PLANE STRAIN OF ISOTROPIC MICROPOLAR BODIES WITH PORES

Iana M. FUDULU ${ }^{1}$
Dedicated to Professor Radu Păltănea on the occasion of his 70th anniversary

Abstract

The aim of this work is defined by the study of the plane deformation for micropolar isotropic materials in equilibrium theory, where, in addition to displacement and absolute temperature, the particles of the mentioned materials have pores and microrotations. The determined solution to the field equations helps us to study the effect of heat sources and pores on the deformation of the body, which deformation is studied later.

2000 Mathematics Subject Classification: 35Q74, 00A69.
Key words: porous body, plane deformation of isotropic micropolar bodies with pores.

1 Introduction

In the first part of the work are introduced the field equations (1-11) for an isotropic micropolar medium, from the theory of thermoelasticity, equations that can be found in $[1-4]$ and also in [8]. A broader description of the theory of porous media is made by Cowin and Nunziato in [5-6]. For a good understanding of the work, also in the second section are the notations used. The equilibrium equations (22-25) from [7] later help us to obtain the solution of the field equations. This achievement is found in detail in the third section. Also in this part of the paper, the obtained theorem helps us to study the influences of heat supply moments and pores.

In the last part, we consider a cylindrical hole in an elastic space containing and, also, the domain $B=\left\{x: x_{1}^{2}+x_{2}^{2}>r_{1}^{2}, x_{3} \in \mathbb{R}\right\},\left(r_{1}>0\right)$, ocuppied by an elastic material with inner structure. This material undergoes a plane strain parallel to the $x_{1} x_{2}$ - plane. To obtain the deformation, the functions $\theta, \varphi, u_{\alpha}$ and

[^0]ϕ_{α} were determined, more precisely the solutions of the formed system, which were denoted by V, W, Q and U.

Regarding the results related to microstructured media, there are many results, of which I mention a few:[9-13]. Also, some studies that address the plane deformation of certain bodies, in various contexts, can be found in [14-16] and a more extensive presentation in [17].

2 Basic equations

In three-dimensional space we consider a region B, occupied at one time by a certain body, considered to be bordered by the parts of the smooth surface. Let $O_{x_{k(k=1,2,3)}}$ be a system of orthogonal axes to which we refer.

Before entering field equations, we add the following notations used:
$-n=$ external normal at ∂D,
$-u=$ displacement field over B,
$-\delta_{i j}=$ Kronecker delta,
$-\lambda, \mu=$ Lamé constants,
$-\sigma=$ linear thermal expansion,
$-k=$ thermal conductivity,
$-\alpha, \gamma, \epsilon, \xi, \zeta, a, b, c, d, I=$ constitutive moduli for the theory at
hand,
Now we can introduce the following equations.
-The consitutive equations:

$$
\begin{gather*}
T_{i j}=\lambda u_{k, k}+\mu\left(u_{i, j}+u_{j, i}\right)+k\left(u_{i, j}+\epsilon_{i j k} \phi_{k}\right)+\xi \varphi \delta_{i j}-(3 \lambda+2 \mu+k) \sigma \theta \delta_{i j}, \tag{1}\\
M_{i j}=\alpha \phi_{k, k} \delta_{i j}+\gamma \phi_{j, i}+\epsilon \phi_{i, j}+\xi \varphi \delta_{i j}, \tag{2}\\
g=-\xi \mu_{k, k}-a \varphi-b \theta, \tag{3}\\
h_{i}=d \varphi_{i}, \tag{4}\\
\rho \eta=(3 \lambda+2 \mu+k) \sigma u_{k, k}-b \varphi+c \theta, \tag{5}\\
r \dot{q}, i=k \theta_{i}-q_{i} . \tag{6}
\end{gather*}
$$

We denote by θ the absolute temperature. $T_{i j}$ and $M_{i j}$ are the stress tensor and couple stress tensor, g is the instrinsic equilibrated body force and φ represents the change in volume fraction.
-The geometrical relations:

$$
\begin{equation*}
e_{i j}=u_{i, j}+\epsilon_{i j k} \phi_{k}, \quad \psi_{i j}=\phi_{i, j}, \tag{7}
\end{equation*}
$$

where $\epsilon_{i j k}$ is the Ricci symbol.
-The balance laws in local forms (in the case of equilibrium):

$$
\begin{equation*}
T_{j i, j}+\rho f_{i}=0, \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
M_{j i, j}-\epsilon_{i j k} t_{j k}+\rho G_{i}=0, \tag{9}\\
h_{i, i}+g+\rho L=0, \tag{10}\\
q_{i, i}+\rho r=0 . \tag{11}
\end{gather*}
$$

where G_{i} is the body couple, L is the extrinsic body force and r is the internal heat source.

