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Abstract

Here we research the univariate quantitative approximation, ordinary and
fractional, of Banach space valued continuous functions on a compact interval
or all the real line by quasi-interpolation Banach space valued neural network
operators. These approximations are derived by establishing Jackson type
inequalities involving the modulus of continuity of the engaged function or
its Banach space valued high order derivative of fractional derivatives. Our
operators are defined by using a density function generated by a g-deformed
and A-parametrized A-generalized logistic function, which is a sigmoid func-
tion. The approximations are pointwise and of the uniform norm. The related
Banach space valued feed-forward neural networks are with one hidden layer.
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1 Introduction

The author in [1] and [2], see Chapters 2-5, was the first to establish neural
network approximation to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliaguet-Euvrard and ”Squashing” types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there

'Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A.,
e-mail: ganastss@memphis.edu



32 George A. Anastassiou

both the univariate and multivariate cases. The defining these operators ”bell-
shaped” and ”squashing” functions are assumed to be of compact support. Also
in [2] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions, see
Chapters 4-5 there.

Again the author inspired by [17], continued his studies on neural networks ap-
proximation by introducing and using the proper quasi-interpolation operators of
sigmoidal and hyperbolic tangent type which resulted into [3]-[7], by treating both
the univariate and multivariate cases. He did also the corresponding fractional
cases [8], [9], [13].

Let h be a general sigmoid function with h (0) = 0, and y = £1 the horizontal
asymptotes. Of course h is strictly increasing over R. Let the parameter 0 < r < 1
and z > 0. Then clearly —z < x and —x < —rx < rz < z, furthermore it
holds h(—z) < h(—rz) < h(rz) < h(x). Consequently the sigmoid y = h (rz)
has a graph inside the graph of y = h(z), of course with the same asymptotes
y = £1. Therefore h (rz) has derivatives (gradients) at more points x than h (x)
has different than zero or not as close to zero, thus killing less number of neurons!
And of course h (rz) is more distant from y = +1, than h(x) it is. A highly
desired fact in Neural Networks theory.

Different activation functions allow for different non-linearities which might
work better for solving a specific function. So the need to use neural networks
with various activation functions is vivid. Thus, performing neural network ap-
proximations using different activation functions is not only necessary but fully
justified.

Also brain asymmetry has been observed in animals and humans in terms of
structure, function and behaviour. This lateralization is thought to reflect evolu-
tionary, hereditary, developmental, experiential and pathological factors. There-
fore it is natural to consider for our study deformed neural network activation
functions and operators. So this paper is a specific study under this philosophy
of approaching reality as close as possible.

Consequently the author here performs ¢-deformed and A-parametrized A-
generalized logistic function activated neural network approximations to contin-
uous functions over compact intervals of the real line or over the whole R with
valued to an arbitrary Banach space (X, |-||). Finally he treats completely the
related X-valued fractional approximation. All convergences here are with rates
expressed via the modulus of continuity of the involved function or its X-valued
high order derivative, or X-valued fractional derivatives and given by very tight
Jackson type inequalities.

Our compact intervals are not necessarily symmetric to the origin. Some of
our upper bounds to error quantity are very flexible and general. In preparation
to prove our results we describe important properties of the basic density function
defining our operators which is induced by a g-deformed and A-parametrized A-
generalized logistic function, which is a sigmoid function.

Feed-forward X-valued neural networks (FNNs) with one hidden layer, the
only type of networks we deal with in this article, are mathematically expressed
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as .
N, (z) = cha(<aj-:v>+bj), z €R®, s€N,
j=0
where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € X are the coefficients, (a; - ) is the inner product of a; and z, and

o is the activation function of the network. About neural networks in general read
[19], [21], [23].

