LOGARITHMIC COEFFICIENTS FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY SUBORDINATION

Andreea NISTOR-ŞERBAN *,1 and Dorina RĂDUCANU ${ }^{2}$

Dedicated to Professor Radu Păltănea on the occasion of his 70th anniversary

Abstract

In this paper we consider a class of functions $\mathcal{M}_{\alpha}(\varphi)$ defined by subordination, consisting of functions $f \in \mathcal{A}$ satisfying the condition $$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \varphi(z), z \in U .
$$

In the study of univalent functions, estimates on the Taylor coefficients are usually given. Another significant problem deals with the estimates of logarithmic coefficients. For the class \mathcal{S} of univalent functions no sharp bounds for the modulus of the individual logarithmic coefficients are known if $n \geq 3$. For different subclasses of \mathcal{S} the results are not better and in most cases only the first three initial coefficients of $\log \frac{f(z)}{z}$ are considered. For the class $\mathcal{N}_{\alpha}(\varphi)$ we obtain upper bounds for the logarithmic coefficients $\gamma_{n}, n \in\{1,2,3\}$ and also for $\Gamma_{n}, n \in\{1,2,3\}$, the logarithmic coefficients of the inverse of $\mathcal{M}_{\alpha}(\varphi)$. Connections with previous known results are pointed out.

2000 Mathematics Subject Classification: 30C45.
Key words: Analytic functions; differential subordination; logarithmic coefficients..

1 Introduction

Let \mathcal{A} be the class of analytic functions f in $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{U} . \tag{1}
\end{equation*}
$$

[^0]The subclass of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S}. For a function $f \in \mathcal{S}$ the logarithmic coefficients γ_{n} are defined by the series expansion

$$
\begin{equation*}
\log \left(\frac{f(z)}{z}\right)=2 \sum_{n=1}^{\infty} \gamma_{n}(f) z^{n}, \quad z \in \mathbb{U} \tag{2}
\end{equation*}
$$

If there is no confusion, we use γ_{n} instead of $\gamma_{n}(f)$.
It is well known that the logarithmic coefficients play an important role in Milin conjecture [5], that for $f \in \mathcal{S}$,

$$
\sum_{m=1}^{n} \sum_{k=1}^{n}\left(k\left|\gamma_{k}\right|^{2}-\frac{1}{k}\right) \leq 0
$$

It is interesting that for the class \mathcal{S} the sharp estimates of logarithmic coefficients are known only for the first two γ_{1} and γ_{2} :

$$
\left|\gamma_{1}\right| \leq 1, \quad\left|\gamma_{2}\right| \leq \frac{1}{2}+\frac{1}{e}
$$

and it is not known for $n \geq 3$.
The situation is not better for the subclasses of \mathcal{S} where, in most cases, only the initial coefficients of $\log \frac{f(z)}{z}$ are investigated.

Recently, several authors have considered the problem of finding sharp upper bounds for the logarithmic coefficients of univalent functions, (see, for example [1], [8]).

Equality (2) can be rewritten in the following form

$$
\begin{align*}
2 \sum_{n=1}^{\infty} \gamma_{n}(f) z^{n}= & a_{2} z+a_{3} z^{2}+a_{4} z^{3}+\cdots-\frac{1}{2}\left(a_{2} z+a_{3} z^{2}+a_{4} z^{3}+\cdots\right)^{2}+ \tag{3}\\
& +\frac{1}{3}\left(a_{2} z+a_{3} z^{2}+a_{4} z^{3}+\cdots\right)^{3}+\cdots
\end{align*}
$$

Equating the coefficients of z^{n}, for $n=1,2,3$ in (3), we obtain

$$
\left\{\begin{array}{l}
2 \gamma_{1}=a_{2} \tag{4}\\
2 \gamma_{2}=a_{3}-\frac{1}{2} a_{2}^{2} \\
2 \gamma_{3}=a_{4}-a_{2} a_{3}+\frac{1}{3} a_{2}^{3}
\end{array}\right.
$$

Let F be the inverse of a function $f \in \mathcal{S}$ defined by

$$
\begin{equation*}
F(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} A_{n} w^{n} \tag{5}
\end{equation*}
$$

with $|w|<\frac{1}{4}$, from Koebe's $1 / 4$ - theorem.

In view of (1) and (5), we have

$$
\left\{\begin{array}{l}
A_{2}=-a_{2} \tag{6}\\
A_{3}=-a_{3}+2 a_{2}^{2} \\
A_{4}=-a_{4}+5 a_{2} a_{3}-5 a_{2}^{3}
\end{array}\right.
$$

The logarithmic coefficients $\Gamma_{n}(n \in \mathbb{N})$ of F are defined by

$$
\begin{equation*}
\log \left(\frac{F(z)}{z}\right)=2 \sum_{n=1}^{\infty} \Gamma_{n}(F) w^{n}, \quad|w|<\frac{1}{4} . \tag{7}
\end{equation*}
$$

When there is no confusion we consider $\Gamma_{n}(F)=\Gamma_{n}$.
In [9] Ponnusamy et al. obtained sharp upper bound of $\left|\Gamma_{n}(F)\right|$ for $f \in \mathcal{S}$ and $n \geq 1$. Furthermore, in a case of a convex function, they proved that $\left|\Gamma_{n}(F)\right| \leq$ $1 /(2 n)$ for $n=1,2,3$.