The surface force vector T_{i}, the surface couple force M_{i}, the heat flux q and the change in volume fraction moment vector N_{i} at a regulat point of ∂B are defined by:

$$
\begin{equation*}
T_{i}=T_{j i} n_{j}, \quad M_{i}=M_{j i} n_{j}, q=q_{j} n_{j}, \quad N_{i}=h_{j i} n_{j} . \tag{12}
\end{equation*}
$$

Knowing that the elastic potential is a positive quadratic form, we will consider that the elastic moduli satisfy the relations imposed by it:

$$
\begin{equation*}
3 \lambda+2 \mu>0, \mu>0, \varepsilon>0,3 \lambda+2 \mu>3 k . \tag{13}
\end{equation*}
$$

Next, we will consider the B region as the inside of a straight cylinder, where Σ is the open cross section, Π is the lateral boundary and L is the boundary of Σ. In choosing the Cartesian system, we take in to account that the generators of B is parallel with the x_{3}-axis.

Let's introduce the data wich describe the plane deformation of B, parallel to $x_{1} x_{2}$ - plane:

$$
\begin{equation*}
u_{\alpha}=u_{\alpha}\left(x_{1}, x_{2}\right), u_{3}=0, \quad \phi_{\alpha}=\phi_{\alpha}\left(x_{1}, x_{2}\right), \quad \varphi=\varphi\left(x_{1}, x_{2}\right), \quad \theta=\theta\left(x_{1}, x_{2}\right), \tag{14}
\end{equation*}
$$

unde $\left(x_{1}, x_{2}\right) \in \Sigma$.
From constitutive equations, local forms of balance laws and from (11) it follows that $e_{i j}, \psi_{i j}, T_{i j}, M_{i j}, g, h_{i}, \rho \eta$ and $r \dot{q_{i}}$ are independent of x_{3}.

Deformation tensors $e_{i j}$ and $\psi_{i j}$ are defined by means of geometric equations,

$$
\begin{equation*}
e_{\alpha, \beta}=u_{\alpha, \beta}+\epsilon_{\alpha \beta \rho} \phi_{\rho}, \quad \psi_{\alpha \beta}=\phi_{\alpha, \beta} . \tag{15}
\end{equation*}
$$

The non-zero dependent constitutive variables are $T_{\alpha \beta}, T_{33}, M_{\alpha \beta}, h_{\alpha}, r q_{, \alpha}$. Furthermore:

$$
\begin{gather*}
T_{\alpha \beta}=\lambda u_{\rho, \rho} \delta \alpha \beta+\mu\left(u_{\alpha, \beta}+u_{\beta, \alpha}\right)+k u_{\alpha, \beta} \phi_{\rho}+\xi \varphi \delta_{\alpha \beta}-(2 \lambda+2 \mu+k) \nu \theta \delta_{\alpha \beta}, \tag{16}\\
M_{\alpha \beta}=-\alpha \phi_{\rho, \rho} \delta_{\alpha \beta}-\gamma \phi_{\beta, \alpha}+\epsilon_{\alpha, \beta}+\xi \varphi \delta_{\alpha \beta}, \tag{17}\\
g=-\xi u_{\alpha, \alpha}-\psi \phi_{\alpha, \alpha}-a \varphi-b \theta, \tag{18}\\
h_{\alpha}=d \varphi_{\alpha} \tag{19}\\
\rho \eta=(3 \lambda+2 \mu+k) \sigma u_{\alpha, \alpha}-b \varphi+c \theta \tag{20}\\
r q_{, \alpha}=k \theta_{\alpha}-q_{\alpha} . \tag{21}
\end{gather*}
$$

