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Abstract

This paper aims to present several new properties of geometrically con-
vex functions similar to some those known properties for convex functions.
Finally, we show some improvements of Young’s inequality.
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1 Introduction

Many types of convexity are studied in specialized literature (see [1], [2]).
Among them is also geometrically convex (see [3], [6], [7], [8]). Recall that the
function f : (0,00) — (0, c0) is said to be geometrically convex, if for any a,b > 0,

F (@) < F@ O p=0and At pu=1). (1)

In other words, for any 0 <t <1,
Fa' ") < f70a) (). (2)
The exponential function exp(x) is an example of a geometrically convex function.
The proof consists in using the inequality of Young, a'~'b' < (1 — t)a + tb, for

every a,b € (0,00) and for all ¢ € [0, 1], thus

exp (a'7'b") < exp ((1 — t)a + tb) = exp' " (a)exp (b).
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Thus, studying the geometrically convex functions is important because they can
provide new characterizations of Young’s inequality.

In [5], Niculescu uses these functions while calling them the GG-convex or
the multiplicatively convex functions. The same author investigated the class
of multiplicatively convex functions showing that every polynomial P(x) with
nonnegative coefficients is a geometrically convex function on [0, c0).

Next, we will say geometrically convex function for a function with the prop-
erty (1) or (2) because this notion has been widely employed in recent papers (see

[9], [10], [11]).

We see that if A = pu = %, then inequality (1) becomes

7 (Vab) < VF (@) F ). (3)

A continuous function f : (0,00) — (0,00) is geometrically convex function if

and only if inequality (3) holds for every a,b € (0,00) (see [5]). Suppose that

f:(0,00) = (0,00) is geometrically convex function, then the function F' : R — R

defined by F'(z) = log o foexp(z) is a convex function (see [5]). It is not hard to see

that if f is increasing and log-convex, then f is a geometrically convex function.

If function f : (0,00) — (0, 00) is geometrically convex and w; are positive scalars
n

such that >~ w; = 1, then we have a Jensen-type inequality
i=1

for all t; € (0, 00).
2 Some properties of the geometrically convex func-
tions

The Hermite-Hadamard inequality states that for any convex function f, the
inequality

f(a+b) /f (1—t)a+th)d b_a/f tdt < 1 ) /)

holds. If the function f on (0, 00) is geometrically convex, then In f (e”) is convex
on R. This means,

1
lnf<eaT+b) /1nf( (1- ta“b) dt < 1Iny\/f (ea) f (eb).
0
Therefore, we get the following;:
1
f (e#) < exp /lnf (e(l_t)”tb) dt | </ f(e2) f(eb).

0
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If we replace a by Ina and b by Inb, then we have

1
f (x/%) < exp ( / In f (a'~'0") dt) <V /f(a)f (). (4)

0
Remark 1. The inequality (4) is equivalent to

Inb

f(\/%) < exp (1/1nf(et) dt) <V f(a)f(b).

Inb—1Ina
Ina

From [7, Theorem 6], we found that if f : (0,00) — (0,00) is a geometrically
convex function, then for any a,b > 0

2r
£ (Vab
flat) < (M) £ @) £ 0 )
and
2R
£ (@) 1 () < (ff éjib)(b)) Fa1). (©

Let f : (0,00) — (0,00) be a function. Using the technique from [4], we
introduce the following expression:

£ (@) f )
J @y

where a,b € (0,00) and v € R. It is easy to see that if f is a geometrically convex
function and v € [0, 1], then we obtain that A,(f)(a,b) > 1, for all a,b € (0, 0).
We find the following properties:

Au(f)a,a) = Ao(f)(a;b) = Ar(f)(a,b) =1

Ay(f)(a,b) =

and
AV(f)(a’ b) = Al—l/(f)a)? CL),

for every a,b € (0, 00).