Making use of (7), we have

$$
\begin{align*}
2 \sum_{n=1}^{\infty} \Gamma_{n}(F) w^{n}= & A_{2} w+A_{3} w^{2}+A_{4} w^{3}+\cdots-\frac{1}{2}\left(A_{2} w+A_{3} w^{2}+A_{4} w^{3}+\cdots\right)^{2}+ \\
& +\frac{1}{3}\left(A_{2} w+A_{3} w^{2}+A_{4} w^{3}+\cdots\right)^{3}+\cdots \tag{8}
\end{align*}
$$

Equating the coefficients of w^{n}, for $n=1,2,3$, we obtain

$$
\left\{\begin{array}{l}
2 \Gamma_{1}=A_{2} \tag{9}\\
2 \Gamma_{2}=A_{3}-\frac{1}{2} A_{2}^{2} \\
2 \Gamma_{3}=A_{4}-A_{2} A_{3}+\frac{1}{3} A_{2}^{3}
\end{array}\right.
$$

Denote by \mathcal{B} denote the class of analytic functions which satisfies the conditions: $\omega(0)=0$ and $|\omega(z)|<1, \quad z \in \mathbb{U}$. Functions in \mathcal{B} are called Schwarz functions.

Let f and g be analytic in \mathbb{U}. We say that the function f is subordinated to the function g, denoted $f \prec g$, if there exists a function $\omega \in \mathcal{B}$, such that

$$
f(z)=g(\omega(z)), \quad z \in \mathbb{U} .
$$

Using the concept of subordination, Ma and Minda [4] defined the following two classes of functions

$$
\begin{gathered}
\mathcal{S}^{*}(\varphi)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z), z \in \mathbb{U}\right\} \\
\mathcal{C}(\varphi)=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi(z), z \in \mathbb{U}\right\},
\end{gathered}
$$

where φ is an analytic function with positive real part in \mathbb{U}, with $\varphi(0)=1, \varphi^{\prime}(0)>$ 0 and such that $\varphi(\mathbb{U})$ is a starlike region with respect to 1 and symmetric with
respect to the real axis. The classes $\mathcal{S}^{*}(\varphi)$ and $\mathcal{C}(\varphi)$ contain, as special cases, several well-known subclasses of starlike and convex functions.

Following Ma and Minda, we consider the following class of analytic functions defined by subordination.

Definition 1. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{M}_{\alpha}(\varphi), 0 \leq \alpha \leq 1$, if it satisfies the subordination:

$$
\begin{equation*}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \varphi(z) \tag{10}
\end{equation*}
$$

Note that $\mathcal{M}_{0}(\varphi)=\mathcal{S}^{*}(\varphi)$ and $\mathcal{M}_{1}(\varphi)=\mathcal{C}(\varphi)$.
For $\varphi(z)=\frac{1+z}{1-z}$ the class reduces to the class \mathcal{M}_{α} of α-convex functions

$$
\mathcal{M}_{\alpha}=\left\{f \in \mathcal{A}: \Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0, z \in U\right\},
$$

which was first introduced by P.T. Mocanu [6].
Like in the case of \mathcal{M}_{α}, the class $\mathcal{M}_{\alpha}(\varphi)$ provides a continuous passage from the class $\mathcal{S}^{*}(\varphi)$ to the class $\mathcal{C}(\varphi)$.

In this paper we obtain upper bounds for the logarithmic coefficients γ_{n} of the functions in $\mathcal{M}_{\alpha}(\varphi)$ and in the same time for Γ_{n}, the logarithmic coefficients of the inverse of $\mathcal{M}_{\alpha}(\varphi)$. Some connections with previous known results are pointed out.

In order to prove our results, the following two lemmas will be used.

Lemma 1. [7] Assume that ω is a Schwarz function so that $\omega(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$. Then

$$
\left\{\begin{array}{l}
\left|c_{1}\right| \leq 1 \\
\left|c_{n}\right| \leq 1-\left|c_{1}\right|^{2}, n=2,3, \cdots
\end{array}\right.
$$

Lemma 2. [10] If $\omega(z)=\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{B}$ then, for any real numbers q_{1} and q_{2}, the following sharp estimate holds:

$$
\left|c_{3}+q_{1} c_{1} c_{2}+q_{2} c_{1}^{3}\right| \leq H\left(q_{1} ; q_{2}\right) ;
$$

where

$$
H\left(q_{1} ; q_{2}\right)= \begin{cases}1 & \text { if } \quad\left(q_{1}, q_{2}\right) \in D_{1} \cup D_{2} \cup(2,1) ; \\ \left|q_{2}\right| & \text { if } \quad\left(q_{1}, q_{2}\right) \in \cup_{k=3}^{7} D_{k} ; \\ \frac{2}{3}\left(\left|q_{1}\right|+1\right)\left(\frac{\left|q_{1}\right|+1}{3\left|q_{1}\right|+1+q_{2}}\right)^{\frac{1}{2}} & \text { if } \quad\left(q_{1}, q_{2}\right) \in D_{8} \cup D_{9} ; \\ \frac{q_{2}}{3}\left(\frac{q_{1}^{2}-4}{q_{1}^{2}-4 q_{2}}\right)\left(\frac{q_{1}^{2}-4}{3\left(q_{2}-1\right)}\right)^{\frac{1}{2}} & \text { if } \quad\left(q_{1}, q_{2}\right) \in D_{10} \cup D_{11} \backslash(2,1) ; \\ \frac{2}{3}\left(\left|q_{1}\right|-1\right)\left(\frac{\left|q_{1}\right|-1}{3\left|q_{1}\right|-1-q_{2}}\right)^{\frac{1}{2}} & \text { if } \quad\left(q_{1}, q_{2}\right) \in D_{12} .\end{cases}
$$

