
Bulletin of the Transilvania University of Braşov
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Abstract

This paper is devoted to the study of a class of Kirchhoff-type prob-
lems with discontinuous nonlinearities with Neumann boundary data. Here,
by employing the topological degree methods for the abstract Hammerstein
equation, we establish the existence of at least one solution.
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1 Introduction and hypotheses

Let Ω ⊂ RN (N ≥ 1) be a bounded open set with smooth boundary ∂Ω, and
p be a real number such that 2 < p < ∞. The main purpose of this paper is to
demonstrate the existence of weak solutions for the following Neumann boundary
value problems with discontinuous nonlinearities of the Kirchhoff type

−M
(∫

Ω
Θ(x,∇u)dx

)
div(σ(x,∇u)) + u ∈ −

[
ψ(x, u), ψ(x, u)

]
in Ω,

N∑
i=1

σ(x, ∂iu) · ηi = 0 on ∂Ω,

(1)
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where ηi are the components of the outer normal unit vector, σ(x, ξ) : Ω×RN −→
RN is a Carathéodory vector-valued function, such that σ(x, ξ) = ∇ξΘ(x, ξ),
where Θ(x, ξ) : Ω × RN −→ R. Suppose that σ and Θ satisfy the following
hypotheses, for a. e. in x ∈ Ω and all ξ, ξ′ ∈ RN , (ξ ̸= ξ′).

(A1) Θ(x, 0) = 0,

(A2) σ(x, ξ) · ξ ≥ α
∣∣ξ∣∣p,

(A3) |σ(x, ξ)| ≤ β
(
k(x) + |ξ|p−1

)
,

(A4)
[
σ(x, ξ)− σ(x, ξ′)

]
· (ξ − ξ′) > 0,

where α, β are some positive constants and k(x) is a positive function in Lp′(Ω)(p′

is the conjugate exponent of p).
(M0) M : R+ → R+ is continuous and non-decreasing function, for which there
exist two positive constant m0 and m1 such that m0 ≤ M(t) ≤ m1 for all t ∈
[0,+∞[.
Furthermore, The functions ψ : Ω × R → R is a possibly discontinuous function,
we ”fill the discontinuity gaps” of ψ, replacing ψ by an interval

[
ψ(x, u), ψ(x, u)

]
,

where

ψ(x, s) = lim inf
η→s

ψ(x, η) = lim
δ→0+

inf
|η−s|<δ

ψ(x, η),

ψ(x, s) = lim sup
η→s

ψ(x, η) = lim
δ→0+

sup
|η−s|<δ

ψ(x, η).

Assume that ψ : Ω× R → R is a real-valued function such that

(H1) ψ and ψ are super-positionally measurable (i.e, ψ(·, u(·)) and ψ(·, u(·)) are
measurable on Ω for every measurable function u : Ω → R).

(H2) ψ fulfil the growth condition:

|ψ(x, s)| ≤ b(x) + c|s|p/p′ ,

for almost all x ∈ Ω and all s ∈ R, where b ∈ Lp′(Ω), c is a positive constant.

The study of these discontinuous nonlinearities problems has grown considerably
in recent years due to their presence in the modeling of several physical and bio-
logical problems such as the Elenbass equation, population density and dynamics,
the obstacle problem and the seepage surface problem. The reader can consult
[6, 12, 19, 20] and the references therein. Note that the problem (1) is nonlocal

due to the presence of the term M
(∫

Ω
Θ(x,∇u)dx

)
. Moreover, our problem has

no variational structure because the nonlinear term ψ is discontinuous. This cre-
ates serious mathematical difficulties, especially preventing the use of variational
methods. This makes the study of such a problem particularly interesting.

In order to overcome the discontinuous difculty, we will transform this Neu-
mann boundary value problems with discontinuous nonlinearities into a new one
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governed by a Hammerstein equation. Then, we shall employ the topological de-
gree theory developed by Kim in [24] for a class of weakly upper semi-continuous
locally bounded set-valued operators of (S+) type in the framework of real re-
flexive separable Banach spaces, based on the Berkovits-Tienari degree [8]. The
topological degree theory is constructed the first time by Leray-Schauder [26] in
their study of the nonlinear equations for compact perturbations of the identity
in infinite-dimensional Banach spaces. Furthermore, Browder [9] has developed a
topological degree for operators of class (S+) in reflexive Banach spaces, see also
[32]. Among many examples, we refer the reader to do classical works [15, 37] for
more details.

