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Abstract

A boundary value problem associated to a Hilfer generalized proportional
fractional integro-differential inclusion is studied. The existence of solutions
is established in the case when the set-valued map has nonconvex values.
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1 Introduction

The recent literature is full of papers devoted to the study of systems governed
by fractional order derivatives. The main reason is that the models taking into
account fractional derivatives are more realistic than the models realized with
classical derivatives (see [2, 7, 11, 13, 15] etc.).

A generalization of both Riemann-Liouville and Caputo fractional derivatives
was introduced by Hilfer in [9]. In fact, this derivative interpolates between
Riemann-Liouville and Caputo derivatives. Several properties and applications
of Hilfer fractional derivative may be found in [10]. Recently, in [12], an extension
of this derivative was proposed. Namely, the i-Hilfer generalized proportional
fractional derivative of a function with respect to another function. Several prop-
erties of this derivative were studied in [12].

In this note we consider the following problem

DSV r(t) € F(t, x(t), V(z)(t) a.e. ([a,b]) (1)
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with nonlocal integral boundary conditions of the form
m n
2(a) =0, x(b) =D nz(&)+ > GIFVa(0;), (2)
j=1 i=1

where D?I’ﬁ 7% denotes the 1-Hilfer generalized proportional fractional deriva-
tive operator of order a € (1,2] and type 8 € [0,1], respectively, o € (0,1],
&,0; € (a,b), m;,G € R, j=T1,m,i=1,n, [?»%¥ is the generalized proportional
fractional integral operator of order ¢; > 0, F': [a,b] x R x R — P(R) is a set-
valued map and V : C([a,b],R) — C([a,b],R) is a nonlinear Volterra integral
operator defined by V(x)(t) = fj k(t,s,z(s))ds with k(.,.,.) : [a,b)] x Rx R = R
a given function.

Our study is motivated by a recent paper [14]. Namely, in [14] several existence
results for problem (1)-(2) may be found in the case when F' does not depends
on the last variable. All the results in [14] are proved by using certain suitable
theorems from fixed point theory.

The goal of this note is to obtain the existence of solutions for problem (1)-(2)
in the case when the set-valued map F' has nonconvex values but it is assumed to
be Lipschitz in the second and third variable. Our result is based on Filippov’s
techniques ([9]); namely, the existence of solutions is obtained by starting from a
given "quasi” solution. In addition, the result provides an estimate between the
”quasi” solution and the solution obtained.

Our result improve an existence theorem in [14] in the case when the right-
hand side is Lipschitz in the second variable. Moreover, our result may be viewed
as a generalization to the case when the right-hand side contains a nonlinear
Volterra integral operator. Even if the method we use here is known in the theory
of differential inclusions (e.g., [3, 4, 5, 6] etc.) it is largely ignored by the authors
that are dealing with such problems in favor of fixed point approaches, most
probably, because it is much easier to handle the applications of classical fixed
point theorems.

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

Let (X,d) be a metric space. Recall that the Pompeiu-Hausdorff distance of
the closed subsets A, B C X is defined by

di(A, B) = max{d*(A, B),d"(B, A)}, d*(A, B) = sup{d(a, B);a € A},

where d(z, B) = inf cp d(z,y).

Let I = [a,b], we denote by C(I,R) the Banach space of all continuous
functions from I to R with the norm ||z(.)||c = supue;|z(t)| and LY(I,R) is
the Banach space of integrable functions u(.) : I — R endowed with the norm
()l = Jo Tu®)ldt.

In what follows v(.) € C'(I,R) such that '(t) >0Vt € I.
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Definition 1. Let o € (0,1] and o € Ry. The generalized proportional fractional
integral of order o of f(.) € L*(I,R) with respect to v(.) is defined by

t 1
[0 () = aaq}oy>J/ ¢ T WO (4 (1) — h(5))* 1 (5) (s)ds,

where T is the (Euler’s) Gamma function defined by T'(« fo tele~tdt.

Remark 1. If 0 = 1, ¥(t) =t the above definition yields the Riemann-Liouville
fractional integral, if o = 1, w(t) Int the previous definition gives the Hadamard
fractional integral and if o = 1, Y (t) = ,p > 0, Definition 1 covers the Katugam-
pola fractional integral.