The sets $D_{k}, k=1,2, \cdots 12$ are defined as follows:

$$
\begin{aligned}
D_{1} & =\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \leq \frac{1}{2},\left|q_{2}\right| \leq 1\right\} ; \\
D_{2} & =\left\{\left(q_{1}, q_{2}\right): \frac{1}{2} \leq\left|q_{1}\right| \leq 2, \frac{4}{27}\left(\left|q_{1}\right|+1\right)^{3}-\left(\left|q_{1}\right|+1\right) \leq\left|q_{2}\right| \leq 1\right\} ; \\
D_{3} & =\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \leq \frac{1}{2}, q_{2} \leq-1\right\} ; \\
D_{4} & =\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq \frac{1}{2},\left|q_{2}\right| \leq-\frac{2}{3}\left(\left|q_{1}\right|+1\right)\right\} ; \\
D_{5} & =\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \leq 2,\left|q_{2}\right| \geq 1\right\} ; \\
D_{6} & =\left\{\left(q_{1}, q_{2}\right): 2 \leq\left|q_{1}\right| \leq 4,\left|q_{2}\right| \geq \frac{1}{12}\left(q_{1}^{2}+8\right)\right\} ; \\
D_{7} & =\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq 4,\left|q_{2}\right| \geq \frac{2}{3}\left(\left|q_{1}\right|-1\right)\right\} ; \\
D_{8} & =\left\{\left(q_{1}, q_{2}\right): \frac{1}{2} \leq\left|q_{1}\right| \leq 2,-\frac{2}{3}\left(\left|q_{1}\right|+1\right) \leq\left|q_{2}\right| \leq \frac{4}{27}\left(\left|q_{1}\right|+1\right)^{3}-\left(\left|q_{1}\right|+1\right)\right\} ; \\
D_{9} & =\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq 2,-\frac{2}{3}\left(\left|q_{1}\right|+1\right) \leq\left|q_{2}\right| \leq \frac{2\left|q_{1}\right|\left|q_{1}+1\right|}{q_{1}^{2}+2\left|q_{1}\right|+4}\right\} ; \\
D_{10} & =\left\{\left(q_{1}, q_{2}\right): 2 \leq\left|q_{1}\right| \leq 4, \frac{2\left|q_{1}\right|\left|q_{1}+1\right|}{q_{1}^{2}+2\left|q_{1}\right|+4} \leq\left|q_{2}\right| \leq \frac{1}{12}\left(q_{1}^{2}+8\right)\right\} ; \\
D_{11} & =\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq 4, \frac{2\left|q_{1}\right|\left|q_{1}+1\right|}{q_{1}^{2}+2\left|q_{1}\right|+4} \leq\left|q_{2}\right| \leq \frac{2\left|q_{1}\right|\left|q_{1}-1\right|}{q_{1}^{2}-2\left|q_{1}\right|+4}\right\} ; \\
D_{12} & =\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq 4, \frac{2\left|q_{1}\right|\left|q_{1}-1\right|}{q_{1}^{2}-2\left|q_{1}\right|+4} \leq\left|q_{2}\right| \leq \frac{2}{3}\left(\left|q_{1}\right|-1\right)\right\}
\end{aligned}
$$

Unless otherwise mentioned, we assume through this paper that φ is a univalent function in \mathbb{U}, satisfying $\varphi(0)=1$, with series expansion of the form

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3} \cdots, \quad B_{1} \neq 0 . \tag{11}
\end{equation*}
$$

2 Logarithmic coefficients for $\mathcal{M}_{\alpha}(\varphi)$

In this section we obtain upper bounds of the first three logarithmic coefficients for the class $\mathcal{M}_{\alpha}(\varphi)$.

Theorem 1. Let f be a function in the class $\mathcal{M}_{\alpha}(\varphi)$. Then, the logarithmic coefficients of f satisfy the inequalities:

$$
\begin{aligned}
& \left|\gamma_{1}\right| \leq \frac{\left|B_{1}\right|}{2(1+\alpha)} ; \\
& \left|\gamma_{2}\right| \leq \begin{cases}\frac{\left|B_{1}\right|}{4(1+2 \alpha)} & \text { if } \quad\left|(1+\alpha)^{2} B_{2}+\alpha B_{1}^{2}\right| \leq(1+\alpha)^{2}\left|B_{1}\right| \\
\frac{\left|(1+\alpha)^{2} B_{2}+\alpha B_{1}^{2}\right|}{4(1+2 \alpha)(1+\alpha)^{2}} & \text { if } \quad\left|(1+\alpha)^{2} B_{2}+\alpha B_{1}^{2}\right| \geq(1+\alpha)^{2}\left|B_{1}\right| ;\end{cases}
\end{aligned}
$$

and if B_{1}, B_{2} and B_{3} are real, then

$$
\left|\gamma_{3}\right| \leq \frac{\left|B_{1}\right|}{6(1+3 \alpha)} H\left(q_{1}, q_{2}\right) ;
$$

where $H\left(q_{1}, q_{2}\right)$ is given by Lemma 2, with

$$
\left\{\begin{aligned}
q_{1} & =\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} B_{1}+\frac{2 B_{2}}{B_{1}} \\
q_{2} & =\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} B_{2}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)} B_{1}^{2}+\frac{B_{3}}{B_{1}} .
\end{aligned}\right.
$$

