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Abstract

The aim of this work is defined by the study of the plane deformation
for micropolar isotropic materials in equilibrium theory, where, in addition
to displacement and absolute temperature, the particles of the mentioned
materials have pores and microrotations.The determined solution to the field
equations helps us to study the effect of heat sources and pores on the defor-
mation of the body, which deformation is studied later.
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1 Introduction

In the first part of the work are introduced the field equations (1-11) for an
isotropic micropolar medium, from the theory of thermoelasticity, equations that
can be found in [1-4] and also in [8]. A broader description of the theory of porous
media is made by Cowin and Nunziato in [5-6]. For a good understanding of the
work, also in the second section are the notations used. The equilibrium equations
(22-25) from [7] later help us to obtain the solution of the field equations. This
achievement is found in detail in the third section. Also in this part of the paper,
the obtained theorem helps us to study the influences of heat supply moments
and pores.

In the last part, we consider a cylindrical hole in an elastic space containing
and, also, the domain B = {x : x21 + x22 > r21, x3 ∈ R}, (r1 > 0), ocuppied by
an elastic material with inner structure. This material undergoes a plane strain
parallel to the x1x2- plane. To obtain the deformation, the functions θ, φ, uα and
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ϕα were determined, more precisely the solutions of the formed system, which
were denoted by V,W,Q and U .

Regarding the results related to microstructured media, there are many re-
sults, of which I mention a few:[9-13]. Also, some studies that address the plane
deformation of certain bodies, in various contexts, can be found in [14-16] and a
more extensive presentation in [17].

2 Basic equations

In three-dimensional space we consider a region B, occupied at one time by a
certain body, considered to be bordered by the parts of the smooth surface. Let
Oxk(k=1,2,3)

be a system of orthogonal axes to which we refer.

Before entering field equations, we add the following notations used:
−n= external normal at ∂D,
−u= displacement field over B,
−δij= Kronecker delta,
−λ, µ = Lamé constants,
−σ= linear thermal expansion,
−k = thermal conductivity,
−α, γ, ϵ, ξ, ζ, a, b, c, d, I =constitutive moduli for the theory at

hand,
Now we can introduce the following equations.

-The consitutive equations:

Tij = λuk,k + µ(ui,j + uj,i) + k(ui,j + ϵijkϕk) + ξφδij − (3λ+ 2µ+ k)σθδij , (1)

Mij = αϕk,kδij + γϕj,i + ϵϕi,j + ξφδij , (2)

g = −ξµk,k − aφ− bθ, (3)

hi = dφi, (4)

ρη = (3λ+ 2µ+ k)σuk,k − bφ+ cθ, (5)

rq̇,i = kθi − qi. (6)

We denote by θ the absolute temperature. Tij and Mij are the stress tensor and
couple stress tensor, g is the instrinsic equilibrated body force and φ represents
the change in volume fraction.

-The geometrical relations:

eij = ui,j + ϵijkϕk, ψij = ϕi,j , (7)

where ϵijk is the Ricci symbol.
-The balance laws in local forms ( in the case of equilibrium):

Tji,j + ρfi = 0, (8)
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Mji,j − ϵijktjk + ρGi = 0, (9)

hi,i + g + ρL = 0, (10)

qi,i + ρr = 0. (11)

where Gi is the body couple, L is the extrinsic body force and r is the internal
heat source.

The surface force vector Ti, the surface couple force Mi, the heat flux q and
the change in volume fraction moment vector Ni at a regulat point of ∂B are
defined by:

Ti = Tjinj , Mi =Mjinj , q = qjnj , Ni = hjinj . (12)

Knowing that the elastic potential is a positive quadratic form, we will
consider that the elastic moduli satisfy the relations imposed by it:

3λ+ 2µ > 0, µ > 0, ε > 0, 3λ+ 2µ > 3k. (13)

Next, we will consider the B region as the inside of a straight cylinder, where
Σ is the open cross section, Π is the lateral boundary and L is the boundary of
Σ. In choosing the Cartesian system, we take in to account that the generators
of B is parallel with the x3-axis.