Therefore, we will consider that body loads are independent of x_{3}, and $f_{3}=0$. So, the equilibrium equations are reduced to:

$$
\begin{equation*}
T_{\alpha \beta, \beta}+\rho f_{\alpha}=0, \tag{22}
\end{equation*}
$$

$$
\begin{gather*}
M_{\alpha \beta, \beta}+\rho G_{\alpha}=0, \tag{23}\\
h_{\alpha, \alpha}+g+\rho L=0, \tag{24}\\
q_{\alpha, \alpha}+\rho S=0 . \tag{25}
\end{gather*}
$$

The relation (12), at a regular points of Π, becomes:

$$
\begin{equation*}
T_{\alpha}=T_{\beta \alpha} n_{\beta}, \quad M_{\alpha}=M_{\beta \alpha} n_{\alpha}, T_{3}=0, q=q_{\alpha} n_{\alpha}, \quad N_{i}=h_{\beta i} n_{\beta}, \quad \text { on } L, \tag{26}
\end{equation*}
$$

where, $n_{\alpha}=\cos \left(n_{x}, x_{\alpha}\right)$, where we denote with n_{x} the unit vector of the outer normal to L.

According to geometric equations, constitutive equations, and equilibrium equations, we must comply with the boundary conditions. In the case of the first boundary value problem, the boundary conditions are:

$$
\begin{equation*}
u_{\alpha}=\tilde{u}_{\alpha}, \quad \phi_{\alpha}=\tilde{\phi_{\alpha}}, \quad \theta=\tilde{\theta}, \quad \varphi=\tilde{\varphi} \text { on } L, \tag{27}
\end{equation*}
$$

where $\tilde{u}_{\alpha}, \tilde{\phi}, \tilde{\theta}$ and $\tilde{\varphi}$ are prescribed functions. In the case of the second boundary value problem, the boundary conditions are:

$$
\begin{equation*}
T_{\beta \alpha} n_{\beta}=\tilde{T}_{\alpha}, M_{\beta \alpha} n_{\beta}=\tilde{M}_{\alpha}, \tilde{q}=q_{\beta} n_{\beta}, \quad h_{\alpha i} n_{\alpha}=\tilde{N}_{i}, \text { on } L, \tag{28}
\end{equation*}
$$

where the given functions $\tilde{T}_{\alpha}, \tilde{M}_{\alpha}, \tilde{q}$ and \tilde{N}_{j} are independent of x_{3}.
From (1-10), results that $u_{\alpha}, \phi_{\alpha}, \theta$, and φ satisfy the equations:

$$
\begin{gather*}
(\lambda+\mu) u_{\rho, \rho \alpha}+(\mu+k) u_{\alpha, \rho \rho}+\xi \varphi_{, \alpha}-(3 \lambda+2 \mu+k) \sigma \theta_{, \alpha}=-\rho f_{\alpha}, \tag{29}\\
(\alpha+\gamma) \phi_{\rho, \rho \alpha}+\varepsilon \phi_{\alpha, \rho \rho}+\zeta \varphi_{, \alpha}-2 k \phi_{\alpha}=-\rho G_{\alpha}, \tag{30}\\
k \Delta \theta=-\rho S, \tag{31}\\
d \varphi_{\rho, \rho}-\xi u_{\rho, \rho}-\zeta \phi_{\rho, \rho}-a \varphi-b \theta=-\rho L, \quad \text { on } \Sigma . \tag{32}
\end{gather*}
$$

To obtain the relation (9) we start from (1), from where we deduce that
$T_{\beta \alpha, \beta}=\lambda u_{\rho, \rho \alpha}+\mu\left(u_{\beta, \alpha \beta}+u_{\alpha, \beta \beta}\right)+k\left(u_{\beta, \alpha \beta}+\varepsilon_{\beta \alpha \rho} \phi_{\rho, \beta}\right)+\zeta \varphi_{, \beta} \delta_{\beta \alpha}-(3 \lambda+2 \mu+k) \sigma \theta_{, \beta} \delta_{\beta \alpha}$,
Obvious $\varepsilon_{\beta \alpha \rho} \phi_{\rho, \beta}=0$, so the above relation becomes:

$$
T_{\beta \alpha, \beta}=\lambda u_{\rho, \rho \alpha}+\mu\left(u_{\beta, \alpha \beta}+u_{\alpha, \beta \beta}\right)+k u_{\beta, \alpha \beta}+\zeta \varphi_{, \alpha}-(3 \lambda+2 \mu+k) \sigma \theta_{, \alpha} .
$$

Next, using relation (8) we obtain relation (29). Analogously we get (30), (31), (32).