In this regard, the problem (1) is a generalization of a model proposed by
Kirchhoff [25] in 1883 in the study of the oscillations of stretched strings and
plates, More precisely, Kirchhoff established a model model given by the equation

ρ
∂2u

∂t2
−
(ρ0
h

+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u
∂x2

= 0 (2)

where ρ, ρ0, h, E, L are all constants, this equation is an extension of the classical
d’Alembert’s wave equation for free vibrations of elastic strings by considering the
effect of a change in the length of the string during the vibration. However, after
the famous Lions article [28], this type of problem has attracted the attention of
several authors and since that time dozens of articles have been published. We
can cite in particular the works of Chipot [13, 14], Corrêa et al. [16, 17] and their
references.

We now provide an overview of the results presented in this article, when

Θ(x, ξ) =
1

p
|ξ|p, we get σ(x, ξ) = |ξ|p−2|ξ|, where p ≥ 2, then, we obtain the

p-Laplace operator. Many problems of Kirchhoff type have been studied, we refer
to [23, 27, 29].

In the simplest caseM ≡ 1 and when we take−(b(x)|u|p−2u+λH(x, u,∇u))+u
instead of

[
ψ(x, u), ψ(x, u)

]
. In [2], Abbassi et al. demonstrated the existence of

a weak solution to the problem
−div σ(x, u,∇u) = b(x)|u|p−2u+ λH(x, u,∇u) in Ω,
N∑
i=1

σ(x, ∂iu) · ηi = 0 on ∂Ω.

Where σ(x, u,∇u) is a Carathéodory’s function that tests certain hypothesis. The
function H(x, u,∇u) is also a Carathéodory’s function satisfies only the growth
condition. By using the topological degree method. On this topic, we mention
the works [1, 4, 30, 35].

In case p = p(x), some interesting studies of problem like (1) by degree theory
methods can be found in [10, 11, 36]. Moreover, many problems related to the
Kirchhoff term have been studied by a number of authors by employing different
techniques as the method of sub-supersolution, fixed point theory, variational
methods, genus theory and approximation techniques. For obtain the existence
results, we mention the works [7, 18, 21, 34].
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On the other hand, when σ(x, s, ξ) = |ξ|pi−2 · ξ for all i ∈
{
1, · · · , N

}
, where

−→p =
{
p1, . . . , pN

}
with pi are real numbers, pi ≥ 2, we get the anisotropic −→p -

Laplace operator, we refer to the recent paper by Figueiredo and Silva [22] have
established the existence of a nonnegative solution for nonlinear anisotropic elliptic
equations. Some related results can be found in [3, 5].
This paper is organized as follows: In the next section, we recall some basic
definitions and preliminary results. Section 3 is focused on some auxiliary lemmas.
In section 4, we present and prove our main results.

2 Necessary facts on the topological degree

In this section we recall some fundamental definitions and theorems about
topological degree theory which are useful for our aim, and we refer the reader to
[1, 2, 15, 24] for more details.
Let Ω ⊂ RN (N ≥ 1) be a bounded open set, p ∈ R such that 2 < p <∞. We will
work in the Sobolev space W 1,p(Ω) endowed with the norm

∥u∥ =
( ∫

Ω
|u|p + |∇u|pdx

)1/p
.

The norm in Lp(Ω) will be denoted by ∥u∥p =
( ∫

Ω
|u|pdx

)1/p
.

LetX be a real separable reflexive Banach space with dualX∗ and with continuous
dual pairing ⟨ · , · ⟩ between X∗ and X in this order. The symbol ⇀ stands for
weak convergence.
Let Y be another real Banach space.

Definition 1. [33]

1. We say that the set-valued operator F : Ω ⊂ X → 2Y is bounded, if F maps
bounded sets into bounded sets.

2. We say that the set-valued operator F : Ω ⊂ X → 2Y is locally bounded
at the point u ∈ Ω, iff there is a neighborhood V of u such that the set

F (V) =
⋃
u∈V

Fu is bounded.

Definition 2. [33] The set-valued operator F : Ω ⊂ X → 2Y is called

1. upper semicontinuous (u.s.c.) at the point u, iff, for any open neighborhood
V of the set Fu, there is a neighbhorhood U of the point u such that F(U) ⊆
V . We say that F is upper semicontinuous (u.s.c) if it is u.s.c at every
u ∈ X.

2. weakly upper semicontinuous (w.u.s.c.), if F−1(U) is closed in X for all
weakly closed set U in Y.

Definition 3. [33] Let Ω be a nonempty subset of X, the sequence (un)n≥1 ⊆ Ω
and F : Ω ⊂ X → 2X

∗\∅. Then, the set-valued operator F is
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1. of type (S+), if un ⇀ u in X and for each sequence (hn) in X∗ with hn ∈
Fun such that

lim sup
n→∞

⟨hn, un − u⟩ ≤ 0,

we get un → u in X;

2. quasi-monotone, if un ⇀ u in X and for each sequence (wn) in X∗ such
that wn ∈ Fun yield

lim inf
n→∞

⟨wn, un − u⟩ ≥ 0.