Proof. Let $f \in \mathcal{M}_{\alpha}(\varphi)$. Then there exist a function $\omega \in \mathbb{B}$ with $\omega(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ such that

$$
\begin{align*}
& (1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\varphi(\omega(z)) \tag{12}\\
& =1+B_{1} c_{1} z+\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) z^{2}+\left(B_{1} c_{3}+2 c_{1} c_{2} B_{2}+B_{3} c_{1}^{3}\right) z^{3}+\cdots
\end{align*}
$$

From the Taylor expansion of f, we have:

$$
\begin{align*}
& (1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=1+(1+\alpha) a_{2} z+\left[2(1+2 \alpha) a_{3}-\right. \tag{13}\\
& \left.\left.-(1+3 \alpha) a_{2}^{2}\right] z^{2}+\left[3(1+3 \alpha) a_{4}-3(1+5 \alpha) a_{2} a_{3}+1+7 \alpha\right) a_{2}^{3}\right] z^{3}+\cdots
\end{align*}
$$

Equating the coefficients of $z^{n}(n=1,2,3)$ in (12) and (13), we obtain

$$
\begin{cases}(1+\alpha) a_{2} & =B_{1} c_{1} \tag{14}\\ 2(1+2 \alpha) a_{3}-(1+3 \alpha) a_{2}^{2} & =B_{1} c_{2}+B_{2} c_{1}^{2} \\ 3(1+3 \alpha) a_{4}-3(1+5 \alpha) a_{2} a_{3}+(1+7 \alpha) a_{2}^{3} & =B_{1} c_{3}+2 c_{1} c_{2} B_{2}+B_{3} c_{1}^{3}\end{cases}
$$

Substituting a_{2} from (4) in (14), we obtain $\gamma_{1}=\frac{B_{1} c_{1}}{2(1+\alpha)}$. Applying Lemma 1 , we get $\left|\gamma_{1}\right| \leq \frac{\left|B_{1}\right|}{2(1+\alpha)}$.

Making use of the second equalities from both (4) and (14), after elementary computations, we obtain

$$
\gamma_{2}=\frac{(1+\alpha)^{2} B_{1} c_{2}+\left[(1+\alpha)^{2} B_{2}+\alpha B_{1}^{2}\right] c_{1}^{2}}{4(1+2 \alpha)(1+\alpha)^{2}}
$$

An application of Lemma 1 gives

$$
\left|\gamma_{2}\right| \leq \frac{(1+\alpha)^{2}\left|B_{1}\right|\left(1-\left|c_{1}\right|^{2}\right)+\left|(1+\alpha)^{2} B_{2}+\alpha B_{1}^{2}\right|\left|c_{1}\right|^{2}}{4(1+2 \alpha)(1+\alpha)^{2}}
$$

which yields to the required upper bound of $\left|\gamma_{2}\right|$.
Now, combining the last equalities from (4) and (14), we have

$$
\begin{aligned}
\gamma_{3}= & \frac{B_{1}}{6(1+3 \alpha)}\left\{c_{3}+\left[\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} B_{1}+\frac{2 B_{2}}{B_{1}}\right] c_{1} c_{2}+\right. \\
& \left.+\left[\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} B_{2}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)} B_{1}^{2}+\frac{B_{3}}{B_{1}}\right] c_{1}^{3}\right\} .
\end{aligned}
$$

Let

$$
\begin{aligned}
q_{1} & =\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} B_{1}+\frac{2 B_{2}}{B_{1}} \\
q_{2} & =\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} B_{2}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)} B_{1}^{2}+\frac{B_{3}}{B_{1}} .
\end{aligned}
$$

Making use of Lemma (2), from the above equality, we get

$$
\left|\gamma_{3}\right| \leq \frac{\left|B_{1}\right|}{6(1+3 \alpha)}\left|c_{3}+q_{1} c_{1} c_{2}+q_{2} c_{1}^{3}\right| \leq \frac{B_{1}}{6(1+3 \alpha)} H\left(q_{1} ; q_{2}\right) .
$$

Remark 1. For $\alpha=1$ we find the result obtained by E.A. Adegani et al. [1] in Theorem 2.

In [3] Kanas et al. investigated certain subclasses of Ma-Minda type defined with the help of function

$$
q_{s}(z)=\frac{1}{(1-z)^{s}}=\mathrm{e}^{-s \log (1-z)}=1+s z+\frac{s(s+1)}{2} z^{2}+\frac{s(s+1)(s+2)}{6} z^{3}+\cdots
$$

where the branch of the logarithm is determined by $q_{s}(0)=1$. This function maps the unit disk onto a domain bounded by the right branch of the hyperbola

$$
H(s)=\left\{\rho \mathrm{e}^{\mathrm{i} \varphi}: \rho=\frac{1}{(2 \cos (\varphi / s))^{s}},|\varphi|<\frac{\pi s}{2}\right\}
$$

If we consider $\varphi(z)=q_{s}(z)(0<s \leq 1)$ in Theorem 1 we obtain the following result.