The first boundary value problem, involves finding the $u_{\alpha}, \phi_{\alpha}, \theta, \varphi$ functions, which satisfy the above equations, on Σ and the boundary conditions (25). Obviously, from the constitutive equations and from (13), we can express the boundary conditions (26) in terms of the functions $u_{\alpha}, \phi_{\alpha}, \theta, \varphi$.

In the case of equilibrium theories, we will divide this problem into two, the first including finding the functions θ and ϕ_{α} and then the functions u_{α} and φ. It is convenient not to separate the equations of system B, in the study of certain problems. So, throughout this paper, we assume that:

$$
\begin{equation*}
k>0, d_{2}>0, d_{6}>0, k d_{2}-d_{1} d_{3}>0, d_{4}+d_{5}+d_{6}>0 . \tag{33}
\end{equation*}
$$

It is important to note that the restrictions imposed by the Clausius-Duhem inequality on the constituent coefficients, (Grof, 1969), are taken into account in the conditions above.

3 Solution for field equations

We start by introducing a few notations, such as:

$$
\begin{gather*}
c_{1}=\lambda+2 \mu+k, \tag{34}\\
c_{2}=d+\frac{-a+d_{2}}{\Delta}, \tag{35}\\
m_{1}=\left(\frac{2 k}{h}\right)^{\frac{1}{2}}, \text { where } h=\alpha+\gamma+\varepsilon, \tag{36}\\
m_{2}=\left(d_{2} / c_{2}\right)^{\frac{1}{2}}, \tag{37}\\
m_{3}=\left(\frac{a}{d_{6}}+\Delta\right)^{\frac{1}{2}}, \tag{38}\\
\kappa_{1}=-c_{2}(3 \lambda+2 \mu+k) \sigma-c_{1} b \zeta, \tag{39}\\
\kappa_{2}=-c_{2}(3 \lambda+2 \mu+k), \tag{40}\\
\kappa_{3}=0 . \tag{41}
\end{gather*}
$$

From (2.12) results that m_{1}^{2}, m_{2}^{2}, and $m_{3}^{2}>0$. We introduce the operators:

$$
\begin{gather*}
C_{1}=c_{1} h \Delta\left(\Delta-m_{1}^{2}\right), \tag{42}\\
C_{2}=k c_{2} \Delta\left(\Delta-m_{2}^{2}\right), \tag{43}\\
C_{3}=d_{6}\left(\Delta-m_{3}^{2}\right), \tag{44}\\
B_{1}=h c_{1}(\lambda+\mu)\left(\Delta-m_{1}^{2}\right), \tag{45}\\
B_{2}=h \sigma c_{1}(3 \lambda+2 \mu+k)\left(\Delta-m_{1}^{2}\right)\left(c_{2} \Delta-d_{2}\right), \tag{46}\\
B_{3}=0 \tag{47}
\end{gather*}
$$

Theorem 1. Let's consider the functions

$$
\begin{gather*}
u_{\alpha}=-c_{1} C_{1} \Gamma_{\alpha}+B_{1} \Gamma_{\rho, \rho \alpha}-B_{2} f_{, \alpha}-C_{3} B_{3} g_{\rho, \rho \alpha}, \tag{48}\\
\phi_{\alpha}=c_{1}^{2} \mu \Delta \psi_{\alpha}+c_{1}\left(\kappa_{1} \Delta-\kappa_{2}\right) \Delta l_{\alpha}+k \zeta c_{1} C_{1} \Delta \Delta C_{3} g_{\rho, \rho \alpha}, \tag{49}\\
\theta=-c_{1}\left(c_{2} \Delta-d_{2}\right) C_{1} l, \tag{50}\\
\varphi_{\alpha}=c_{1} C_{1} C_{2} g-c_{1}\left[k\left(d_{4}-d_{5}\right) \Delta C_{1} g_{\rho, \rho}-c_{1} d_{3} C_{1} l,\right. \tag{51}
\end{gather*}
$$

where the fields $\Gamma_{\alpha}, \psi_{\alpha} \in C^{6}(\Sigma), l \in C^{8}(\Sigma)$, and $g \in C^{10}(\Sigma)$, satisfy the equations:

$$
\begin{gather*}
(\mu+k) \Delta c_{1} C_{1} \Gamma_{\alpha}=\rho f_{\alpha} ; \tag{52}\\
\mu c_{1} C_{1} \psi_{\alpha}=\rho G_{\alpha} ; \tag{53}\\
c_{1} C_{1} C_{2} l=\rho S ; \tag{54}\\
c_{1} C_{1} C_{2} C_{3} g=-\rho L . \tag{55}
\end{gather*}
$$