2 Preliminaries

The following background comes from [16].
We consider here the ¢-deformed and A-parametrized function acting as an
activation function

1

:m, ZUER, Whereq,)\>0, A>]. (1)
q

Pg,\ (‘/L‘)

This is an A-generalized logistic type function.
We easily observe that

g (+00) =1, g (—00) =0. (2)
Furthermore we have
1 1+ %AM -1
1_90%’>‘(_$):1_1—|—%A>‘x: 1+%A)\a: -
A 1 1
! = _)\x:@q,k(x)>
1+ 1% Tiw + 1 1+qA
proving
P (2) =1 =91, (~a). (3)
We also have that )
0) = —. 4
P 0) = 1 @
Consider the function
1
Goa (@) = 5 (Pga (@ +1) —¢gp (@ —-1)), zeR (5)
Then 1
Gy (—2) = B (@gr (2 +1) =g (—v—1)) =

1
5(1_§0l>\(55_1)_1+901>\(95+1)>:
q’ q’

(pral@+1) —p1,(@=1)) =C1, (). (6)

q’

DN | =
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That is
Gy (—2) =G1, (x), YxeR. (7)
q7

o5 (2) = ((1 iy A_Ax>—1)' _

1 (1 + qu%)_2 g (In A) A7 (Z)) = g\ (In A) (1 + qA”\I)_Q AN = 0. (8)

We have

So that ¢ » is a striclty increasing function over R.
Hence it holds

oo (@) = —8A)
(1 + qA /\x) ANz
gA(In A) _ gA(In A) )
(1 + qQA—Q)\ac + QqA—Aa:) AT (A)\ac + qQA—A:v + 2(]) :
That is )
P () = gA(In A) (A/\x +?AN 4 2q) . (10)

Therefore it holds
30:1/,)\ (z)
-2
= gA(InA)(-1) (AM +PAT 4 zq) ((m A) AMA 4 ¢ (In A) AN (—A))
-2
— )2 (In A)> (AM‘ FPAT 2q) <q2A—M . AM) : (11)
That is
7 2 2 Az 24—z 20 9 Az
o\ (@) = g\ (In A) (A + A +2q) (q A 4 ) € C(R). (12)
We have
PAN AN S 0 PATN > AN 2 > AP iff ¢ > AN,

1
iff logyq > Az, iff x < %.

So, cpg)\ (z) >0, for x < logTAq and there ¢, ) is concave up.

log4 g " .
When x > ==, we have g (z) < 0 and ¢, is concave down.

7 :1/7>\ < A )

S0, g is a sigmoid function, see [14].
We have that

G () = 5 (o (2 +1) = @l (= 1)
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We got that @;’A is strictly increasing for x < logTAq. Let z < lOgTAq — 1, then
r—1l<z4+1< lOgTAq. Hence ¢ \ (z +1) > ¢ \ (x —1). Thus G , > 0, i.e. Gg»

o . . 1
is striclty increasing over (—oo, Bad _ 1) .

Let now = > IOgTAq—i—l, then z +1 >z -1 > bgTAq, and (p;M\(aH—l) <

@ (@ —1).by ¢ y being strictly decreasing over (log/\“‘q, —|—oo>. Hence G/ , <0,
and G  is strictly decreasing over (logTAq +1, oo) )

LetnowlmgTAq—lgxgbgTAq+l.Wehavethat

1
o (T) = 3 (g (@ +1) =@y (x—1)) =
q)\2 (hl A)2 (q2A—)\(ax+1) _ AA(:C—I—I)) (q2A—)\($—1) _ A)\(z—l))
2 (A)\(ac—i-l) + @2 AN+ 4 2q)2 (AA(I_1) + @2A-Ma=1) 4 2q)2 =

g2 (In A)2 [ (q2 _ AZ)\(x-i—l))
2 (AA(aH—l) + q2A—)\(x—|-1) + 2q)2 AX=z+1)
(q2 _ AQ)\(x—l))
_ (A)‘(zfl) + 2 A-M==1) +2q)2 AA(xq)} =
g\? (lnA)2 [ (q _ A)\(x-‘rl)) (q+AA(w+l)) -
2 (A)\(.Z‘-‘rl) + q2A—)\(x+1) + 2q)2 AXM=z+1)
(q_A/\(xq)) (q—i—A’\(g”’l))
_ (A,\(gcq) + 2A A1) 4 2q)2 A)\(a:—l)].

(13)

By 509 < g+ 14 logyq < A(z+1) & g < AANTH o g — AN+ <,

By z < long”+1<:>5671 < logTAq@)\(xfl) <logyq & AN*D < g &
q— AMz—=1) > 0.

Clearly, when lmgTAq —-1<z< logTAq +1 by the above we get that G , (z) <0,
that is G;ﬁ y is concave down there.

Clearly Gy is strictly concave down over <l°gTAq -1, bgTAq + 1) .

Overall G, is a bell-shaped function over R.

Of course it holds va/\ <logTAq) < 0.