Theorem 2. If $f \in \mathcal{M}_{\alpha}\left(q_{s}\right)$, then

$$
\begin{aligned}
& \left|\gamma_{1}\right| \leq \frac{s}{2(1+\alpha)} ; \\
& \left|\gamma_{2}\right| \leq \begin{cases}\frac{s}{4(1+2 \alpha)} & \text { if } \\
s \in\left(0, \frac{(1+\alpha)^{2}}{\alpha^{2}+4 \alpha+1}\right] \\
\frac{s^{2}\left(\alpha^{2}+4 \alpha+1\right)+s(1+\alpha)^{2}}{8(1+2 \alpha)(1+\alpha)^{2}} & \text { if } \\
\quad s \in\left[\frac{(1+\alpha)^{2}}{\alpha^{2}+4 \alpha+1}, 1\right]\end{cases}
\end{aligned}
$$

and

$$
\left|\gamma_{3}\right| \leq \begin{cases}\frac{s}{6(1+3 \alpha)} & \text { if } \quad s \in\left(0, \frac{-3(1+\alpha)^{2}\left(2 \alpha^{2}+6 \alpha+1\right)+\sqrt{\Delta}}{2\left(2 \alpha^{4}+16 \alpha^{3}+33 \alpha^{2}+8 \alpha+1\right)}\right] \\ \frac{s}{6(1+3 \alpha)} q_{2} & \text { if } \quad s \in\left[\frac{-3(1+\alpha)^{2}\left(2 \alpha^{2}+6 \alpha+1\right)+\sqrt{\Delta}}{2\left(2 \alpha^{4}+16 \alpha^{3}+33 \alpha^{2}+8 \alpha+1\right)}, 1\right]\end{cases}
$$

where

$$
\begin{aligned}
q_{2}= & s^{2}\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)}+\frac{1}{6}\right] \\
& +s\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{1}{2}\right]+\frac{1}{3}
\end{aligned}
$$

and

$$
\Delta=(a+1)^{3}\left(100 a^{5}+796 a^{4}+1888 a^{3}+1252 a^{2}+277 a+25\right) .
$$

Proof. The estimates for $\left|\gamma_{1}\right|$ and $\left|\gamma_{2}\right|$ are obtained directly from Theorem 1, taking $B_{1}=s$ and $B_{2}=\frac{s(s+1)}{2}$.

To obtain the estimate of $\left|\gamma_{3}\right|$ we will use only a part from Lemma 2, that is

$$
H\left(q_{1} ; q_{2}\right)=\left\{\begin{array}{lll}
1 & \text { if } & \left(q_{1}, q_{2}\right) \in D_{2} \\
\left|q_{2}\right| & \text { if } & \left(q_{1}, q_{2}\right) \in D_{5} \cup D_{6} .
\end{array}\right.
$$

If in Theorem 1, we take $B_{1}=s, B_{2}=\frac{s(s+1)}{2}$ and $B_{3}=\frac{s(s+1)(s+2)}{6}$ we obtain

$$
\left|\gamma_{3}\right| \leq \frac{s}{6(1+3 \alpha)} H\left(q_{1}, q_{2}\right),
$$

where

$$
\left\{\begin{aligned}
q_{1}= & \frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} s+s+1 \\
q_{2}= & s^{2}\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)}+\frac{1}{6}\right]+ \\
& +s\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{1}{2}\right]+\frac{1}{3} .
\end{aligned}\right.
$$

First, we consider

$$
\begin{equation*}
D_{2}=\left\{\left(q_{1}, q_{2}\right): \frac{1}{2} \leq\left|q_{1}\right| \leq 2, \frac{4}{27}\left(\left|q_{1}\right|+1\right)^{3}-\left(\left|q_{1}\right|+1\right) \leq\left|q_{2}\right| \leq 1\right\} \tag{15}
\end{equation*}
$$

It is easy to prove that inequality $\frac{1}{2} \leq\left|q_{1}\right| \leq 2$ holds for $s \in\left(0, \frac{(1+\alpha)(1+2 \alpha)}{2 \alpha^{2}+6 \alpha+1}\right]$. Now, the first part of the second inequality in (15) is equivalent to

$$
\begin{aligned}
& \frac{4}{27}\left[\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} s+s+2\right]^{3}-\left[\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)} s+s+2\right]- \\
& -s^{2}\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)}+\frac{1}{6}\right]-s\left[\frac{3 \alpha}{(1+\alpha)(1+2 \alpha)}+\frac{1}{2}\right]-\frac{1}{3} \\
& \leq 0
\end{aligned}
$$

For $\alpha=1$, the above inequality implies

$$
\frac{1}{2} s^{3}+\frac{19}{12} s^{2}+\frac{5}{12} s-\frac{31}{27} \leq 0
$$

and this inequality holds for $s \in(0,0.67243 \ldots]$.
The second part of the inequality in (15) is equivalent to

$$
s^{2}\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)}+\frac{1}{6}\right]+s\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{1}{2}\right]+\frac{1}{3} \leq 1,
$$

that is

$$
\begin{gathered}
\frac{1}{6(1+\alpha)^{3}(1+2 \alpha)}\left[s^{2}\left(2 \alpha^{4}+16 \alpha^{3}+33 \alpha^{2}+8 \alpha+1\right)+s\left(6 \alpha^{4}+30 \alpha^{3}+45 \alpha^{2}+\right.\right. \\
\left.+24 \alpha+3)-\left(8 \alpha^{4}+28 \alpha^{3}+36 \alpha^{2}+20 \alpha+4\right)\right] \leq 0
\end{gathered}
$$