Proof. $(\lambda+\mu) u_{\rho, \rho \alpha}+(\mu+k) u_{\alpha, \rho \rho}+\xi \phi_{, \alpha}-(3 \lambda+2 \mu+k) \sigma \tau_{\alpha}=-\rho l_{\alpha}-(\mu+$ k) $\Delta c_{1} C_{1} \Gamma_{\alpha}+\left[(\lambda+2 \mu+k) \Delta B_{1}-(\lambda+\mu) c_{1} C_{1}\right] \Gamma_{\rho, \rho \alpha}-C_{3} B_{3}[(\lambda+\mu) \Delta+\mu+$ $k] g_{\rho, \rho \alpha}+\left(-\xi c_{1}^{2} \mu \Delta\right) \psi_{, \alpha}+\left[B_{2} \Delta(k-\lambda)+\xi c_{1}\left(\kappa_{1} \Delta-\kappa_{2}\right) \Delta\right] l_{, \alpha}+k \xi \zeta c_{1} C_{1} C_{3} \Delta \Delta \Delta g_{, \alpha}+$ $(3 \lambda+2 \mu+k) \sigma c_{1} C_{1}\left(c_{2} \Delta-d_{2}\right) l_{\alpha}=\rho f_{\alpha}$
$<=>(\mu+k) \Delta c_{1} C_{1} \Gamma_{\alpha}=\rho f_{\alpha}$.
We do the same for the other equations. More specifically if we used the equations (52-55), we get what we want.

4 Consequences of heat supply moments and pores

With the aim of studying the influences of the heat supply moments and pores on deformation, we will use the solution obtained in the theorem presented in the previous section. Therefore, let's consider that

$$
\rho f_{\alpha}=0, \rho G_{\alpha}=0, \rho S=\delta(x-y), \rho L=0
$$

where $y\left(y_{\alpha}\right)$ is a fixed point, and δ is the Dirac measure.
Taking into account this assumption, the relations (52-55) are satisfied if we consider $\Gamma_{\alpha}=0, \psi_{\alpha}=0, l=\omega$ and $g=0$. The ω function is a solution for the equation:

$$
\begin{equation*}
\Delta \Delta\left(\Delta-m_{1}^{2}\right)\left(\Delta-m_{2}^{2}\right) \omega=\gamma \delta(x-y) \tag{56}
\end{equation*}
$$

where we use the γ notation for $\left(\varepsilon k c_{1}^{2} c_{2}\right)^{-1}$.
From those previously considered it follows that we obtain from the relations (52-55), the functions $u_{\alpha}^{(1)}(x, y), \phi_{\alpha}^{(1)}(x, y), \theta^{(1)}(x, y)$ and $\varphi^{(1)}(x, y)$.Therefore,

$$
\begin{gather*}
u_{\alpha}^{(1)}(x, y)=-B_{2} \omega_{, \alpha} ; \tag{57}\\
\phi_{\alpha}^{(1)}(x, y)=c_{1}\left(\kappa_{1} \Delta-\kappa_{2}\right) \Delta \omega_{\alpha} ; \tag{58}\\
\theta^{(1)}(x, y)=-c_{1}\left(c_{2} \Delta-d_{2}\right) C_{1} \omega ; \tag{59}\\
\varphi^{(1)}(x, y)=-c_{1} b C_{1} \omega . \tag{60}
\end{gather*}
$$