We have that

log 4 q 1 log 4 q log 4 q
Gim( 3 >:2<90:1,)\< ) e ) ) =

gA(In A) 1
2 [A,\(‘ngqﬂ)

log 4 g
LA () g
: =

A1) () g
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_ MT (15)

where

T —

A,\(l"g;‘qq) +q2A7,\(loiAq71> B AA(“’%‘ZH) B quf,\(logT“H)
(A)\(bg;\qq.H) —|—C]2A_)‘<log>f‘q+1) +2(]> (A)\(log;;q_o —I—QQA_)‘(log)fxq_l) +2q> .

Then
g (In A)T _gA(InA) gA™ + ¢?q AN — gA — PP AT
2 T2 (A=A + ¢%q 71 AN +29) (¢A* + ¢ 1A + 29)
gA(In A) [ gA N + gAN — gAN — A } _0
2 (qA=* + qAN +2q) (gAY + gA= N +2q) |

(16)

So IOgTAq is the only critical number of G, ) over R. Therefore Gy 5 (bgTAq) is the

maximum of Gy .
We calculate it:
We have that

log 4 q 1 log 4 q log 4 q
Gq7>\ < )\A > = 5 <S0q,)\ ( )\A +1)— Pg,\ )\A —1 =

1 1 1

2\ g a () (e ) "
(e ) 2 () -
2\1+qqg A= 14 qq 14> 2\1+A 1+A4A
1( AN — AT > AN
2\ (1+ A2 (1+ 4 2(AN+1)
Yhe global maximul of G » is
A
Gon (bif“q) = 2{1{“ +11). (18)
Finally we have that
lim Gy (2) = £ (g (+00) — 9ga (+00)) = 0, (19)
and ]
Lm Gop (@) = 5 (g (-00) = ¢ (-00)) = 0. (20)

Consequently the x-axis is the horizontal asymptote of Gy x. Of course Gy ) () >
0,VzeR.
We need
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Theorem 1. ([16]) It holds

Y Goalz—i)=1, V2R, VgA>0,A> 1. (21)
Thus -
ZGq,A(m:—i):l,VneN,VmeR (22)

Similarly, it holds

Y Giy(w—i)=1VYzeR (23)
q7

i=—00

But G;)\(az—i)QGqA(i—ac),VxER.
q7

Hence o
Y Goali—z)=1,VzeR, (24)
and -
Y Gealitz)=1,VzeR (25)
It follows

Theorem 2. ([16]) It holds
/ Ggy(x)dr =1, X\ g>0, A>1. (26)
—00

So that Gy is a density function on R; A\, ¢ > 0, A > 1.
We need the following result

Theorem 3. ([16]) Let 0 < a < 1, and n € N with n'=% > 2. Then

(e}

1 1 _ nlfa_
Z Gy (nx — k) <max{q,q}wzfyA A 2), (27)

k=—o0
Inz—k|>nl—a

where g, A >0, A > 1; v := max{q,%}.

Let [-] the ceiling of the number, and |-| the integral part of the number.
We also need

Theorem 4. ([16]) Let x € [a,b] C R and n € N so that [na] < |nb|. Forq >0,
A >0, A> 1, we consider the number Ay > zg > 0 with Gy (20) = G (0) and
Ag > 1. Then

1 1 1

< mazx , = K(q). (28)
nb] Gax (Ag) G1, ()\;)

Z Gq7)\ (ni’ - k) q’ q

k=[na]
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We finally mention

Remark 1. ([16]) (i) We have that

Lnb)
nll)l_{l_loo Z Gy (nx —k) #1, for at least some x € [a,b], (29)
k=[na]
where A, q > 0.

(i) Let [a,b] C R. For large n we always have [na] < |nb|. Also a < % <0,
iff [na] < k < |nb|. In general it holds

[nb]
> Goa(nx—k) < 1. (30)
k=[na]

Let (X,]|-]|) be a Banach space.

Definition 1. Let f € C ([a,b],X) and n € N : [na] < |nb|. We introduce and
define the X -valued linear neural network operators

[nb]

kiz f (%) Gq,/\ (nx - k)
Lo (fi2) =

Y, Ggx(nw—k)
k=[na]

, T €la,bl. (31)

Clearly here Ly, (f,z) € C ([a,b],X).