and this inequality holds for

$$
\begin{equation*}
s \in\left(0, \frac{-3(1+\alpha)^{2}\left(2 \alpha^{2}+6 \alpha+1\right)+\sqrt{\Delta}}{2\left(2 \alpha^{4}+16 \alpha^{3}+33 \alpha^{2}+8 \alpha+1\right)}\right], \tag{16}
\end{equation*}
$$

where $\Delta=(a+1)^{3}\left(100 a^{5}+796 a^{4}+1888 a^{3}+1252 a^{2}+277 a+25\right)$.
For $\alpha=1$, the above inequality holds for $s \in(0,0.65241 \ldots]$.
From the above results, we conclude that $\left(q_{1}, q_{2}\right) \in D_{2}$ for s in (16).
Next, we consider

$$
\begin{equation*}
D_{5}=\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \leq 2,\left|q_{2}\right| \geq 1\right\} \tag{17}
\end{equation*}
$$

We observe that first inequality in (17), $\left|q_{1}\right| \leq 2$, holds for

$$
\begin{equation*}
s \in\left(0, \frac{(1+\alpha)(1+2 \alpha)}{2 \alpha^{2}+6 \alpha+1}\right] \tag{18}
\end{equation*}
$$

The second inequality in (17) is equivalent to
$s^{2}\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)}+\frac{1}{6}\right]+s\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{1}{2}\right]+\frac{1}{3} \geq 1$,
which holds for

$$
\begin{equation*}
s \in\left[\frac{-3(1+\alpha)^{2}\left(2 \alpha^{2}+6 \alpha+1\right)+\sqrt{\Delta}}{2\left(2 \alpha^{4}+16 \alpha^{3}+33 \alpha^{2}+8 \alpha+1\right)}, 1\right] . \tag{19}
\end{equation*}
$$

Therefore, from (18) and (19), $\left(q_{1}, q_{2}\right) \in D_{5}$ for

$$
s \in\left(0, \frac{(1+\alpha)(1+2 \alpha)}{2 \alpha^{2}+6 \alpha+1}\right] \cap\left[\frac{-3(1+\alpha)^{2}\left(2 \alpha^{2}+6 \alpha+1\right)+\sqrt{\Delta}}{2\left(2 \alpha^{4}+16 \alpha^{3}+33 \alpha^{2}+8 \alpha+1\right)}, 1\right],
$$

that is

$$
\begin{equation*}
s \in\left[\frac{-3(1+\alpha)^{2}\left(2 \alpha^{2}+6 \alpha+1\right)+\sqrt{\Delta}}{2\left(2 \alpha^{4}+16 \alpha^{3}+33 \alpha^{2}+8 \alpha+1\right)}, \frac{(1+\alpha)(1+2 \alpha)}{2 \alpha^{2}+6 \alpha+1}\right] . \tag{20}
\end{equation*}
$$

Finaly, we consider

$$
\begin{equation*}
D_{6}=\left\{\left(q_{1}, q_{2}\right): 2 \leq\left|q_{1}\right| \leq 4,\left|q_{2}\right| \geq \frac{1}{12}\left(q_{1}^{2}+8\right)\right\} \tag{21}
\end{equation*}
$$

After some simple computation we observe that first inequality, $2 \leq q_{1} \leq 4$, holds for

$$
\begin{equation*}
s \in\left(\frac{(1+\alpha)(1+2 \alpha)}{2 \alpha^{2}+6 \alpha+1}, 1\right] \tag{22}
\end{equation*}
$$

The second inequality in (21) is equivalent to

$$
\begin{aligned}
& s^{2}\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{\alpha(\alpha-1)}{(1+\alpha)^{3}(1+2 \alpha)}+\frac{1}{6}\right]+s\left[\frac{3 \alpha}{2(1+\alpha)(1+2 \alpha)}+\frac{1}{2}\right]- \\
& -\frac{1}{12}\left[\frac{2 \alpha^{2}+6 \alpha+1}{(1+\alpha)(1+2 \alpha)} s+1\right]^{2}-\frac{1}{3} \geq 0,
\end{aligned}
$$

which holds for

$$
\begin{equation*}
\left[\frac{(1+\alpha)(1+2 \alpha)\left[2(1+\alpha)\left(2 \alpha^{2}+6 \alpha+1\right)+\sqrt{\Delta}\right]}{4 \alpha^{5}+40 \alpha^{4}+100 \alpha^{3}+46 \alpha^{2}+7 \alpha+1}, 1\right] \tag{23}
\end{equation*}
$$

where $\Delta=3(1+\alpha)\left(12 \alpha^{5}+104 \alpha^{4}+252 \alpha^{3}+146 \alpha^{2}+29 \alpha+3\right)$.
For $\alpha=1$, the above inequality holds for $s \in[0.64352,1]$.
Therefore, from (22) and (23), $\left(q_{1}, q_{2}\right) \in D_{6}$ for

$$
\begin{equation*}
s \in\left(\frac{(1+\alpha)(1+2 \alpha)}{2 \alpha^{2}+6 \alpha+1}, 1\right] \tag{24}
\end{equation*}
$$

In view of the conditions from (20) and (24) it follows that $\left(q_{1}, q_{2}\right) \in D_{5} \cup D_{6}$ for

$$
s \in\left[\frac{-3(1+\alpha)^{2}\left(2 \alpha^{2}+6 \alpha+1\right)+\sqrt{\Delta}}{2\left(2 \alpha^{4}+16 \alpha^{3}+33 \alpha^{2}+8 \alpha+1\right)}, 1\right]
$$

Remark 2. For $\alpha=1$ we find the result obtained by A. Ebadian et al. [2] in Theorem 2.