Next, we shall have the following considerations:

$$
* m_{1}, m_{2}, m_{3} \text { are distinct, }
$$

* $\omega_{s},(s=1,2,3,4)$, functions that satisfy the following equations :
$\Delta \omega_{1}=M, \Delta \Delta \omega_{2}=M,\left(\Delta-m_{1}^{2}\right) \omega_{3}=M,\left(\Delta-m_{2}^{2}\right) \omega_{4}=M$, where M is a given function.
Therefore, we can formulate the solution of the equation $\Delta \Delta\left(\Delta-m_{1}^{2}\right) \Delta-$ $\left.m_{2}^{2}\right) \omega=M$, as follows:

$$
\omega=\sum_{s=1}^{4} z_{s} \omega_{s}
$$

where the constants $z_{s},(s=1,2,3,4)$, are given by:

$$
\begin{equation*}
z_{1}=\frac{m_{1}^{2}+m_{2}^{2}}{m_{1}^{4} m_{2}^{4}}, z_{2}=\frac{1}{m_{1}^{2} m_{2}^{2}}, z_{3}=\frac{1}{m_{1}^{4}\left(m_{1}^{2}-m_{2}^{2}\right)}, z_{4}=-\frac{1}{m_{2}^{4}\left(m_{1}^{2}-m_{2}^{2}\right)} \tag{61}
\end{equation*}
$$

For $M=\delta(x-y), \omega_{s},(s=1,2,3,4)$, are given by:
$\omega_{1}=\frac{1}{2 \pi} \ln r, \omega_{2}=\frac{1}{8 \pi} r^{2} \ln r, \omega_{3}=-\frac{1}{2 \pi} K_{0}\left(m_{1} r\right), \omega_{4}=-\frac{1}{2 \pi} K_{0}\left(m_{2} r\right), r=\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}^{2}\right)\right]^{\frac{1}{2}}$,
where we used the notation K_{0} for the modified Bessel function of order zero. Therefore, for equation (50), we have the following solution:

$$
\begin{equation*}
\omega=\frac{\gamma}{2 \pi}\left[z_{1} \ln r+\frac{1}{4} z_{2} r^{2} \ln r-z_{3} K_{0}\left(m_{1} r\right)-z_{4} K_{0}\left(m_{2} r\right)\right] \tag{63}
\end{equation*}
$$

The displacement and the microrotation are introduced by the functions $u_{\alpha}^{(1)}$ and $\phi_{\alpha}^{(1)}$. In what follow, we will focus on the consequences of pores. Thus we assum that

$$
\rho f_{\alpha}=0, \rho G_{\alpha}=0, \rho S=0, \rho L=\delta_{\alpha \beta} \delta(x-y),
$$

where we have β fixed. So, we will have $\Gamma_{\alpha}=0, \psi_{\alpha}=0, l=0$ and $g=\delta_{\alpha \beta} \Omega$. In this case, from (52-55), it follows that Ω is a solution of the following equation:

$$
\begin{equation*}
\Delta \Delta\left(\Delta-m_{1}^{2}\right)\left(\Delta-m_{2}^{2}\right)\left(\Delta-m_{3}^{2}\right) \Omega=\gamma_{1} \delta(x-y) \tag{64}
\end{equation*}
$$

where $\gamma_{1}=\left(k \varepsilon d_{6} c_{1}^{2} c_{2}\right)^{-1}$. Therefore, we get from (52-55) the functions:

$$
u_{\alpha}^{(1+\beta)}(x, y), \quad \phi_{\alpha}^{(1+\beta)}(x, y), \quad \theta^{(1+\beta)}(x, y), \quad \varphi^{(1+\beta)}(x, y)
$$

5 Plane deformation

Let us consider a cylindrical hole contained in an elastic space and the domain $B=\left\{x: x_{1}^{2}+x_{2}^{2}>r_{1}^{2}, x_{3} \in \mathbb{R}\right\},\left(r_{1}>0\right)$, ocuppied by an elastic material with inner structure. This material will undergo a plan strain parallel to the $x_{1} x_{2}$ plane. Knowing these, the domain \sum is defined by $\sum=\left\{x: x_{1}^{2}+x_{2}^{2}>r_{1}^{2}, x_{3}=0\right\}$. Furthermore, we will assume that body loads are absent and the hole surface is free of surface forces.

The problem we shall study involves determining the functions $\theta, \varphi, u_{\alpha}$ and ϕ_{α}.