Definition 4. [33] Let Ω be a nonempty subset of X such that Ω ⊂ Ω1, (un)n≥1 ⊆
Ω and T : Ω1 ⊂ X → X∗ be a bounded operator. Then, the set-valued operator
F : Ω ⊂ X → 2X\∅ is of type (S+)T , if{

un ⇀ u in X,

Tun ⇀ y in X∗,

and for any sequence (hn) in X with hn ∈ Fun such that

lim sup
n→∞

⟨hn, Tun − y⟩ ≤ 0,

we have un → u in X;

Next, we consider the following sets :

F1(Ω) := {F : Ω → X∗ | F is bounded, demicontinuous

and satifies condition(S+)},
FT (Ω) := {F : Ω → 2X | F is locally bounded, w.u.s.c.

and satifies condition(S+)T }

For any Ω ⊂ DF and each bounded operator T : Ω → X∗, where DF denotes the
domain of F .

Remark 1. We say that the operator T is an essential inner map of F , if T ∈
F1(G).

Lemma 1. [24, Lemma 1.4] Let X be a real reflexive Banach space and G ⊂ X is
a bounded open set. Assume that T ∈ F1(G) is continuous and S : DS ⊂ X∗ → 2X

weakly upper semicontinuous and locally bounded with T (G) ⊂ Ds. Then the
following alternative holds

1. If S is quasi-monotone, yield I+SoT ∈ FT (G), where I denotes the identity
operator.

2. If S is of type (S+), yield SoT ∈ FT (G).
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Definition 5. [24] Let T : G ⊂ X → X∗ is to be a bounded operator, a homotopy
H : [0, 1] × G → 2X is called of type (S+)T , if for every sequence (tk, uk) in
[0, 1]×G and each sequence (ak) in X with ak ∈ H(tk, uk) such that

uk ⇀ u ∈ X, tk → t ∈ [0, 1], Tuk ⇀ y in X∗ and lim sup
k→∞

⟨ak, Tuk − y⟩ ≤ 0,

we get uk → u in X.

Lemma 2. [24] Let X be a real reflexive Banach space and G ⊂ X is a bounded
open set, T : G → X∗ is continuous and bounded. If F, S are bounded and of
class (S+)T , then an affine homotopy H : [0, 1]×G→ 2X giving by

H(t, u) := (1− t)Fu+ tSu, for (t, u) ∈ [0, 1]×G,

is of type (S+)T .

Now, we introduce the topological degree for a class of locally bounded, w.u.s.c.
and satifies condition (S+)T for more details see [24].

Theorem 1. [24] Let

L =
{
(F,G, g) | G ∈ O, T ∈ F1(G), F ∈ FT (G), g ̸∈ F (∂G)

}
,

where O denotes the collection of all bounded open set in X. There exists a unique
(Hammerstein type) degree function

d : L −→ Z

such that the following alternative holds:

1. ( Normalization) For each g ∈ G, we have d(I,G, g) = 1.

2. ( Domain Additivity) Let F ∈ FT (G). We have

d(F,G, g) = d(F,G1, g) + d(F,G2, g),

with G1, G2 ⊆ G disjoint open such that g ̸∈ F (G\(G1 ∪G2)).

3. ( Homotopy invariance) If H : [0, 1]×G→ X is a bounded admissible affine
homotopy with a common continuous essential inner map and g: [0, 1] → X
is a continuous path in X such that g(t) ̸∈ H(t, ∂G) for all t ∈ [0, 1], then
the value of d(H(t, ·), G, g(t)) is constant for any t ∈ [0, 1].

4. ( Solution Property) if d(F,G, g) ̸= 0, then the equation g ∈ Fu has a
solution in G.
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3 Some useful lemmas

The following lemmas allow us to transform this discontinuous nonlinear el-
liptic problems (1) with Neumann boundary condition into a new one governed
by a Hammerstein equation.

Lemma 3. [3] Let g ∈ Lr(Ω) and gn ⊂ Lr(Ω) such that ∥gn∥r ≤ C, 1 < r <∞,
If gn(x) → g(x) a.e. in Ω then gn ⇀ g weakly in Lr(Ω).

Lemma 4. [3] Assume that (A2)-(A4) hold, let (un)n be a sequence in W 1,p(Ω)
such that un ⇀ u weakly in W 1,p(Ω) and∫

Ω

[
σ(x,∇un)− σ(x,∇u)

]
∇(un − u)dx −→ 0, (3)

then un −→ u strongly in W 1,p(Ω).