3 Logarithmic coefficients of the inverse of $\mathcal{M}_{\alpha}(\varphi)$

Motivated by the results obtained in [9], in this section, we investigate the upper bounds of the logarithmic coefficients of an inverse function of $\mathcal{M}_{\alpha}(\varphi)$.

Theorem 3. Let $f \in \mathcal{M}_{\alpha}(\varphi)$ and let F, given by (5), be the inverse function of f. Then, the logarithmic coefficients $\Gamma_{n}, n=1,2,3$, of F satisfy the inequalities:

$$
\left|\Gamma_{1}\right| \leq \frac{\left|B_{1}\right|}{2(1+\alpha)}
$$

$$
\left|\Gamma_{2}\right| \leq\left\{\begin{array}{lcc}
\frac{\left|B_{1}\right|}{4(1+2 \alpha)} & \text { if } & \left|(1+\alpha)^{2} B_{2}-(2+3 \alpha) B_{1}^{2}\right| \\
& & \leq(1+\alpha)^{2}\left|B_{1}\right| ; \\
\frac{\left|(1+\alpha)^{2} B_{2}-(2+3 \alpha) B_{1}^{2}\right|}{4(1+2 \alpha)(1+\alpha)^{2}} & \text { if } & \left|(1+\alpha)^{2} B_{2}-(2+3 \alpha) B_{1}^{2}\right| \\
& & \geq(1+\alpha)^{2}\left|B_{1}\right| ;
\end{array}\right.
$$

and if B_{1}, B_{2} and B_{3} are real, then

$$
\left|\Gamma_{3}\right| \leq \frac{\left|B_{1}\right|}{6(1+3 \alpha)} H\left(q_{1}, q_{2}\right) ;
$$

where $H_{1}\left(q_{1}, q_{2}\right)$ is given by Lemma 2, with

$$
\left\{\begin{aligned}
q_{1} & =\frac{2 B_{2}}{B_{1}}-\frac{3(3+7 \alpha)}{2(1+\alpha)(1+2 \alpha)} B_{1} ; \\
q_{2} & =\frac{29 \alpha^{2}+34 \alpha+9}{2(1+\alpha)^{3}(1+2 \alpha)} B_{1}^{2}-\frac{3(3+7 \alpha)}{2(1+\alpha)(1+2 \alpha)} B_{2}+\frac{B_{3}}{B_{1}} .
\end{aligned}\right.
$$

Proof. Let $f \in \mathcal{M}_{\alpha}(\varphi)$. Proceeding as in the proof of Theorem 1, we have the equalities (14).

Next, replacing A_{2}, A_{3} and A_{4} from (6) in (9), we obtain

$$
\left\{\begin{array}{l}
2 \Gamma_{1}=-a_{2} \tag{25}\\
4 \Gamma_{2}=-2 a_{3}+3 a_{2}^{2} \\
6 \Gamma_{3}=-3 a_{4}+12 a_{2} a_{3}-10 a_{2}^{3}
\end{array}\right.
$$

Substituting a_{2} from (25) in (14), we obtain $\Gamma_{1}=\frac{B_{1} c_{1}}{-2(1+\alpha)}$ and applying Lemma 1, we get $\left|\Gamma_{1}\right| \leq \frac{\left|B_{1}\right|}{2(1+\alpha)}$.

Making use of the second equalities from both (25) and (14), and after elementary computations, we have

$$
\Gamma_{2}=\frac{(1+\alpha)^{2} B_{1} c_{2}+\left[(1+\alpha)^{2} B_{2}-(2+3 \alpha) B_{1}^{2}\right] c_{1}^{2}}{-4(1+2 \alpha)(1+\alpha)^{2}}
$$

Taking into account Lemma 1, we obtain

$$
\left|\Gamma_{2}\right| \leq \frac{(1+\alpha)^{2}\left|B_{1}\right|\left(1-\left|c_{1}\right|^{2}\right)+\left|(1+\alpha)^{2} B_{2}-(2+3 \alpha) B_{1}^{2}\right|\left|c_{1}\right|^{2}}{4(1+2 \alpha)(1+\alpha)^{2}}
$$

from which, with $\left|c_{1}\right| \leq 1$, we obtain the required upper bound. In order to obtain the estimate of $\left|\Gamma_{3}\right|$, we use the last equalities from (25) and (14), and we get

$$
\begin{aligned}
\Gamma_{3}= & \frac{B_{1}}{-6(1+3 \alpha)}\left\{c_{3}+\left[\frac{2 B_{2}}{B_{1}}-\frac{3(3+7 \alpha) B_{1}}{2(1+\alpha)(1+2 \alpha)}\right] c_{1} c_{2}+\right. \\
& \left.+\left[\frac{29 \alpha^{2}+34 \alpha+9}{2(1+\alpha)^{3}(1+2 \alpha)} B_{1}^{2}-\frac{3(3+7 \alpha)}{2(1+\alpha)(1+2 \alpha)} B_{2}+\frac{B_{3}}{B_{1}}\right] c_{1}^{3}\right\} .
\end{aligned}
$$