For convenience we use the same L,, for real valued functions when needed.
We study here the pointwise and uniform convergence of L, (f,z) to f (x) with
rates.

For convenience, also we call

[nb]

Lt =S f (fj) Gy (nz — K), (32)

k=[na]
(similarly, LY can be defined for real valued functions) that is

Ly (f,x)

> Ggx(nz—k)
k=[na]
So that
Ly, (f,z)

Ly (f,2) = f () = —flx) = (34)

[nd]

Y. Ggx(nz —k)
k=[na]
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[nb]
Ly (fyz) = f (v) < > G (nx — k))

k=[na]

[nb)
> Gga(nz—k)
k=[na

Consequently, we derive that

[nb]
Ly (f,2) = f(2)| < K (q) || Ly (fiz) — f(2) ( > Gy (nz — k)) =

k—=na]
K (g k_L[ZbJ1 (7(%) - 7@) G (02 = 1) (35)

We will estimate the right hand side of the last quantity.
For that we need, for f € C ([a,b], X) the first modulus of continuity

wi (f,0) := sup 1f(x) = f W), ¢6>0. (36)
x,y € [a,b]
lz—y| <9

Similarly, it is defined w; for f € Cyp (R, X) (uniformly continuous and bounded
functions from R into X), for f € Cp (R, X) (continuous and bounded X-valued),
and for f € Cy, (R, X) (uniformly continuous).

The fact f € C([a,b],X) or f € C, (R, X), is equivalent to %i_)néwl (f,6) =0,

see [11].
We make

Definition 2. When f € C,p (R, X), or f € Cp (R, X), we define
_ o k
Loty = 30 £ (%) Gun o0, (37)
k=—00

n € N, x € R, the X -valued quasi-interpolation neural network operator.
We make
Remark 2. We have that

Hf (ﬁ)” <l < +00,

H f (jj) H Cyr (12 = k) < [|f oo G (nx — ) (33)

and
A

D

k=—X\

7(5)] Gan =0 < 1 <§A Gy (na k)) ,
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and finally
- k
) Hf <n> H Gy (ne —k) < [floor > (39)

k=—o00

a convergent series in R.
oo
So, the series Y Hf (%) H Gy (nx — k) is absolutely convergent in X, hence
k=—oc0
it is convergent in X and Ly (f,x) € X. We denote by ||f|l, := sup [|f (z)],

z€la,b

for f € C(la,b],X), similarly it is defined for f € Cp (R, X).

3 Main results

We present a set of X-valued neural network approximations to a function
given with rates.

Theorem 5. Let f € C ([a,b],X),0<a<1,neN:n'"%>2 z¢€[a,b]. Then

i)
ILa (fia) = £ @I < K (@) o1 (£ ) +20fllera 02| =i )
and
i)
L ()~ Flas <. (a1)

We get that li_>m L, (f) = f, pointwise and uniformly.
n o

Proof. We see that

[nb)
S s (fj) — F(@)|| Gy (nz— ) < (42)
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[nb]
2flle D>,  Gealnz—k) <

k=[na]
|k—nz|>nl—a

[e.9]

w1 <f,nla> Z Gy (nx —k)+

k=—oc0
k_, <%

n - n
o0

2flle Y, Gerlnz—k) <

(by Theorem 3)

k=—o00
lk—nz|>nl—a

o1 (o ) + 2 fllgr a2,

That is
Lnb]

> (7(5)-7@) Gua (a0

k=[na]

- (fv nl> + 2 flloo v AT,

<

Using the last equality we derive (40).

Next we give

Theorem 6. Let f € Cp(R,X),0<a<1,neN:n!"®>2 zcR. Then

i)

41

(43)

(44)

1 (F,2) = f (@)]] < wn (ﬁ n1> + 2| flloyATD =, (4)

and
i1) B
Lo (f) = fll o <"

For f € Cyup (R, X) we get li_)m L, (f) = f, pointwise and uniformly.
mn o

Proof. We observe that

k= —oo 2
k_ioo (f (D - (x)> G (na = k)| <
i Hf (ﬁ) — [ ()]G (nx — k) =

3 f(f;) Con (e — k)~ [(2) S Gy (nr— k)

(46)
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> e (£) - 1) Gas e -+

> |y (i) —F @) Gor (e — k) < (47)

k=—o0
%*‘K|>n1a
1 > -
- <f, n) > Gaalna k) +2[|f o yAN ) <
|kij§°n1
1 _ nlfa_
o1 (oo ) + 27 A7), (49)
proving the claim. O