Let’s introduce the data wich describe the plane deformation of B, parallel
to x1x2- plane:

uα = uα(x1, x2), u3 = 0, ϕα = ϕα(x1, x2), φ = φ(x1, x2), θ = θ(x1, x2), (14)

unde (x1, x2) ∈ Σ.
From constitutive equations, local forms of balance laws and from (11) it

follows that eij , ψij , Tij ,Mij , g, hi, ρη and r q̇,i are independent of x3.
Deformation tensors eij and ψij are defined by means of geometric equa-

tions,
eα,β = uα,β + ϵαβρϕρ, ψαβ = ϕα,β. (15)

The non-zero dependent constitutive variables are Tαβ, T33,Mαβ, hα, r ˙q,α.
Furthermore:

Tαβ = λuρ,ρδαβ + µ(uα,β + uβ,α) + kuα,βϕρ + ξφδαβ − (2λ+ 2µ+ k)νθδαβ, (16)

Mαβ = −αϕρ,ρδαβ − γϕβ,α + ϵα,β + ξφδαβ, (17)

g = −ξuα,α − ψϕα,α − aφ− bθ, (18)

hα = dφα, (19)

ρη = (3λ+ 2µ+ k)σuα,α − bφ+ cθ, (20)

r ˙q,α = kθα − qα. (21)

Therefore, we will consider that body loads are independent of x3, and f3 = 0.
So, the equilibrium equations are reduced to:

Tαβ,β + ρfα = 0, (22)
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Mαβ,β + ρGα = 0, (23)

hα,α + g + ρL = 0, (24)

qα,α + ρS = 0. (25)

The relation (12), at a regular points of Π, becomes:

Tα = Tβαnβ, Mα =Mβαnα, T3 = 0, q = qαnα, Ni = hβinβ, on L, (26)

where, nα = cos(nx, xα), where we denote with nx the unit vector of the outer
normal to L.

According to geometric equations, constitutive equations, and equilibrium
equations, we must comply with the boundary conditions. In the case of the first
boundary value problem, the boundary conditions are:

uα = ũα, ϕα = ϕ̃α, θ = θ̃, φ = φ̃ on L, (27)

where ũα, ϕ̃, θ̃ and φ̃ are prescribed functions. In the case of the second boundary
value problem, the boundary conditions are:

Tβαnβ = T̃α, Mβαnβ = M̃α, q̃ = qβnβ, hαinα = Ñi, onL, (28)

where the given functions T̃α, M̃α, q̃ and Ñj are independent of x3.
From (1-10), results that uα, ϕα, θ, and φ satisfy the equations:

(λ+ µ)uρ,ρα + (µ+ k)uα,ρρ + ξφ,α − (3λ+ 2µ+ k)σθ,α = −ρfα, (29)

(α+ γ)ϕρ,ρα + εϕα,ρρ + ζφ,α − 2kϕα = −ρGα, (30)

k∆θ = −ρS, (31)

dφρ,ρ − ξuρ,ρ − ζϕρ,ρ − aφ− bθ = −ρL, on Σ. (32)

To obtain the relation (9) we start from (1), from where we deduce that

Tβα,β = λuρ,ρα+µ(uβ,αβ+uα,ββ)+k(uβ,αβ+εβαρϕρ,β)+ζφ,βδβα−(3λ+2µ+k)σθ,βδβα,

Obvious εβαρϕρ,β = 0, so the above relation becomes:

Tβα,β = λuρ,ρα + µ(uβ,αβ + uα,ββ) + kuβ,αβ + ζφ,α − (3λ+ 2µ+ k)σθ,α.

Next, using relation (8) we obtain relation (29). Analogously we get (30),
(31), (32).

The first boundary value problem, involves finding the uα, ϕα, θ, φ functions,
which satisfy the above equations, on Σ and the boundary conditions (25). Obvi-
ously, from the constitutive equations and from (13), we can express the boundary
conditions (26) in terms of the functions uα, ϕα, θ, φ.

In the case of equilibrium theories, we will divide this problem into two, the
first including finding the functions θ and ϕα and then the functions uα and φ. It
is convenient not to separate the equations of system B, in the study of certain
problems. So, throughout this paper, we assume that:

k > 0, d2 > 0, d6 > 0, kd2 − d1d3 > 0, d4 + d5 + d6 > 0. (33)

It is important to note that the restrictions imposed by the Clausius-Duhem
inequality on the constituent coefficients, ( Grof, 1969), are taken into account in
the conditions above.
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3 Solution for field equations

We start by introducing a few notations, such as:

c1 = λ+ 2µ+ k, (34)

c2 = d+
−a+ d2

∆
, (35)

m1 =
(2k
h

) 1
2
, where h = α+ γ + ε, (36)

m2 =
(
d2/c2

) 1
2
, (37)

m3 =
( a
d6

+∆
) 1

2
, (38)

κ1 = −c2(3λ+ 2µ+ k)σ − c1bζ, (39)

κ2 = −c2(3λ+ 2µ+ k), (40)

κ3 = 0. (41)

From (2.12) results that m2
1,m

2
2, and m

2
3 > 0. We introduce the operators:

C1 = c1h∆(∆−m2
1), (42)

C2 = kc2∆(∆−m2
2), (43)

C3 = d6(∆−m2
3), (44)