Proof. From (8)
Dn → 0 in L1(Ω),

where Dn =
[
σ(x,∇un)− σ(x,∇u)

](
∇un −∇u

)
.

By usingW 1,p(Ω) ↪→↪→ Lp(Ω), we can find a subsequence still denoted by un such
that {

un → u a.e. in Ω,

Dn → 0 a.e. in Ω.

Then, there exists a subsetB of Ω, of zero measure, such that for x ∈ Ω\B, |u(x)| <
∞, |∇u(x)| <∞, |k(x)| <∞, un(x) → u(x), Dn(x) → 0.
If we put ξn = ∇un, ξ = ∇u, we get

Dn(x) =
[
σ(x, ξn)− σ(x, ξ)

]
.
(
ξn − ξ

)
= σ(x, ξn)ξn + σ(x, ξ)ξ − σ(x, ξn)ξ − σ(x, ξ)ξn

≥ α|ξn|p + α|ξ|p − β
(
k(x) + |ξn|p−1

)
|ξ| − β

(
k(x) + |ξ|p−1

)
|ξn|

≥ α|ξn|p − Cx[1 + |ξn|p−1 + |ξn|],

where Cx is a constant which depends only on x. As un(x) → u(x) a.e. in Ω, we
infer |un(x)| ≤ Px, where Px > 0 is some constant. Then by a standard argument
|ξn| is bounded uniformly with respect to n, we deduce that

Dn(x) ≥ |ξn|p
(
α− Cx

|ξn|p
− Cx

|ξn|
− Cx

|ξn|p−1

)
.

If |ξn| → ∞ (for a subsequence), then Dn(x) → ∞ which makes it absurd. Let
now ξ∗ be a cluster point of ξn. We have |ξ∗| <∞ and by using the continuity of
a we have [

σ(x, ξn)− σ(x, ξ)
](
ξ∗ − ξ

)
= 0.

According to (A3), we get ξ∗ = ξ, which implies that

∇un(x) −→ ∇u(x) a.e. in Ω.



108 A. Kassidi, S. Melliani, A. Sabiry and G. Zineddaine

Since the sequence
(
σ(x,∇un)

)
is bounded in

(
Lp′(Ω)

)N
, and σ(x,∇un) converge

to σ(x,∇u) a.e. in Ω, in view of Lemma 3, we obtain

σ(x,∇un)⇀ σ(x,∇u) in (Lp′(Ω))N a.e. in Ω. (4)

We take yn = σ(x,∇un)∇un and y = σ(x,∇u)∇u. We can write

yn → y in L1(Ω).

From (A1), we have
α|∇un|p ≤ σ(x,∇un)∇un.

Let zn = |∇un|p, z = |∇u|p, yn =
yn
α
, and y =

y

α
.

Thanks to Fatou’s lemma,∫
Ω
2 y dx ≤ lim inf

n→∞

∫
Ω
y + yn − |zn − z|dx,

i.e., 0 ≤ − lim sup
n→∞

∫
Ω
|zn − z| dx. Then

0 ≤ lim inf
n→∞

∫
Ω
|zn − z| dx ≤ lim

n→
sup
∞

∫
Ω
|zn − z| dx ≤ 0,

this implies

∇un −→ ∇u in
(
Lp(Ω)

)N
. (5)

From the compact embedding of W 1,p(Ω) into Lp(Ω), we have ∥un∥p → ∥u∥p as
n→ ∞, from where ∥un∥ −→ ∥u∥ (see (5)). As W 1,p(Ω) satisfies the Kadec-Klee
property [31, Remark 2.47(a),(c)], it follows from un ⇀ u and ∥un∥ −→ ∥u∥, the
convergence un −→ u in W 1,p(Ω) as n→ ∞, which completes the proof.

New, let us consider the following functional

E(u) = M̂
(∫

Ω
Θ(x,∇u)dx

)
, for all u ∈W 1,p(Ω)

where M̂ : [0,+∞[−→ [0,+∞[ be the primitive of the function M , defined by

M̂(t) =

∫ t

0
M(ξ)dξ.

It is well known that E is well defined and continuously Gâteaux differentiable
whose Gâteaux derivatives at point u ∈W 1,p(Ω) is the functional E′(u) in

(
W 1,p(Ω)

)∗
setting by

⟨E′(u), v⟩ = ⟨Fu, v⟩, for all u, v ∈W 1,p(Ω)

where the operator F acting from W 1,p(Ω) to its dual
(
W 1,p(Ω)

)∗
is defined by

⟨Fu, v⟩ =M
(∫

Ω
Θ(x,∇u)dx

)∫
Ω
σ(x,∇u)∇vdx (6)

for all u, v ∈W 1,p(Ω).
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Lemma 5. Suppose that (M0),(A1)− (A4) hold, then

(i) F is bounded, strictly monotone, coercive, continuous operator.