We need the X-valued Taylor’s formula in an appropiate form:

Theorem 7. ([10], [12]) Let N € N, and f € C ([a,b], X), where [a,b] C R and
X is a Banach space. Let any x,y € [a,b]. Then

W)+ gy [ =0 (5 0 -5 )

(49)
The derivatives £, i € N, are defined like the numerical ones, see [24], p. 83.
The integral fyx in (49) is of Bochner type, see [22].
By [12], [20] we have that: if f € C ([a,b],X), then f € L ([a,b],X) and
f€Li(ab],X).
In the next we discuss high order neural network X-valued approximation by
using the smoothness of f.

Theorem 8. Let f € CN ([a,b],X), n,N € N, 0 < a < 1, z € [a,b] and
n'=® > 2. Then

i)

ned

N G (2 A -
()~ s < K @ A SN Ly pamerea]
=

(50)
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(N) — VA A Te-2)
[wl<f(zv)71> L 2 b)Y A ”

ne ) naN N1 N!
i) assume further fU) (z9) =0, j = 1,..., N, for some x¢ € [a,b], it holds

[1Ln (f;w0) = f (o) < K (q)-

(N) —_ oV —A(ntme-2)
{Wl (f(N),1> 1 + QHf Hoo (b ) fyA }’ (51)

noeN N1 N!

and

N || @) . o
1Ly (f) = flloo <K(Q){Zf;oo [nij-i-(b—a)JyA’\(" 2)] +
Jj=1 ’

(N) — )N A A (T -2)
[M(f(N),l) 1 2Pl (b= 0)¥a ” 52)

no | neN N N!

Again we obtain lim L, (f) = f, pointwise and uniformly.
n—oo

Proof. Tt is lengthy and similar to [15]. As such it is omitted. O

All integrals from now on are of Bochner type [22].

Definition 3. ([12]) Let [a,b] C R, X be a Banach space, a > 0; m = [«
N, ([-] is the ceiling of the number), f : [a,b] — X. We assume that f(™
Ly ([a,b], X). We call the Caputo-Bochner left fractional derivative of order o:

S
S

« ) = 1 v T — m—a—1 ¢(m) 7 a
L el A A ARICE R F UG

I'(m
If o € N, we set DS, f = ) the ordinary X -valued derivative (defined similar
to numerical one, see [24], p. 83), and also set D, f = f.

By [12], (D, f) (x) exists almost everywhere in x € [a,b] and D¢, f €
Ly ([(I, b] aX)

If || f0m
C (la,b]) -

We mention

)HLOO([a,b},X) < 00, then by [12], DS, f € C ([a,b],X), hence ||DS, f|| €

Lemma 1. ([11]) Let a >0, a ¢ N, m = [a], f € C™ ' ([a,b],X) and (™) ¢
L (Ja,b],X). Then D2, f (a) = 0.

We mention
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Definition 4. ([10]) Let [a,b] C R, X be a Banach space, « > 0, m := [a].
We assume that f € Ly ([a,b], X), where f : [a,b] — X. We call the Caputo-
Bochner right fractional derivative of order oc:

=D"
(m —a)

b

(Di_f) (z) == T / (z—x)" L) (2)dz, Y a€la,b]. (54)
We observe that (DI f) (z) = (=1)™ f'™ (2), for m € N, and (D)_f) () =
fx).

By [10], (Dg-f) () exists almost everywhere on [a, b] and (D§_f) € Ly ([a,b],

If Hf(m)HLoo([a,b},X) < o0, and o ¢ N, by [10], Di* f € C([a,b],X), hence
1D5_f]| € C ([a.B)).

We need

Lemma 2. ([11]) Let f € C™ ' ([a,b],X), f' € Ly ([a,b],X), m = [a],
a>0,a¢N. Then Di* f(b) =0.