Obviously, these functions must satisfy the following equations:

$$
\begin{gather*}
(\lambda+\mu) u_{\rho, \rho \alpha}+(\mu+k) u_{\alpha, \rho \rho}+\xi \varphi_{, \alpha}-(3 \lambda+2 \mu+k) \sigma \theta_{, \alpha}=0, \tag{65}\\
(\alpha+\gamma) \phi_{\rho, \rho \alpha}+\varepsilon \phi_{\alpha, \rho \rho}+\zeta \varphi_{, \alpha}-2 k \phi_{\alpha}=0, \tag{66}\\
k \Delta \theta=0, \tag{67}\\
d \varphi_{\rho, \rho}-\xi u_{\rho, \rho}-\zeta \phi_{\rho, \rho}-a \varphi-b \theta=0, \quad \text { on } \Sigma . \tag{68}
\end{gather*}
$$

Knowing that the heat flow into the body is produced by keeping the surface of the hole at a constant temperature θ^{*}, we add the boundary conditions to the equations (66) and (67):

$$
\begin{equation*}
\theta=\theta^{*}, \quad \varphi=\varphi_{\alpha} n_{\alpha} \text { for } r=r_{1}, \tag{69}
\end{equation*}
$$

and, also, we add the following boundary conditions:

$$
\begin{equation*}
T_{\beta \alpha, \beta} n_{\beta}=0, M_{\beta \alpha} n_{\beta}=0 \text { for } r=r_{1} \tag{70}
\end{equation*}
$$

We consider the solution to have the form $\theta=V(r), \varphi=W(r), u_{\alpha}=x_{\alpha} U(r)$ and $\phi_{\alpha}=Q(r)$ where $r=\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}$. Therefore, they must satisfy the corresponding equations:

$$
\begin{gather*}
(\lambda+\mu) x_{\alpha} r^{2} U+(\mu+k) x_{\alpha} r^{2} U+\xi r W-(3 \lambda+2 \mu+k) \sigma r V=0, \tag{71}\\
(\alpha+\gamma) r^{2} Q+\varepsilon r^{2} Q+\zeta r W-2 k Q=0, \tag{72}\\
k \Delta V=0, \tag{73}\\
d r^{2} W-\xi x_{\alpha} r U-\zeta r Q-a W-b V=0, \quad \text { on } \Sigma . \tag{74}
\end{gather*}
$$

From relation (73) we obtain:

$$
\begin{equation*}
x_{\alpha} r U=\frac{1}{\lambda+2 \mu+k}[(3 \lambda+2 \mu+k) \sigma V-\xi W]+N_{1}, \tag{75}
\end{equation*}
$$

where N_{1} is an arbitrary constant. Or, we can rewrite this relation as

$$
\begin{equation*}
\left(r^{2} U\right)^{\prime}=\frac{1}{c_{1}}[(3 \lambda+2 \mu+k) \sigma V-\xi W] r+r N_{1} . \tag{76}
\end{equation*}
$$

Also, for the remaining relations, (74-76), we obtain the following form.

$$
\begin{gather*}
\left(\Delta-m_{1}^{2}\right) Q=-\frac{\zeta r}{h} W, \tag{77}\\
k \Delta V=0, \tag{78}\\
\left(\Delta-m_{2}^{2}+\tau_{2} \xi\right) W=\tau_{1} V+\tau_{3} Q+\tau_{2} N_{1}, \tag{79}
\end{gather*}
$$

where for simplification we have used the notations:

$$
\begin{equation*}
\tau_{1}=\frac{\xi(3 \lambda+2 \mu+k) \sigma+b c_{1}}{c_{1} c_{2}}, \quad \tau_{2}=\frac{\xi}{c_{1} c_{2}}, \quad \tau_{3}=\frac{\zeta r}{c_{2}} . \tag{80}
\end{equation*}
$$

Next, we obtain from the relation (8) the form of the function V. Therefore,

$$
\begin{equation*}
V=C_{1}+B_{1} \ln r, \tag{81}
\end{equation*}
$$

where C_{1} and B_{1} are arbitrary constants. Also, from relation (79), we obtain:

$$
\begin{equation*}
\tau_{3} Q=\frac{\tau_{4}}{m_{1}^{2}} W-\tau_{4} C_{2}-\tau_{4} B_{2} \ln r, \tag{82}
\end{equation*}
$$

where we noted with $\tau_{4}=\tau_{3}^{2} \frac{c_{2}}{g}$.
We will further subtitute $\tau_{3} Q$ and $\tau_{1} V$ in the relation (81),