Definition 2. Let o € (0,1] and o € Ry. The generalized proportional fractional
derivative of order o of f(.) € C(I,R) with respect to 1(.) is defined by

1

n te‘TTfl(w(t)f@lJ(s)) — (s n—a+1 (s s)ds
e ($(0) ()" () (5)ds),

Do () =
where n = [a] + 1, [a] is the integer part of o € R.

Definition 3. Let f(.),9(.) € C™(I,R) such that ¥(t),y'(t) > 0V t € I. The
W-Hilfer generalized proportional fractional derivative operator of order v and type
B, respectively, o with respect to 1(.) is defined by

DPo f() = (1200 (D) [1=D)o=o)  ),
wheren —1 < a<n, B€[0,1], 0 € (0,1] and n € N.
In what follows a € (1,2] and v = a + (2 — ).

Lemma 1. ([14]) Let h(.) € C(I,R) and

oI L (w0 = () a1 m ST ED @) (e ) yp(a))

e == L(p(o;)— 1/)(a)) 0; Yte;—1
S S

Then, the solution of problem D%’ﬂ’a’wx(t) = h(t) with boundary conditions
(2) is given by

a,o. eUT_l(w(b)*wW)) B)—h(a))7—1 m o
o(t) = IOV h(t) + AJV*%EW)) VDT (s o)+ "

Sy GIOHeRTYR(0;) — 19O (D)), t € [a,b).

By definition a function z(.) € C(I,R) is called a solution of a problem (1)-(2)
if there exists h(.) € L'(I,R) such that h(t) € F(t,x(t),V(x)(t)) a.e. (I) and z(.)
is given by (3).
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7=1 () —i(a _
Remark 2. If we denote c(t) = <= w i;w)_)gzlégz))_wa))v - and

G(t,5) = e s OO (y(t) — (5))* 9/ (5)X (o) +
AT OO (1) — (5))* 1 (5) Ty Mgy () F

o—1 _ s n f o
c(t)"e W=Dy (s) Dt m(w(t)—w(sﬁ i X[a,@i}(s)

where x A(.) denotes the characteristic function of the set A, then the solution x(.)
in (3) may be put as x(t) = f: G(t,s)h(s)ds.

Moreover, if we assume that there exists My > 0 such that 0 < ¥'(t) < M
Vtel, it follows that V t,s € I, we have

a))Y 1 a—
(Gt 5)] < (14 SGEEUDE) b ((b) — (@) Mo+

b a+vy—2 b a+vy—2 f b i
miﬂ (11))( )T MO Z] 1 Im5l + 4(%“,,%(7 7))1“7) Moy Zz 1 5 = lﬁfz(r 04+Ep))) =M

Also, we need a variant of Kuratowski and Ryll-Nardzewski selection theorem
concerning measurable set-valued maps.

Lemma 2. ([1]) Consider X a separable Banach space, B is the closed unit
ball in X, H : I — P(X) is a set-valued map with nonempty closed values and
g: 1 — X,L:I— Ry are measurable functions. If

H#t)N(gt)+ L({t)B) #0 a.e.(I),

then the set-valued map t — H(t) N (g(t) + L(t)B) has a measurable selection.

3 The results

In order to prove our results we need the following hypotheses.

Hypothesis 1. i) F(.,.): I x R x R — P(R) has nonempty closed values and is
L(I) ® B(R x R) measurable.

ii) There exists L(.) € L*(I,(0,00)) such that, for almost allt € I, F(t,.,.) is
L(t)-Lipschitz in the sense that

du(F(t,z1,91), F(t,x2,y2)) < L(t)(|z1 — 22| + |y1 —y2]) V 21,22,91,952 € R.
i) k(.,.,.): I x Rx R — R is a function such thatVz € R, (t,s) — k(t, s, x)
18 measurable.

iv) |k(t,s,x) — k(t,s,y)| < L(t)|z —y| a.e. (t,s)elxI, Vaz,yeR.