We mention the left fractional Taylor formula

Theorem 9. ([12]) Let m € N and f € C™ ([a,b], X), where [a,b] C R and X is
a Banach space, and let « > 0:m = [a]. Then

,_.

m—

(z L xx_za—l ey 2) d
=0 ' f )+F(a)/a ( ) (D*af)()da (55)

(2
Vz€la,bl.
We also mention the right fractional Taylor formula

Theorem 10. (/10]) Let [a,b] C R, X be a Banach space, « > 0, m = [a],
feC™([a,b],X). Then

>_A

— ZL‘—b 1 b — o
Y0+ s / (- — 221 (D f) (2)d=  (56)

1=0
Vx € la,bl].
Convention 1. We assume that

D¢, f(x) =0, for x < x, (57)

*TQ

and

Dz, f(x) =0, for x > xo, (58)
for all z,xg € [a,b] .

We mention

X).
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Proposition 1. ([11]) Let f € C" (|a,b],X), n = [v], v > 0. Then D%, f (x) is
continuous in x € [a,b].

Proposition 2. ([11]) Let f € C™ ([a,b],X), m = [a], a > 0. Then Dy f(x)
is continuous in x € [a,b].

We also mention

Proposition 3. ([11]) Let f € C"™ ' ([a,b],X), f™ € Ly ([a,b],X), m = [a],
a >0 and

D%f (0) = = [ @t gy, (59)

for all z,xq € [a,b] : © > xp.
Then D, f (z) is continuous in xg.

Proposition 4. ([11]) Let f € C™ ' ([a,b],X), f™ € Ly ([a,b], X), m = [a],
a >0 and

Dy _f(2) = o —— / P (C— et fm () dg, (60)

for all x,xzo € [a,b] : xo > x.
Then Dg,_f (x) is continuous in xg.

Corollary 1. (/11]) Let f € C™ ([a,b],X), m = [a], a > 0, z,z9 € [a,b]. Then
Dg, f(x), Dg,_f (x) are jointly continuous functions in (x, o) from [a, b)? into

X, X is a Banach space.
We need

Theorem 11. ([11]) Let f : [a, b]2 — X be jointly continuous, X is a Banach
space. Consider

G(x) = w1 (f ('737)757 [:E,b]), (61)

d>0, z€[ab].
Then G is continuous on [a,b].

Theorem 12. ([11]) Let f : [a,b]*> — X be jointly continuous, X is a Banach
space. Then

H (l’) = w1 (f ('a .T) 0, [a’ ‘TD ) (62)

x € [a,b], is continuous in x € [a,b], 6 > 0.
We make

Remark 3. ([11]) Let f € C" ' ([a,b]), f™ € Lo ([a,b]), n=[v], v >0, v ¢ N.

Then

17 2. a0
F'n—v+1)

1D f ()] < (x—a)"", Vzelab. (63)
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Thus we observe

w1 (Diof,6) = sup [|DL,f(z) = Dif(y) < (64)
z,y€(a,b]
lz—y|<8

i HfUUHLK4m@yX)($__(an_+ Hf“ﬂHLx(m@LX)(y__a)nu
ewelos] \ T(n—v+1) T(n—v+1)

lz—y|<8

21 £n)
21
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Consequently

2017 )
F'n—v+1)

Similarly, let f € C™ 1 ([a,b]), f™ € Lo ([a,D]), m = [a], @ >0, a ¢ N, then

(D:a ’ 5) < (b - a’)nill : (65)

2[/ N g o)

wi (Dy-1.0) < F'm—a+1)

(b— )™, (66)
So for f € C™ 1 ([a,b)), f™ € Ly ([a,b]), m = [a], a >0, a ¢ N, we find

A PR
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zoseu[g),b]wl (Do f ) [wo.b] = 'm—-—a+1) o= 0
and H ( )H
2 f m “
Sup wi ( fa ) a;to] = Loo(lad]. %) (b— a)m—a ) (68)

zo€la,b] r (m —a+ 1)

By [12] we get that D¢, f € C ([wo,b], X), and by [10] we obtain that Dg _f €
C([a7x0] ’X) :

We present the following X-valued fractional approximation result by neural
networks.