Lemma 1. Let f : (0,00) — (0,00) be a function and a,b € (0,00). If v € R,
then the following equalities hold:

Au(f)a,b) = Do, (f) (Vab.b) - A%y (f)(a,b) (7)

and

Au(£)(a:b) = Doy1(f) (a.Vab) - AT (£)(a,b). ®)
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Proof. Using the definition of A, (f)(a,b), by regrouping the terms, we receive

(
Aoy (f) ( ab, b) 1/2 (f)(a,b)
_ [ (Vab) f1(b) (@) f ()
f Vab vl 2y) F2 (m)

@)
f (aubl—u)

which signifies the first relation of the statement. In the same method, we have

= Au(f)(a7 b)a

a1 (f) (a, Vab) - AT (f)(a,b)
_ PN @) P (Vab) £V (a) f1(0)
f(a21/71 ab272y> f2-2w (\/@)

@) f )
f (aublfu)

which implies the second relation of the statement. O

= Au(f)(av b)’

Next, we study de case when v ¢ (0,1) and f : (0,00) — (0,00) is a geomet-
rically convex function.

Lemma 2. Let f : (0,00) — (0,00) be a geometrically convexr function. If v €
R\ (0,1), then the following inequality holds:

Ay(f)(a,b) <1
for all a,b € (0,00).

Proof. We study two cases: I) If v < 0, then we get

P@r® )
AADD) =T i) = ) (b )

1—

v 1—-v
_ f(b) - f(b) _ [f(b)] —
f%(a)fl/(l—u) (a’b—v) Y (a% (aubl—y)l/(l_l’)> f(b)

IT) If v > 1, then, using the fact that f is geometrically convex, we deduce

_ @) o) f"(a)
Ay(f)(a,b) = [; (aybl—y) - f”fl(b)f (a”blf”)

_ [ f(a) ] f(a) V: [ﬂa)]” 1.
£ ) 17 (arbi—) 7 (67 (@nt=)) fle)

Therefore, the inequality of the statement is true. O

IN
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Remark 2. If f : (0,00) — (0,00) is a geometrically convexr function with v €
R —(0,1), then the following inequality holds:

F@) 77 () = f (a"0'77)
for all a,b € (0,00).

Proposition 1. Let f : (0,00) — (0,00) be a geometrically convex function. If
v € [0,1], then the following inequality holds:

AT (£)(a,b) < Ay(f)(a,b) < AT (f)(a,b) (9)

for all a,b € (0,00), where r = min{v,1 — v} and R = max{v,1 — v}.

Proof. For v € [0,1], we have 2v € [0,1] and 2v — 1 € [-1,0], so, we show that
Aoy (f) (\/@, b) > 1 and using Lemma 2 we have inequality Ag,_1(f) <a, \/(%) <
1. From equalities (7) and (8), we obtain

A, (£)(a,b) < Ax(F)(a,b) < AT (£)(a, ). (10)
For v € [%, 1], in the same way, we prove that

ALY ()(a,b) < Ay(f)(a,b) < AYL(f)(ab). (11)

Consequently, the inequality of the statement is true when combining inequalities
(10) and (11). O

Remark 3. The inequalities from Proposition 1 become,

2r 2R
T@I®) _ F@fo _ (VT@io
) ) S Twr e =y )
which in fact are inequalities (5) and (6).
The gamma function T'(z) is defined as T'(z) = [;°t* te~'dt. Since T is

increasing and log-convex on [2,00), then I is a geometrically convex function on
[2,00). Therefore we have

2r 2R
T@WI®) _@r® _ (V@I
) ) e )

foralla,b € [2,00) and v € [0,1], where r = min{v,1—v} and R = max{v,1—v}.

Theorem 1. Suppose that f : (0,00) — (0,00) is a geometrically convex function.
Ifv €0, %], then the following inequality holds:

A%?z(f)(a, b) . A?gin{%’l_%} (f) (\/%, b) < Al/(f)(av b)
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< AF,(£)(ab) - AT R () (Vab,b) (12)

and if v € [%, 1], then the inequality
A2(1fz/) b) - AQmin{2V71,2721/} ﬁ <A b
1/2 (f)(a, ) 1/2 (f) a,vav | = V(f)(a7 )

< &Y () (a,) - AT (a0, Vab)
holds.