B1 = hc1(λ+ µ)(∆−m2
1), (45)

B2 = hσc1(3λ+ 2µ+ k)(∆−m2
1)(c2∆− d2), (46)

B3 = 0. (47)

Theorem 1. Let’s consider the functions

uα = −c1C1Γα +B1Γρ,ρα −B2f,α − C3B3gρ,ρα, (48)

ϕα = c21µ∆ψα + c1(κ1∆− κ2)∆lα + kζc1C1∆∆C3gρ,ρα, (49)

θ = −c1(c2∆− d2)C1l, (50)

φα = c1C1C2g − c1[k(d4 − d5)∆C1gρ,ρ − c1d3C1l, (51)

where the fields Γα, ψα ∈ C6(Σ), l ∈ C8(Σ), and g ∈ C10(Σ), satisfy the equations:

(µ+ k)∆c1C1Γα = ρfα; (52)

µc1C1ψα = ρGα; (53)

c1C1C2l = ρS; (54)

c1C1C2C3g = −ρL. (55)
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Proof. (λ + µ)uρ,ρα + (µ + k)uα,ρρ + ξϕ,α − (3λ + 2µ + k)στα = −ρlα −(µ +
k)∆c1C1Γα + [(λ + 2µ + k)∆B1 − (λ + µ)c1C1]Γρ,ρα − C3B3[(λ + µ)∆ + µ +
k]gρ,ρα+(−ξc21µ∆)ψ,α+[B2∆(k−λ)+ξc1(κ1∆−κ2)∆]l,α+kξζc1C1C3∆∆∆g,α+
(3λ+ 2µ+ k)σc1C1(c2∆− d2)lα = ρfα

<=> (µ+ k)∆c1C1Γα = ρfα.

We do the same for the other equations. More specifically if we used the
equations (52-55), we get what we want.

4 Consequences of heat supply moments and pores

With the aim of studying the influences of the heat supply moments and
pores on deformation, we will use the solution obtained in the theorem presented
in the previous section. Therefore, let’s consider that

ρfα = 0, ρGα = 0, ρS = δ(x− y), ρL = 0.

where y(yα) is a fixed point, and δ is the Dirac measure .

Taking into account this assumption, the relations (52-55) are satisfied if
we consider Γα = 0, ψα = 0, l = ω and g = 0. The ω function is a solution for the
equation:

∆∆(∆−m2
1)(∆−m2

2)ω = γδ(x− y), (56)

where we use the γ notation for (εkc21c2)
−1.

From those previously considered it follows that we obtain from the relations

(52-55), the functions u
(1)
α (x, y), ϕ

(1)
α (x, y), θ(1)(x, y) and φ(1)(x, y).Therefore,

u(1)α (x, y) = −B2ω,α; (57)

ϕ(1)α (x, y) = c1(κ1∆− κ2)∆ωα; (58)

θ(1)(x, y) = −c1(c2∆− d2)C1ω; (59)

φ(1)(x, y) = −c1bC1ω. (60)

Next, we shall have the following considerations:

∗ m1,m2,m3 are distinct,

∗ ωs, (s = 1, 2, 3, 4), functions that satisfy the following equations :

∆ω1 =M, ∆∆ω2 =M, (∆−m2
1)ω3 =M, (∆−m2

2)ω4 =M, where M is a given function.

Therefore, we can formulate the solution of the equation ∆∆(∆−m2
1)∆−

m2
2)ω =M, as follows:

ω =

4∑
s=1

zsωs,
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where the constants zs, (s = 1, 2, 3, 4), are given by:

z1 =
m2

1 +m2
2

m4
1m

4
2

, z2 =
1

m2
1m

2
2

, z3 =
1

m4
1(m

2
1 −m2

2)
, z4 = − 1

m4
2(m

2
1 −m2

2)
. (61)

For M = δ(x− y), ωs, (s = 1, 2, 3, 4), are given by:

ω1 =
1

2π
ln r, ω2 =

1

8π
r2 ln r, ω3 = − 1

2π
K0(m1r), ω4 = − 1

2π
K0(m2r), r = [(x1−y1)2+(x2−y22)]

1
2 ,

(62)
where we used the notation K0 for the modified Bessel function of order zero.
Therefore, for equation (50), we have the following solution:

ω =
γ

2π
[z1 ln r +

1

4
z2r

2 ln r − z3K0(m1r)− z4K0(m2r)]. (63)

The displacement and the microrotation are introduced by the functions

u
(1)
α and ϕ

(1)
α . In what follow, we will focus on the consequences of pores. Thus

we assum that

ρfα = 0, ρGα = 0, ρS = 0, ρL = δαβδ(x− y),

where we have β fixed. So, we will have Γα = 0, ψα = 0, l = 0 and g = δαβΩ. In
this case, from (52-55), it follows that Ω is a solution of the following equation:

∆∆(∆−m2
1)(∆−m2

2)(∆−m2
3)Ω = γ1δ(x− y), (64)

where γ1 = (kεd6c
2
1c2)

−1. Therefore, we get from (52-55) the functions:

u(1+β)
α (x, y), ϕ(1+β)

α (x, y), θ(1+β)(x, y), φ(1+β)(x, y).