Theorem 13. Let a > 0, N = [a], a ¢ N, f € CN ([a,b],X), 0 < B < 1,
r € [a,b], n € N:nl=™ > 2. Then

i)
N=1 ,(;
f(J) T j
L -3 A0 (=2 (@) - 1 @) <
w Da f +w l)gﬂﬁf’nL x
K(Q)F(al—i—l){( 1 ( ), ol 1 ( 7), ,b})+
YA (D2 | g (@ = @ + 1D f e oy B =2)) b, (69)
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i) if fO) (x) =0, forj=1,...,N —1, we have

1

1L (f.2) = f @)l < K (@) 55y

Y R G

noB
YA (D8 S| g (8= @+ 1D ooy (= 2)*) }, - (70)
iii)
|Ln (f,2) — f ()] < K(q)-
N=1 1 £(j) .
72 )l f ’ {éj +(b—a) VAA(”I"”)} +
J=1 !
1 (W1 (foffa n%e)[a,m] +wy (Da £, )[fr b})
T(a+1) ne? "
A2 (DS | oy (@ = @+ ID% Sl gy B =) ) ) (T)
V x € [a,b]
and
iv)
[Lnf = flloo < K ()
N=1 || ¢(j
9l {1 et
j=1 J! {nﬂy +(b—a)vA ( )}+
1 (mil[lapb]W1 (D - nﬂ)[a 7] - msel[la{)b]wl (D*al"f’ nlﬁ)[x,b]>
I'(a+1) ne? "

e T Y T IR ) L

Above, when N =1 the sum Zj\f:—ll -=0.
As we see here we obtain X -valued fractionally type pointwise and uniform
convergence with rates of L, — I the unit operator, as n — oo.

Proof. Tt is very lengthy and very similar to [15]. As such it is omitted. O

Next we apply Theorem 13 for N = 1.
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Theorem 14. Let 0 < o, < 1, f € C' ([a,b],X), € [a,b], n € N:n'78 > 2,

Then

i)
[Ln (f, ) = £ ()] <

' {(wl (Dg s %)y + 1 (DS 5) ) .

Ka) I'(a+1) noB

YA (D2 ||y (@ @ + 1D S oy 0= %) o (73)

and
i)
1
[ Lnf — flloo < K (q) Tatl)

( sup wi (D, 55) 0 TSP w1 (DSf, 55)), b1>
z€a,b] ’ z€la,b] 7
nob

_.|_

z€|a,b] e z€[a,b]

When o = % we derive
Corollary 2. Let 0 < 8 < 1, f € C'([a,b],X), € [a,b], n € N: n'=F > 2,

Then

i)
[Ln (f,2) = f (@) <

1 1
(wl <Dq;2—f7nlﬁ> +w1 <-D>Em 7n1,8> >
2K (q) [a,2] [,b]

VT n

_|_

' = x)) } (75)
00,[z,b]

@

_ 1 1
Y A=A =2) () D;_fH (z —a)+ Hp*zxf
00,[a,z]

and
2K (q)
_ < 2\
IZaf = flle < 2
1 1
sup wi (Djf, nlﬁ> + sup w; (Dfxfa nl@>
z€[a,b] [a,]  x€a,b] [x,b]
3 +
n2
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e
00,|z,b]

(76)

1
D f

vV (b— a)wAf)‘("liﬁﬂ) ( sup

z€[a,b]

1
Dij + sup
o0

7[(173;] J?E[a,b}

We make

Remark 4. Some convergence analysis follows based on Corollary 2.
Let 0 < B <1, f € C([a,b],X), z € [a,b], n € N:n'"8 > 2. We elaborate
on (76). Assume that

1 1 R
w1 <Da2;—f7 > < R (77)
") 0w~ 7
and
w (D5 f 1 > < 2 (78)
1 *xJy 3 >~ ~ 2
)y~ 1

V z € la,b], V n €N, where Ry, Ry > 0.
Then it holds

1 1
[ sup wi <Dj_f, n1ﬂ> + sup wy <D>E.'Efv n15> ]
z€[a,b] [a,]  x€ab] [x,b] <

B -~
nz
(R1+R2)
o (R1+ Ry) R
5 38 = T35 (79)
n2 n2 n2

where R := R1 + Ry > 0.

The other summand of the right hand side of (76), for large enough n, con-
verges to zero at the speed Af)‘(nliﬁd), so it is about LAf’\("kB*Z), where L > 0
18 a constant.

Then, for large enoughn € N, by (76), (79) and the above comment, we obtain
that "

[Lnf = flloo < =25 (80)
n 2

where M > 0, converging to zero at the high speed of iﬁ'

2
In Theorem 5, for f € C([a,b],X) and for largg enough n € N, the speed
is n%. So by (80), || Lnf — fll,, converges much faster to zero. The last comes
because we assumed differentiability of f. Notice that in Corollary 2 no initial

condition is assumed.
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