Proof. For v € [0, %], we have 2v € [0, 1] and replacing a by v/ab in inequality (9),
we deduce i o1
AT (1) (Vab,b) < Asy(f) (Vab,b)
2 max{2v,1—-2v
< ajped Hop (\/% b) . (13)

Consequently, we show the first inequality of the statement by combining equality
(7) with inequality (13). For v € [3,1], we have 2v — 1 € [0, 1] and replacing b by
Vab in inequality (9), we deduce

A?gin{m—m—%}(f) <a7 \/@) < Aoy 1(f) (a’ \ﬁ%)

< Az o Vi) 2

Consequently, combining equality (8) with inequality (14), we establish the second
inequality of the statement. In fact, this inequality is obtained by interchanging
v with 1 — v and a with b in inequality (13). O

Remark 4. For v € [0, %], then inequality (12) becomes,

2r/

rarm\” (VB IO) e
) ) ey ) e

2R'

<( f<a>f<b>)2" f(var) 1)

7 (Vab) 1 (Vai) |
where ' = min{2v,1 — 2v} and R' = max{2v,1 — 2v}. For v € [3,1], then
inequality (13) becomes,
2"
vrara) [y @ (V) _ @)
)\ ) e
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2R

rarm\ (V@ (Va)
s (Va) 7 (V)

where " = min{2v — 1,2 — 2v} and R" = max{2v — 1,2 — 2v}, these refines
inequalities (5) and (6).

If we take instead of f the exponential function exp(z), then we get the fol-
lowing improvements of the inequality of Young:

v(Va—V)2+r! (Vab—V8)* < vat(L—v)b—a"b' " < v(\/a—v/b)+R (Vab—/b)?
(15)

11, where ' = min{2v,1 — 2v} and

for every a,b € (0,00) and for all v € [0, 5

R’ = max{2v,1 — 2v} and
(1 -v)(va—Vb)? +1"(va— Vab)®
<(1—=v)a+vb—a "W < (1-v)(Va—Vb)?+ R'(Va— Vab)? (16)
for every a,b € (0,00) and for all v € [%, 1], where " = min{2v — 1,2 — 2v} and
R" = max{2v — 1,2 — 2v}.
If if we take § =t > 0, then inequalities (15) and (16) becomes
v(Vt—1)2 47 (V-1 <uvt4+1—v—t' <v(Vt—1)*+ R (Vt —1)?

1

for every ¢t € (0,00) and for all v € [0, 5

R’ = max{2v,1 — 2v}, and

|, where ' = min{2r,1 — 2v} and

(1-v)(VE=1)*+" (V- Vt)? < (1-v)t+r—t'7" < 1-v)(VI-1)*+R"(VI- V1)

for every t € (0,00) and for all v € [3,1], where r”" = min{2v — 1,2 — 2v} and
R" = max{2v — 1,2 — 2v}.

For p > 2 and % —I—% = 1 we replace a by a” and b by b? in (15), thus, we
deduce

1 p q 1
Lt vty eraint—pt)? < T ¥ < L —uh2 e Riatet —pty2 (1)
p p q p

for every a,b € (0,00), where 1’ = min{%, % —1}and R = max{%, % —1}.

For 1 <p <2 and % + % = 1 we replace a by a” and b by b? in (16), thus, we
deduce
P
l(ag - b%)Q +7"(a b%)Q < 4 " ab < 1(a% — b%)2 + R”(a%
4 P g q

D pP._q
3 _azbz)Z

for every a,b € (0,00), where 1" = min{}z7 -1, %} and R" = max{% -1, %} In fact,
this inequality is obtained by interchanging p with ¢ and a with b in inequality
(17).
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Notice that the above inequalities help us to improve Bernoulli’s inequality

and Holder’s inequality.
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