5 Plane deformation

Let us consider a cylindrical hole contained in an elastic space and the
domain B = {x : x21 + x22 > r21, x3 ∈ R}, (r1 > 0), ocuppied by an elastic material
with inner structure. This material will undergo a plan strain parallel to the x1x2-
plane. Knowing these, the domain

∑
is defined by

∑
= {x : x21+x

2
2 > r21, x3 = 0}.

Furthermore, we will assume that body loads are absent and the hole surface is
free of surface forces.

The problem we shall study involves determining the functions θ,φ, uα and
ϕα.

Obviously, these functions must satisfy the following equations:

(λ+ µ)uρ,ρα + (µ+ k)uα,ρρ + ξφ,α − (3λ+ 2µ+ k)σθ,α = 0, (65)

(α+ γ)ϕρ,ρα + εϕα,ρρ + ζφ,α − 2kϕα = 0, (66)

k∆θ = 0, (67)

dφρ,ρ − ξuρ,ρ − ζϕρ,ρ − aφ− bθ = 0, on Σ. (68)
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Knowing that the heat flow into the body is produced by keeping the surface
of the hole at a constant temperature θ∗, we add the boundary conditions to the
equations (66) and (67):

θ = θ∗, φ = φαnα for r = r1, (69)

and, also, we add the following boundary conditions:

Tβα,βnβ = 0, Mβαnβ = 0 for r = r1 (70)

We consider the solution to have the form θ = V (r), φ =W (r), uα = xαU(r) and

ϕα = Q(r) where r = (x21 + x22)
1
2 . Therefore, they must satisfy the corresponding

equations:

(λ+ µ)xαr
2U + (µ+ k)xαr

2U + ξrW − (3λ+ 2µ+ k)σrV = 0, (71)

(α+ γ)r2Q+ εr2Q+ ζrW − 2kQ = 0, (72)

k∆V = 0, (73)

dr2W − ξxαrU − ζrQ− aW − bV = 0, on Σ. (74)

From relation (73) we obtain:

xαrU =
1

λ+ 2µ+ k

[
(3λ+ 2µ+ k)σV − ξW

]
+N1, (75)

where N1 is an arbitrary constant. Or, we can rewrite this relation as

(r2U)′ =
1

c1

[
(3λ+ 2µ+ k)σV − ξW ]r + rN1. (76)

Also, for the remaining relations, (74-76), we obtain the following form.

(∆−m2
1)Q = −ζr

h
W, (77)

k∆V = 0, (78)

(∆−m2
2 + τ2ξ)W = τ1V + τ3Q+ τ2N1, (79)

where for simplification we have used the notations:

τ1 =
ξ(3λ+ 2µ+ k)σ + bc1

c1c2
, τ2 =

ξ

c1c2
, τ3 =

ζr

c2
. (80)

Next, we obtain from the relation (8) the form of the function V. Therefore,

V = C1 +B1 ln r, (81)

where C1 and B1 are arbitrary constants. Also, from relation (79), we obtain:

τ3Q =
τ4
m2

1

W − τ4C2 − τ4B2 ln r, (82)
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where we noted with τ4 = τ23
c2
g .

We will further subtitute τ3Q and τ1V in the relation (81),

(∆−m2
1 + τ2ξ)W = τ1C1 + τ1B1 ln r +

τ4
m2

1

W − τ4C2 − τ4B2lnr + τ2N1, (83)

and in the and we will get:

W = τ1

(C1 +B1 ln r

m2
1

−B1∆ ln r
)
+ τ4

(C2 +B2 ln r

m2
1

−B2∆ ln r
)
− (84)

− τ2
m2

1

N1 +N3k0(m, r).

We therefore obtained the functions V,W and Q in relations (83), (84) and
(86). The function U , is immediately determined by replacing V,W and Q in the
relation ( 78).
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Conclusions

Taking into account what has been obtained previously, this work has as main
objective the achievement of solutions V,W,Q and U , which implies the plane
deformation for micropolar isotropic materials in equilibrium theory. Using the
equilibrium equations, we deduce the solution of the field equations, which later
help us to study the effect of heat supply moments and pores in an elastic space.
And finally we deduce what we set out to do, the plane deformation.
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