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Abstract

We deal here with the (p, g)-variant of the Post-Widder operators of semi-
exponential type. By using the basic properties of post-quantum properties,
we calculate the moments of these operators and obtain some direct findings
for such (p, ¢)-semi-exponential Post-Widder operators.
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1 (p,q)-Variant of Post-Widder operators

Professor Radu Paltanea is a renowned researcher in the area of approxima-
tion theory concerning linear positive operators and has produced excellent work
on a variety of operators. The papers [13], [14] and [15] contain examples of
his work. In [13], the author has dealt with the approximation properties of a
modified family of Szdsz-Mirakjan operators. In the study [14], the author has
generated a generic weighted modulus from a class of “admissible” functions and
obtained an estimate relevant to general positive linear operators. Also discussed
in [15] are the shape-preserving property and the simultaneous approximation by
a sequences of Durrmeyer type modifications of Szasz-Mirakjan operators with a
parameter.
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Tyliba and Wachnicki [16] first generalized the exponential-type operators
given in [11], and they captured the semi-exponential Szdsz-Mirakyan and Gauss-
Weierstrass operators. Very recently, Monika Herzog [10] captured one more semi-
exponential type operators namely Post-Widder operators, which for x € NU{0}
and ¢ € N is defined as follows:
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The below mentioned partial differential equation is satisfied by the kernel:
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This prerequisite must be met for an operator to be of the semi-exponential type.
Further, for 8 = 0, the PDE (2) for kernel reduces to the condition of exponential
type operators and (1) becomes the Post-Widder operators [11, (3.9)] defined by
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Its not obvious to introduce the semi-exponential type operators from existing
exponential-type operators. Recently Abel et al [1] captured and provided all
possible semi-exponential type operators.

In order to investigate the extension of quantum calculus, Acar [2] introduced
(p, q)-Szasz-Mirakyan operators. Recently, (p, ¢)-Szdsz-Durrmeyer operators were
introduced by Aral and Gupta [3], who also established some direct results. In [8]
and [12], authors also looked into Durrmeyer-style alterations to the Bernstein op-
erators. The (p, q)- Szész-Baskakov operators were recently introduced by Gupta
[7], who also produced some direct findings. [6] defined the Kantorovich varia-
tion of the (p, ¢)-Baskakov operators. Certain basic properties of (p,q) calculus
is discussed in [9]. The following list includes some fundamental (p, q)-calculus
notations, where 0 < g <p <1:
The (p, g)-numbers are expressed as
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The definition of (p, q)-factorial
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represents the (p, ¢)-binomial coefficient. The (p, ¢)-variants of exponential func-
tions, i.e. e, 4(z) and E, 4(x) are given as
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It is evident that functions
epq (%) Epgq(—z) =1.
For any ¢ € N, we suggest (p, ¢)-Gamma function as
> 1)(s—2)/2,5—1
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It can be seen that 'y, (¢ +1) = ¢ € N.
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Let 0 < g < p < 1, then (p,q)-Semi exponential Post-Widder operators can
be defined as:
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For p = ¢ = 1, we immediately get the semi-exponential Post-Widder operators

(1).

2 Moment estimation

Lemma 1. