and using Ln (x) → x and Ln (y) → y, we deduce that d (x, y) ≤
λd (x, y) . Since d (x, y) > 0, we find 1 ≤ λ. Then λ = 1 and the proof of statement
(a) is finished.

(b) Using (1) one has

d
(
Lkn
n (x) , x∗

)
≤ λkn

n

1− λn
d (Ln (x) , x) .

Here d (Ln (x) , x) → 0 as n → ∞, while from (3), the front coefficients are
uniformly bounded. As a result d

(
Lkn
n (x) , x∗

)
→ 0 as n → ∞, which is our

statement.

Remark 1. (10) By virtue of (a), if kn → ∞, then the limit of coefficient λkn
n

1−λn

is 1∞

+0 = +∞ · 1∞. Hence a necessary condition for (3) to hold is that 1∞ = 0,

i.e., λkn
n → 0.

(20) Condition (3) is only a sufficient condition for the convergence of the
iterates Lkn

n , not necessarily the best for particular sequences of operators. For
example, in case of Bernstein’s operators, when λn = 1 − 21−n, condition (3)
returns to kn/2

n → ∞ as n → ∞. However, by the classical result of Kelinsky-
Rivlin [11], the convergence is guaranteed if kn/n → ∞.
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1.3 Example: Iterates of Brass’s operators

Let n ∈ N \ {0} and let µ1, µ2, ..., µn ∈ N such that

µ1 + 2µ2 + ...+ nµn = n.

Consider the polynomials

pnν (x) =
∑(

µ1

η1

)(
µ2

η2

)
· · ·

(
µn

ηn

)
xη (1− x)µ−η , ν = 0, 1, ..., n,

where µ =
n∑

i=1
µi, η =

n∑
i=1

ηi, and the summation is done in relation to all systems

of nonnegative integer numbers (η1, η2, ..., ηn) for which

η1 + 2η2 + ...+ nηn = ν.

Define the operator

P (µ1,µ2,...,µn)
n (f) (x) =

n∑
ν=0

f
(ν
n

)
pnν (x) (f ∈ C [0, 1] , x ∈ [0, 1]) . (4)

and consider the class M of all operators Ln which are convex combinations of
operators of the form (4) which leave invariant the functions 1 and x. Hence

Ln =
∑

γ (µ1, µ2, ..., µn)P
(µ1,µ2,...,µn)
n ,

where the coefficients γ (µ1, µ2, ..., µn) , in finite number, are nonnegative and with
the sum equal to one, and Ln (1) = 1, Ln (x) = x.

We note that Bernstein’s operators are of type (4), more exactly

Bn = P (n,0,...,0)
n , B1 = P (0,...,0,1)

n .

The class M also contains other classical operators such as the operators of
Cheney-Sharma [8], Mühlbach [12] and Stancu [16].

Lemma 1. Any operator L := P
(µ1,µ2,...,µn)
n from M is a contraction operator

on Xα,β with the Lipschitz constant 1 − 21−µ and has the fixed point f∗ (x) =
α+ (β − α)x.

Proof. Indeed, for any f, g ∈ Xα,β, since L (1) = 1, one has

∥L (f)− L (g)∥ ≤ ∥f − g∥ (L (1) (x)− pn0 (x)− pnn (x))

= ∥f − g∥ (1− pn0 (x)− pnn (x))

≤
(
1− min

x∈[0,1]
(pn0 (x) + pnn (x))

)
∥f − g∥ .

Also, for ν = 0, one has η = 0 and so pn0 (x) = (1− x)µ , while if ν = n, then
η = ν and so pnn (x) = xµ. Hence

min
x∈[0,1]

(pn0 (x) + pnn (x)) = min
x∈[0,1]

((1− x)µ + xµ) =
1

2µ−1
.
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Then

∥L (f)− L (g)∥ ≤
(
1− 1

2µ−1

)
∥f − g∥ .

The fact that f∗ is the fixed point of L in Xα,β is a simple consequence of the two
properties L (1) = 1, L (x) = x.

The above lemma guarantees that any operator from the class M is a contrac-
tion operator and in Xα,β has the unique fixed point f∗. Thus Theorem 1 applies
for any operator from the class M, and we have

Theorem 3. If L ∈ M, then Lk (f) → f∗ as k → ∞ for every f ∈ Xα,β.
Additionally, formula (2) is true and∥∥∥Lk (f)− f∗

∥∥∥ ≤ 2µ−1

(
1− 1

2µ−1

)
∥L (f)− f∥ (k ≥ 1, f ∈ Xα,β) .

For a subclass of M, namely that of the so called operators of Bernstein type,
the result given by Theorem 3 was proved by using completely different techniques,
by Albu [4] and myself [14].

Obviously, Theorem 2 also applies to sequences (Ln)n≥1 of operators in M,
which are assumed to be approximation processes. A better result was obtained in
[14] for the subclass of Bernstein type operators by using the extremality property
of the classical Bernstein operators in that subclass, namely the relations

Bn (f) ≤ Ln (f) ≤ B1 (f) ,

for every nonnegative and convex function f ∈ C [0, 1] .

2 Iterates of multidimensional operators

We begin this section with the matrix version of Theorem 1.

Theorem 4. Let (Xi, di) , i = 1, 2, ..., p be metric spaces and let L : X = X1 ×
X2 × ...×Xp → X, L =(L1,L2, ...,Lp) , where Li : X → Xi, be such that

(i) For each i,

di (Li (x) ,Li (y)) ≤
p∑

j=1

γijdj (xj , yj) (5)

for all x = (x1, x2, ..., xp) , y = (y1, y2, ..., yp) ∈ X and some nonnegative
numbers γij for which the matrix Γ = [γij ]1≤i,j≤p is convergent to zero in

the sense that its power Γk tends to the zero matrix as k → ∞.

(ii) L has the (unique) fixed point x∗.

Then for each x ∈ X, the sequence
(
Lk (x)

)
of the iterates of L calculated at

x is convergent in X to x∗.
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Proof. Denoting

d (x, y) =

 d1 (x1, y1)
...

dp (xp, yp)

 (x, y ∈ X) ,

we may rewrite (5) in the matrix way as

d (L (x) ,L (y)) ≤ Γd (x, y) . (6)

Then
d
(
Lk (x) , x∗

)
= d

(
Lk (x) ,Lk (x∗)

)
≤ Γkd (x, x∗)

and the result follows since Γk → 0 as k → ∞.

If Xi, i = 1, 2, ..., p, are complete metric spaces, then inequality (6) showing
that L is a Perov contraction on X implies the existence and uniqueness of the
fixed point x∗ of L and moreover that the following estimate holds for all k ≥ 1
and x ∈ X :

d
(
Lk (x) , x∗

)
≤ (I − Γ)−1 Γkd (L (x) , x) . (7)

Example 1. Let Xi = D, i = 1, 2, ..., p, where D is a closed convex subset of
a Banach space, and Lij : D → D (1 ≤ i, j ≤ p) be λij-Lipschitz continuous, i.e.,

∥Lij (xj)− Lij (yj)∥ ≤ λij ∥xj − yj∥ (xj , yj ∈ D) .

Let σij ≥ 0 (1 ≤ i, j ≤ p) be such that
p∑

j=1
σij = 1 for i = 1, 2, ..., p. Define the

operator L : Dp → Dp, L =(L1,L2, ...,Lp) by

Li (x) =

p∑
j=1

σijLij (xj) , x = (x1, x2, ..., xp) , i = 1, 2, ..., p.

If the matrix Γ := [σijλij ]1≤i,j≤p is convergent to zero, then the operator L
is a Perov contraction on Dp. Consequently, it has a unique fixed point x∗, its
iterates Lk (x) converge to x∗ and estimate (7) holds. In particular, if λij < 1
for all i and j, matrix Γ is convergent to zero as shown in [1]. Indeed, letting
λ := max {λij : 1 ≤ i, j ≤ p} , one has λ < 1 and Γ ≤ λM, whereM := [σij ]1≤i,j≤p
and the powers of M are dominated by the matrix U having all entries equal to
1 (this is proved by induction). Then

Γk = λkMk ≤ λkU → 0 as k → ∞,

as claimed. In this case, each operator Lij has a unique fixed point x∗ij . In case that

for each i, one has that x∗ij =: x∗i for all j, then x∗ =
(
x∗1, x

∗
2, ..., x

∗
p

)
. Such a case oc-

curs if the operators Lij are classical Bernstein operators (of different degrees), or
other operators of Bernstein type, and D = {f ∈ C [0, 1] : f (0) = α, f (1) = β} ,
when the fixed point of L is f∗ := (f∗, f∗, ..., f∗) .

Theorem 2 extends to multidimensional operators as follows.
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Theorem 5. Let (Ln)n≥1 be a sequence of Perov contraction operators with Lip-
schitz matrices Γn convergent to zero, and let x∗ is the unique fixed point of all
operators Ln. Assume that

Ln (x) → x as n → ∞ for every x ∈ X. (8)

Then

(a) The element from the diagonal of Γn tend to 1 as n → ∞;

(b) For each x ∈ X, a sequence of iterates
(
Lkn
n (x)

)
n≥1

converges to x∗ if (kn)n≥1

is such that the matrices

(I − Γn)
−1 Γkn

n , n ≥ 1

are bounded (componentwise).

Proof. (a) It is known that the elements from the diagonal of a matrix which is

convergent to zero are strictly less than one. Letting Γn =
[
(λn)ij

]
1≤i,j≤p

one

has (λn)ii < 1 for i = 1, 2, ..., p. For any i, let λii be a limit point of the sequence
((λn)ii) . Then λii ≤ 1. Passing eventually to a subsequence, we may assume that
(λn)ii → λii. Now we take two element x, y ∈ X having the components equal to
zero except xi and yi which are chosen different. From

d (Ln (x) ,Ln (y)) ≤ Γnd (x, y) ,

looking at the i-th component, one has

di ((Ln)i (x) , (Ln)i (y)) ≤ (λn)ii di (xi, yi) .

Here we let n → ∞ and use (Ln)i (x) → xi and (Ln)i (y) → yi, to deduce that
di (xi, yi) ≤ λiidi (xi, yi) . Since di (xi, yi) > 0, we find 1 ≤ λii. Then λii = 1 and
the proof of statement (a) is finished.

(b) Using (7) one has

d
(
Lkn
n (x) , x∗

)
≤ (I − Γn)

−1 Γkn
n d (Ln (x) , x) ,

whence the conclusion of (b) is immediate.

The next example gives a scheme of construction of sequences of multidimen-
sional operators which are approximation processes in the sense of (8).

Example 2. Let (Ln)n≥1 be a sequence of operators of the type of those from
the previous example, that is

(Ln)i (x) =

p∑
j=1

(σn)ij (Ln)ij (xj) , i = 1, 2, ..., p, n ≥ 1.

It is easily seen that the sequence (Ln)n≥1 is an approximation process on Dp,
i.e., Ln (x) → x as n → ∞ for every x ∈ Dp, if the following conditions are
satisfied:
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(i) for every i, the sequence ((Ln)ii)n≥1 is an approximation process on D;

(ii) for every (i, j) with i ̸= j, and for each xj ∈ D, the sequence
(
(Ln)ij (xj)

)
n≥1

is bounded;

(ii) for every (i, j) with i ̸= j, (σn)ij → 0 as n → ∞.
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