We use next the following notations

M(t) = L(t)(1 + /bL(u)du), tel, Ky= /bM(t)dt
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Theorem 1. Let o € (1,2], 8 € [0,1], o € (0,1] and assume that there exists
My > 0 such that 0 < ¢'(t) < My V't € 1. Assume that Hypothesis 1 is satisfied
and MKo < 1. Let y(.) € C(I,R) be such that y(a) = 0, y(b) = 37", njy(&;) +
S GIPo%y(0;) and such that there exists p(.) € LY(I,Ry) with d(D?I’B’U’wy(t),

F(t,y(t),V(y)(t) < p(t) a.e. (I).
Then there exists x(.) : I — R a solution of problem (1)-(2) satisfying for all
tel

ot) = 9(6)] < =3 POl

Proof. The set-valued map t — F'(t,y(t), V(y)(t)) is measurable with closed values
and

F(t,y(t), V() (6) N{DF " y(t) + p()[-1,1]} 0 a.e. ().

It follows from Lemma 2 that there exists a measurable selection hy(t) €
F(t,y(t),V(y)(t)) a.e. (I) such that

|h1(t) — DYy (1) < p(t)  ace. (I). (4)

Define z(t) = f; G(t,s)h1(s)ds and one has
lz1(t) —y(t)] < M [ p(t)dt.

We construct two sequences x,(.) € C(I,R), h,(.) € L'(I,R), n > 1 with the
following properties

zn(t) = /b G(t,s)hp(s)ds, tel, (5)
hin(t) € F(t,xp-1(t), V(zp-1)(t)) a.e.(I), (6)

b
a1 (£) = B (D] < L (2a(t) = 2oa (8)] + / L(s)|en(s) — w1 (s)|ds) a.e. (I).
(7)

If this is done, then from (4)-(7) we have for almost all t € T
b
|Tpt1(t) — xn ()] < M(MKO)”/ p(t)dt ¥n e N.

Indeed, assume that the last inequality is true for n — 1 and we prove it for n.
One has

(1) = 2a(0)] < [} 1G] s (01) = ha(t0)|dtr <
M [ L(t)[|2n(tr) = 2n1(t2)] + [ L(s)|wn(s) — 2 1(s)|ds]dty <
M [ L(t)(1+ [ L(s)ds)dt,. MM K™ [P p(t)dt = M(MEo)" [ p(t)dt.

Therefore {z,(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some z(.) € C(I,R). Hence, by (7), for almost all t € I,
the sequence {h,(t)} is Cauchy in R. Let h(.) be the pointwise limit of h,(.).
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At the same time, one has

|z (t) — ()!<|$1() y(O)] + 3205 \%H()—bwi(t)\ﬁ
M [P p(t)dt + S0 (M [P p(t) dt(MKO)_%”%‘”.

On the other hand, from (4), (7) and (8) we obtain for almost all t € T

() = D y(0)] < S5 i () = ha(t)] + 1ha (8) = D"V y(1)] <
M [P p(t)dt
L) 0 4 ().
Hence the sequence hy,(.) is integrably bounded and therefore h(.) € L'(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit in (5),
(6) we deduce that z(.) is a solution of (1)-(2). Finally, passing to the limit in (8)
we obtained the desired estimate on xz(.).

It remains to construct the sequences x(.), hy,(.) with the properties in (5)-(7).
The construction will be done by induction.

Since the first step is already realized, assume that for some N > 1 we al-
ready constructed z,(.) € C(I,R) and h,(.) € L*(I,R), n = 1,2,...N satisfying
(5), (7) for n = 1,2,...N and (6) for n = 1,2,..N — 1. The set-valued map
t — F(t,zn(t),V(xn)(t)) is measurable. Moreover, the map ¢ — L(t)(|zn(t) —

_1(t)] + f(f L(s)|zn(s) — xn—1(s)|ds) is measurable. By the lipschitzianity of
F(t,.) we have that for almost all t € I

F(t ey (1), V(zn) (@) N {hn(t) + L) (e () — 2n-a(8)]+
Ja L(s)en(s) = xn—1(s)|ds)[-1, 1]} # 0.

Lemma 2 yields that there exists a measurable selection hny1(.) of F(.,zn(.),
V(zn)(.)) such that for almost all t € T

v (t) = hn )] < L(#)(Jon (8) — 2n-1(D)] +/ L(s)|zn(s) — 2n-1(s)|ds).