(ii) F is of type (S+).

Proof. i) It is obvious that F is continuous, because F is the Fréchet derivative
of E.
Now, we show that the operator F is bounded.
Let u, v ∈W 1,p(Ω), by the Hölder’s inequality and (M0), we obtain

< Fu, v > =M
(∫

Ω
Θ(x,∇u)dx

)∫
Ω
σ(x,∇u)∇vdx

≤ m1

∫
Ω
σ(x,∇u)∇vdx

≤ m1

(∫
Ω
|σ(x,∇u)|p′dx

)1/p′(∫
Ω
|∇v|pdx

)1/p
.

Thanks to the growth condition (A2), we can easily show that(∫
Ω

∣∣σ(x,∇u)∣∣p′dx)1/p′

is bounded for all u in W 1,p(Ω). Therefore

⟨Fu, v⟩ ≤ const
(∫

Ω
|∇v|pdx

)1/p
,

as a result the operator F is bounded.
Next, we prove that F is strictly monotone operator.
For that, we consider the functional L : W 1,p(Ω) → R setting by

L(u) =

∫
Ω
Θ(x,∇u)dx for all u ∈ V,

so L ∈ C1(W 1,p(Ω),R) and

⟨L′(u), v⟩ =
∫
Ω
σ(x,∇u)∇vdx for all u, v ∈ V.

By using (A4), we obtain for any u, v ∈W 1,p(Ω) with u ̸= v

⟨L′(u)− L′(v), u− v⟩ > 0

which implies that L′ is strictly monotone. Thus, by [37, Proposition 25.10], L is

strictly convex. Furthermore, asM is nondecreasing, then M̂ is convex in [0,+∞[.
So, for any u, v ∈ X with u ̸= v, and every s, t ∈ (0, 1) with s+ t = 1, we have

M̂(L(su+ tv)) < M̂(sL(u) + tL(v)) ≤ sM̂(L(u)) + tM̂(L(v)).

This proves that E is strictly convex, since E′(u) = F (u) in
(
W 1,p(Ω)

)∗
, we infer

that F is strictly monotone in W 1,p(Ω).
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It remains to show that the operator F is coercive.
Let v ∈W 1,p(Ω), according to (A2) and (M0), we obtain

⟨Fv, v⟩
∥v∥

=

M
(∫

Ω
Θ(x,∇u)dx

)∫
Ω
σ(x,∇u)∇vdx

∥v∥

≥ αm0

∫
Ω
|∇v|pdx+

∫
Ω
|v|pdx−

∫
Ω
|v|pdx

∥v∥

≥ αm0∥v∥p−1 − αm0
∥v∥p
∥v∥

≥ αm0∥v∥p−1 − C. ( Due to W 1,p(Ω) ↪→↪→ Lp(Ω))

which means that
⟨Fv, v⟩
∥v∥

→ ∞ as ∥v∥ → ∞.

Therefore F is coercive.
ii)− We verify that the operator F is of type (S+).
Let (un)n be a sequence in W 1,p(Ω) such that

 un ⇀ u in W 1,p(Ω)

lim sup
n→∞

⟨Aun, un − u⟩ ≤ 0.
(7)

We will show that un → u in W 1,p(Ω).
On the one hand, in fact un ⇀ u in W 1,p(Ω), so (un)n is a bounded sequence in
W 1,p(Ω), then there exist a subsequence still denoted by (un)n such that un ⇀
u in W 1,p(Ω), under the strict monotonicity of F we get

0 = lim sup
n→∞

⟨Fun − Fu, un − u⟩ = lim
n→∞

⟨Fun − Fu, un − u⟩. (8)

Then

lim
n→∞

⟨Fun, un − u⟩ = 0,

which means

lim
n→∞

M
(∫

Ω
Θ(x,∇un)dx

)∫
Ω
σ(x,∇un)∇(un − u)dx = 0. (9)

On the other hand, by (A1) we have for any x ∈ Ω and ξ ∈ Rn

Θ(x, ξ) =

∫ 1

0

d

ds
Θ(x, sξ)ds =

∫ 1

0
σ(x, sξ)ξds.
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By combining (A3), Fubini’s theorem and Young’s inequality we have∫
Ω
Θ(x,∇un)dx =

∫
Ω

∫ 1

0
σ(x, s∇un)∇unds dx

=

∫ 1

0

∫
Ω
σ(x, s∇un)∇undx ds

≤
∫ 1

0

[
Cp′

∫
Ω

∣∣σ(x, s∇un)∣∣p′dx+ Cp

∫
Ω
|∇un|p

]
ds

≤ C1 + C ′
∫ 1

0

∫
Ω
|s∇un|pdx ds+ Cp∥un∥p

≤ C1 + C2

∫
Ω
|∇un|pdx+ Cp∥un∥p

≤ C∥un∥p.