Consider $\quad q_{1}=\frac{2 B_{2}}{B_{1}}-\frac{3(3+7 \alpha) B_{1}}{2(1+\alpha)(1+2 \alpha)} \quad$ and $\quad q_{2}=\frac{29 \alpha^{2}+34 \alpha+9}{2(1+\alpha)^{3}(1+2 \alpha)} B_{1}^{2}-$ $\frac{3(3+7 \alpha)}{2(1+\alpha)(1+2 \alpha)} B_{2}+\frac{B_{3}}{B_{1}}$. An application of Lemma (2) yields

$$
\left|\Gamma_{3}\right| \leq \frac{\left|B_{1}\right|}{6(1+3 \alpha)}\left|c_{3}+q_{1} c_{1} c_{2}+q_{2} c_{1}^{3}\right| \leq \frac{B_{1}}{6(1+3 \alpha)} H\left(q_{1} ; q_{2}\right) .
$$

For $\alpha=1$ we obtain the following corollary:
Corollary 1. Let $f \in \mathcal{C}(\varphi)$ and let F, given by (5), be the inverse function of f. Then, the logarithmic coefficients $\Gamma_{n}, n=1,2,3$, of F satisfy the inequalities:

$$
\begin{aligned}
& \left|\Gamma_{1}\right| \leq \frac{\left|B_{1}\right|}{4} ; \\
& \left|\Gamma_{2}\right| \leq \begin{cases}\frac{\left|B_{1}\right|}{12} & \text { if } \quad\left|4 B_{2}-5 B_{1}^{2}\right| \leq 4\left|B_{1}\right| \\
\frac{\left|4 B_{2}-5 B_{1}^{2}\right|}{48} & \text { if } \quad\left|4 B_{2}-5 B_{1}^{2}\right| \geq 4\left|B_{1}\right|\end{cases}
\end{aligned}
$$

and if B_{1}, B_{2} and B_{3} are real, then
$\left|\Gamma_{3}\right| \leq \frac{\left|B_{1}\right|}{24} H\left(q_{1}, q_{2}\right) ;$
where $H_{1}\left(q_{1}, q_{2}\right)$ is given by Lemma 2, with

$$
\left\{\begin{aligned}
q_{1} & =\frac{2 B_{2}}{B_{1}}-\frac{5}{2} B_{1} \\
q_{2} & =\frac{3}{2} B_{1}^{2}-\frac{5}{2} B_{2}+\frac{B_{3}}{B_{1}} .
\end{aligned}\right.
$$

Remark 3. For $\varphi(z)=\frac{1+(1-2 \alpha) z}{1-z}$ in the above corollary, we find the result obtained by S. Ponnusamy et al. [9] in Theorems 10,11 and 13.

Conclusions.

In this paper we consider a class $\mathcal{N}_{\alpha}(\varphi)$ of analytic functions defined by subordination. For the class $\mathcal{M}_{\alpha}(\varphi)$ we investigated the upper bounds for the logarithmic coefficients $\gamma_{n}, n \in\{1,2,3\}$ and also for $\Gamma_{n}, n \in\{1,2,3\}$, the logarithmic coefficients for the inverse of $\mathcal{M}_{\alpha}(\varphi)$. The results obtained in this paper could be a subject of further investigation related to logarithmic coefficients γ_{n} and Γ_{n} for $n \geq 4$.

References

[1] Adegani, E. A., Cho, N. E. and Jafari, M.,Logarithmic coefficients for univalent functions defined by subordination, Mathematics 7 (2019), no. 5, Article number 408.
[2] Ebadian, A., Bulboacă, T. and Adegani, E. A., Coefficients bounds and differential subordinations for analytic functions associated with starlike functions, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Math. RACSAM Ăâbf 114̂̂ (2020), Article number 128.
[3] Kanas, S., Masih, V. S. and Ebadian, A., Relations of a planar domain bounded by hyperbolas with families of holomorphic functions, J. Inequal. Appl. 246 (2019), 1-14.
[4] Ma, W. C. and Minda, D., A unified treatment of some special classes of univalent functions, In: Proceedings of Conference on Complex Analysis (Tianjin, 1992), Internat. Press, Cambridge, MA, USA, 157-169, 1992.
[5] Milin, M. I., Univalent functions and orthnormal systems, (in Russian), Nauka, Moscow 1971, English translation: Amer. Math. Soc., Providence 1977.
[6] Mocanu, P. T., Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica, Cluj Napoca, 11(34) (1969), 127133.
[7] Nehari, Z., Conformal mapping, McGraw-Hill, New York, NY, USA, 1952.
[8] Ponnusamy, S., Sharma, N. L. and Wirths, K. J., Logarithmic coefficients problems in families related to starlike and convex functions, J. Aust. Math. Soc. (2018), 1-20.
[9] Ponnusamy, S., Sharma, N. L. and Wirths, K. J., Logarithmic coefficients of the inverse of univalent functions, Results. Math. 73 (2018), Article number 160.
[10] Prokhorov, D.V. and Szynal, J., Inverse coefficients for (α, beta)-convex functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 35 (1984), 125:143.

[^0]: ${ }^{1 *}$ Corresponding author, Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: andreea.tudor@unitbv.ro
 ${ }^{2}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: draducanu@unitbv.ro