$$
\begin{equation*}
\left(\Delta-m_{1}^{2}+\tau_{2} \xi\right) W=\tau_{1} C_{1}+\tau_{1} B_{1} \ln r+\frac{\tau_{4}}{m_{1}^{2}} W-\tau_{4} C_{2}-\tau_{4} B_{2} \ln r+\tau_{2} N_{1} \tag{83}
\end{equation*}
$$

and in the and we will get:

$$
\begin{align*}
W=\tau_{1}\left(\frac{C_{1}+B_{1} \ln r}{m_{1}^{2}}-\right. & \left.B_{1} \Delta \ln r\right)+\tau_{4}\left(\frac{C_{2}+B_{2} \ln r}{m_{1}^{2}}-B_{2} \Delta \ln r\right)- \tag{84}\\
& -\frac{\tau_{2}}{m_{1}^{2}} N_{1}+N_{3} k_{0}(m, r) .
\end{align*}
$$

We therefore obtained the functions V, W and Q in relations (83), (84) and (86). The function U, is immediately determined by replacing V, W and Q in the relation (78).

Conclusions

Taking into account what has been obtained previously, this work has as main objective the achievement of solutions V, W, Q and U, which implies the plane deformation for micropolar isotropic materials in equilibrium theory. Using the equilibrium equations, we deduce the solution of the field equations, which later help us to study the effect of heat supply moments and pores in an elastic space. And finally we deduce what we set out to do, the plane deformation.

References

[1] Eringen, A.C., Theory of Micropolar Fluids, Journal of Mathematics and Mechanics 16 (1966), 1-18.
[2] Eringen, A.C Theory of Micropolar elasticity. In Fracture (Edited by H. Leibowitz), Vol II, Academic Press, New York, 622 (1968).
[3] Eringen, A.C., Theory of Micropolar Elasticity. In: Microcontinuum Field Theories. Springer, New York, NY,(1999).
[4] Fudulu, I.M., Marin, M., On a variational principle and continuous dependece result for a micropolar izotropic body, Springer, 2022.
[5] Nunziato, J.W. and Cowin, S.C., A Nonlinear Theory of Elastic Materials with Voids, Arch. Ration. Mech. Anal. 72 (1979), 175-201.
[6] Cowin, S.C. and Nunziato, J.W., Linear elastic materials with voids, J. Elasticity 13 (1983), 125-147.
[7] Passarella, F., Some results In micropolar thermoelasticity, Mechanics Research Communications, 23 (1996), no. 4, 349-357.
[8] Scutaru, M.L, Vlase, S.,Marin, M., Modrea, A., New analytical method based on dynamic response of planar mechanical elastic systems, Bound. Value Probl., 2020 (2020), no.1, Art. 104.
[9] Marin, M., Vlase, S., Fudulu, I.M., and Precup, G., On instability in the theory of dipolar bodies with two-temperatures, Carpathian Journal of Mathematics, 38 (2022), no. 2, 459-468.
[10] Marin, M., Vlase, S., Fudulu, I.M., and Precup, G. Effect of voids and internal state variables in elasticity of porous bodies with dipolar structure, Mathematics 9 (2021), no. 21, Article number 2741.
[11] Marin, M., Fudulu, I.M., and Vlase, S., On some qualitative results in thermodynamics of Cosserat bodies, Bound. Value Probl. 2022 (2022), Article number 69.
[12] Marin, M., Generalized solutions in elasticity of micropolar bodies with voids, Revista de la Academia Canaria de Ciencias, 8(1), 101-106, 1996.
[13] Marin, M., Contributions on uniqueness in thermoelastodynamics on bodies with voids, Ciencias matemáticas (Havana), 16 (1998), no. 2, 101-109.
[14] Ieşan, D., Quintanilla, R., On a theory of thermoelastic materials with a double porosity structure, Journal of Thermal Stresses 37 (2014), no. 9, 10171036.
[15] Saccomandi, G., On inhomogeneous deformations in finite thermoelasticity, IMA Journal of Applied Mathematics, 63 (1999), no. 2, 131-148.
[16] Ailawalia, P., Sachdeva, S.K., Pathania, D.S., Plane strain deformation in a thermoelastic microelongated solid with internal heat source, International Journal of Applied Mechanics and Engineering, 20 (2015), no. 4, 717-735.
[17] Nowacki, W., Thermoelasticity, Pergamon Press, 1986.

[^0]: ${ }^{1}$ Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Romania, e-mail: mihamihaela95@yahoo.com