Then, we infer that
(∫

Ω
(Θ(x,∇un)dx

)
n≥1

is bounded.

As M is continuous, up to a subsequence there is t0 ≥ 0 such that

M
(∫

Ω
(Θ(x,∇un)dx

)
−→M(t0) ≥ m0 as n→ ∞. (10)

From (9) and (10), we get

lim
n→∞

∫
Ω
σ(x,∇un)∇(un − u)dx = 0.

In light of Lemma 4, we obtain

un −→ u strongly in W 1,p(Ω),

which implies that F is of type (S+), which completes the proof.

Proposition 1. [12, Proposition 1] For any fixed x ∈ Ω, the functions ψ(x, s)
and ψ(x, s) are upper semicontinuous (u.s.c.) functions on RN .

Lemma 6. Let Ω ⊂ RN (N ≥ 1) be a bounded open set with smooth boundary.
The operator A : W 1,p(Ω) →

(
W 1,p(Ω)

)∗
giving by

⟨Au, v⟩ = −
∫
Ω
uvdx for u, v ∈W 1,p(Ω)

is compact.

Proof. Firstly, since the embedding i : Lp(Ω) → Lp′(Ω) is continuous.
Secondly, as the embedding I : W 1,p(Ω) → Lp(Ω) is compact, it is known that
the adjoint operator I∗ : Lp′(Ω) →

(
W 1,p(Ω)

)∗
is also compact.

Hence, A = I∗ o i o I is compact.
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Let us define the following operator N acting from W 1,p(Ω) into 2

(
W 1,p(Ω)

)∗
by

Nu =
{
φ ∈

(
W 1,p(Ω)

)∗ \ ∃ h ∈ Lp′(Ω);

ψ(x, u(x)) ≤ h(x) ≤ ψ(x, u(x)) a.e. x ∈ Ω

and ⟨φ, v⟩ =
∫
Ω
h v dx, ∀v ∈W 1,p(Ω)

}
.

Lemma 7. If the assumptions (H1) and (H2) hold, then the set-valued operator
N is bounded, upper semicontinuous (u.s.c.) and compact.

Proof. Let Λ : Lp(Ω) → 2L
p′ (Ω) be a set-valued operator defined as follows

Λu =
{
h ∈ Lp′(Ω) \ ψ(x, u(x)) ≤ h(x) ≤ ψ(x, u(x)) a.e. x ∈ Ω

}
.

Let u ∈W 1,p(Ω), by the growth condition (H2) we get

max
{
|ψ(x, s)| ; |ψ(x, s)|

}
≤ b(x) + c |s|p/p′ .

It follows that∫
Ω
|ψ(x, u(x))|p′dx ≤ 2p

′
(∫

Ω
|b(x)|p′dx+ cp

′
∫
Ω
|u(x)|pdx

)
.

A same inequality is shown for ψ(x, s), as a result the set-valued operator Λ is
bounded on W 1,p(Ω).
It remains to show that Λ is upper semicontinuous (u.s.c.), i.e.,

∀ε > 0, ∃δ > 0, ∥u− u0∥p < δ ⇒ Λu ⊂ Λu0 +Bε,

with Bε is the ε-ball in Lp′(Ω).
Come to an end, given u0 ∈ Lp(Ω), let us consider the sets

Gm,ε =
⋂

t∈RN

Kt,

where

Kt =
{
x ∈ Ω, if |t− u0(x)| <

1

m
, then [ψ(x, t), ψ(x, t)]

⊂
]
ψ(x, u0(x))−

ε

R
, ψ(x, u0(x)) +

ε

R

[}
,

m is an integer, |t| = max
1≤i≤N

|ti| and R is a constant to be determined in the

following pages. In view of Proposition 1, we define the sets of points as follows

Gm,ε =
⋂

r∈RN
a

Kr,
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where RN
a denotes the set of all rational grids in RN . For any r = (r1, · · · , rN ) ∈