We define zy41(.) as in (3.5) with n = N + 1. Thus fy41(.) satisfies (6) and (7)
and the proof is complete. O

Corollary 1. Let a € (1,2], 8 € [0,1], 0 € (0,1] and assume that there exists
My > 0 such that 0 < ¢'(t) < My V't € I. Assume that Hypothesis 1 is satisfied,
d(0,F(t,0,0) < L(t) a.e. (I) and MKy < 1. Then there exists x(.) a solution of
problem (1)-(2) satisfying for allt € I |x(t)| < 1= MK0||L( )1

Proof. Tt is enough to take y(.) = 0 and p(.) = L(.) in Theorem 1. O

If F' does not depend on the last variable, Hypothesis 1 becames

Hypothesis 2. i) F(,,.) : I x R — P(R) has nonempty closed values and is
L(I) ® B(R) measurable.
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ii) There exists L(.) € L*(I,(0,00)) such that, for almost all t € I, F(t,.) is
L(t)-Lipschitz in the sense that

dH(F(t,l‘l),F(t,ﬂfg)) < L(t)|331 — l‘2| YV x1,x2 € R.

Denote Lo = fab L(t)dt

Corollary 2. Let a € (1,2], p € [0,1], o € (0,1] and assume that there ezists
My > 0 such that 0 < ¢'(t) < MoVt € 1. Assume that Hypothesis 2. is satisfied,
d(0, F(t,0) < L(t) a.e. (I) and MLO < 1. Then there ezists x(.) a solution of the
fractional differential inclusion

DOV a(t) € F(t,x(t)) ae. (I), (9)
with boundary conditions (2) satisfying for all t € 1

MLy

lz(t)] < m (10)

Remark 3. In the particular case when o =1, Y(t) =t andn; =0, j = 1,m
then Theorem 1 yields Theorem 3.8 in [6].

A similar result to the one in Corollary 2 may be found in [1]; namely, Theorem
7. The proof of Theorem 7 in [1] is done by using the set-valued contraction
principle. Our approach improves the hypothesis concerning the set-valued map
in [1]. More exactly, we do not require for the values of F' to be compact as in
[1] and we do not require that the Lipschitz constant of F' to be a mapping from
C(I,R) as in [1]. Moreover, Theorem 7 in [1] does not contains a priori bounds
for solutions as in (10).

As an example, let us consider the problem

313
Dy x(t) € [ 16<1+\/%> Ol 0ju o,

1+[z(t)
11)
3 /21 \fl s)ds| 113 (
16 1 + )1+( 1 )|f1 LI:(S ds|] a.e. ([9’ 9 ])
with nonlocal integral boundary conditions as in [14]; namely,
2(3) =0, z(2)=Fad)+ Z2(D) + Ta(d) + 15 1%0z(2)+ (12)
gfg,g,wox(m)
123 9
Inthiscase,a:%,ﬁ %,a:%,a:%,b:%,m:&n—l m:ﬁ,nngj,
773:16167‘51:37’52:77‘53:%;7C1:1;81¢<2_%7@1:%7902:57 1287
= Yo(t)=t>+1and y= 1.
Define F(.,.): I x R x R — P(R) by
3 21, || 3 21 |y
F(t =[——(1 — 0ju |0, —=(1 —
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and k(.,.,.) : I X RxR = R by k(t,s,z) = %(1"'\/%)1’-

Since

3 /21
Sup{’“"? UEF(tﬁva)}Sﬁ(l—}_ ﬁ) vtEI, fE,?/ERa

3 21
dg(F(t,z1,y1), F(t,22,92)) < E(l T4/ T?)(|$1 —z2| + |y1 — 12l)

V x1,x2,y1,y2 € R, in this situation L(t) = %(1—1—1/%) and Ky = %(1—1—1/%)(14—

i1

21 1
+\/ﬁ)) < 17

By standard computations (e.g., [14]) M = 16,99; therefore, M Ky < 1. So,

we may apply Corollary 2 in order to obtain the existence of a solution for problem
(11)-(12).
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