RN
a ,

Kr =
{
x ∈ Ω | u0(x) ∈ C

N∏
i=1

]
ri −

1

m
, ri +

1

m

[}
∪
{
x ∈ Ω | u0(x) ∈

N∏
i=1

]
ri −

1

m
, ri +

1

m

[}
∩
{
x ∈ Ω | ψ(x, r) < ψ(x, u0(x)) +

ε

R
and ψ(x, r) > ψ(x, u0(x))−

ε

R

}
,

so that Kr and Gm,ε therefore are measurable. It is clear that

G1,ε ⊂ G2,ε ⊂ · · ·

By virtue of Proposition 1,
∞⋃

m=1

Gm,ε = Ω,

hence there exists an integer m0 such that

m(Gm0,ε) > m(Ω)− ε

R
. (11)

But for any ε > 0, there exists η = η(ε) > 0, such that m(T ) < η yield

2p
′
∫
T
2|b(x)|p′ + c′(2p + 1)|u0(x)|pdx <

(ε
3

)p′

, (12)

thanks to b ∈ Lp′(Ω) and u0 ∈ Lp(Ω).
Let now

0 < δ < min
{ 1

m0

(η
2

)1/p
,
1

2

( ε

6C

)p′/p}
, (13)

R > max
{2ε

η
, 3

(
m(Ω)

)1/p′}
. (14)

Assume that ∥u−u0∥p < δ and define the set G = {x ∈ Ω \ |u(x)−u0(x)| ≥
1

m0
},

we obtain

m(G) < (m0δ)
p <

η

2
. (15)

If x ∈ Gm0,ε\G, then, for any h ∈ Λu,

|u(x)− u0(x)| <
1

m0

and

h(x) ∈
]
ψ(x, u0(x))−

ε

R
, ψ(x, u0(x)) +

ε

R

[
.
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Let

K0 =
{
x ∈ Ω; h(x) ∈

[
ψ(x, u0(x)), ψ(x, u0(x))

]}
,

K− =
{
x ∈ Ω; h(x) < ψ(x, u0(x))

}
,

K+ =
{
x ∈ Ω; h(x) > ψ(x, u0(x))

}
,

and

w(x) =


ψ(x, u0(x)), for x ∈ K+;
h(x) , for x ∈ K0;
ψ(x, u0(x)), for x ∈ K−.

Hence w ∈ Λu0 and

|w(x)− h(x)| < ε

R
for all x ∈ Gm0,ε\G. (16)

According to (14) and (16), we get∫
Gm0,ε\G

|w(x)− h(x)|p′dx <
( ε
R

)p′

m(Ω) <
(ε
3

)p′

. (17)

Assume that V is a coset in Ω of Gm0,ε\G, then V = (Ω\Gm0,ε)∪ (Gm0,ε∩G) and

m(V ) ≤ m(Ω\Gm0,ε) +m(Gm0,ε ∩G) <
ε

R
+m(G) < η,

thanks to (11), (14) and (15). From (H2), (12) and (13), we have∫
V
|w(x)− h(x)|p′dx ≤

∫
V
|w(x)|p′ + |h(x)|p′dx

≤ 2p
′( ∫

V
|b(x)|p′ + cp

′ |u0(x)|p + |b(x)|p′ + cp
′ |u(x)|pdx

)
≤ 2p

′( ∫
V
2|b(x)|p′ + cp

′
(2p + 1)|u0(x)|p + 2p cp

′ |u(x)− u0(x)|pdx
)

≤ 2p
′
∫
V
2|b(x)|p′ + cp

′
(2p + 1)|u0(x)|pdx+ 2p+p′ cp

′
∫
V
|u(x)− u0(x)|pdx

≤
(ε
3

)p′

+ 2p+p′ cp
′
δp ≤ 2

(ε
3

)p′ ≤ εp
′
.

(18)

From (17) and (18), we have ∥w − h∥p′ < ε.
Therefore Λ is upper semicontinuous (u.s.c.).
Hence N = I∗oΛoI is clearly bounded, upper semicontinuous (u.s.c.) and com-
pact.
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4 Existence of a weak solution

In this section, we will give our main result. The proof are based on the
topological degree introduced in section 2.

Definition 6. We say that u ∈W 1,p(Ω) is a weak solution of (1), if there exists
an element φ ∈ Nu verifying

M
(∫

Ω
Θ(x,∇u)dx

)∫
Ω
σ(x,∇u)∇vdx+

∫
Ω
uvdx+⟨φ, v⟩ = 0, for all v ∈W 1,p(Ω).

Now, we present our main result.

Theorem 2. If hypotheses (A1) − (A4),(M0), (H1) and (H2) hold. Then, the
problem (1) admits at least weak solutions u in W 1,p(Ω).

Proof. Let F, A : W 1,p(Ω) →
(
W 1,p(Ω)

)∗
and N: W 1,p(Ω) → 2

(
W 1,p(Ω)

)∗
be

given in Section 2. This implies that u ∈W 1,p(Ω) is a weak solution of (1) if and
only if

Fu ∈ −Su, (19)

where S := A+N : W 1,p(Ω) → 2

(
W 1,p(Ω)

)∗
.

Thanks to properties of the operator F given in Lemma 5 and by the Minty-
Browder Theorem on monotone operators in [37, Theorem 26 A], the inverse
operator T := F−1 :

(
W 1,p(Ω)

)∗ → W 1,p(Ω) is of type (S+), continuous and
bounded. Additionally, from Lemma 6 the operator S is quasi-monotone, upper
semicontinuous (u.s.c.) and bounded.
As a result, the equation (19) is equivalent to the abstract Hammerstein equation

u = Tv and v ∈ −SoTv. (20)

We will apply the degree theory introduced in Section 2 to solve equations (20).
To do this, we first prove the following Lemma.

Lemma 8. the following set

B :=
{
v ∈

(
W 1,p(Ω)

)∗
, such that v ∈ −tSoTv for some t ∈ [0, 1]

}
is bounded.

Proof. Let v ∈ B , so, v + ta = 0 for some t ∈ [0, 1], with a ∈ SoTv. Taking
u := Tv, we can write a = Au+ φ ∈ Su, where φ ∈ Nu, namely,

⟨φ, u⟩ =
∫
Ω
h(x)u(x)dx,

for some h ∈ Lp′(Ω) with ψ(x, u(x)) ≤ h(x) ≤ ψ(x, u(x)) for almost all x ∈ Ω.
Based on (H2), (A2), the Young’s inequality, the compact embeddingW 1,p(Ω) ↪→↪→
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Lp(Ω) and the continuous embedding Lp(Ω) ↪→ L2(Ω), we obtain

∥Tv∥p = ∥u∥p =
∫
Ω
|u|p dx+

∫
Ω
|∇u|pdx

≤
∫
Ω
|u|pdx+M

(∫
Ω
Θ(x,∇u) dx

)∫
Ω
σ(x,∇u)∇vdx =

∫
Ω
|u|pdx+

1

α
⟨v, Tv⟩

≤
∫
Ω
|u|pdx+

t

α
|⟨a, Tv⟩| =

∫
Ω
|u|p dx+

t

α

∫
Ω
|(u+ h)u|dx

≤
∫
Ω
|u|p dx+

t

α

∫
Ω
|u|2 dx+

t

α

∫
Ω
|hu|dx

≤
∫
Ω
|u|pdx+ C ′ t

α

(∫
Ω
|u|pdx

)2/p
+ Cp

t

α

(∫
Ω
|u|pdx

)1/p
+ Cp′

t

α

(∫
Ω
|h|p′dx

)1/p′

≤
∫
Ω
|u|pdx+ C ′ t

α

(∫
Ω
|u|pdx

)2/p
+ Cp

t

α

(∫
Ω
|u|pdx

)1/p

+ 2C ′
p

t

α

(∫
Ω
|b|p′dx

)1/p′

+ 2CCp′
t

α

(∫
Ω
|u|pdx

)1/p′

≤ Const
(
∥Tv∥p + ∥Tv∥2 + ∥Tv∥+ ∥Tv∥p−1 + 1

)
.

It follows that
{
Tv \ v ∈ B

}
is bounded.

Since the operator S is bounded, by (20) that the set B is bounded in
(
W 1,p(Ω)

)∗
.

Under the lemma 8, we can choose a positive constant R such that

∥v∥(
W 1,p(Ω)

)∗ < R for any v ∈ B.

This says that

v ∈ −tSoTv for each v ∈ ∂BR(0) and each t ∈ [0, 1],

where ∂BR(0) = {v ∈
(
W 1,p(Ω)

)∗
, such that ∥v∥(

W 1,p(Ω)
)∗ = R}.

In light of Lemma 1, we have

I + SoT ∈ FT (BR(0)) and I = FoT ∈ FT (BR(0)).

Next, we Consider the affine homotopy H : [0, 1] × BR(0) → 2

(
W 1,p(Ω)

)∗
setting

by
H(t, v) := (1− t)Iv + t(I + SoT )v for (t, v) ∈ [0, 1]×BR(0).

By using the normalization and homotopy invariance property of the degree d
fixed in Theorem 1, we obtain

d(I + SoT,BR(0), 0) = d(I,BR(0), 0) = 1.

Thus, we can find a point v ∈ BR(0) such that

v ∈ −SoTv.

Which implies that u = Tv is a weak solution of (1). This completes the proof.
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5 Conclusion

In this work, we have studied the existence of weak solutions for Neumann
boundary value problems with discontinuous nonlinearities of the Kirchhoff type
by using the topological degree theory.
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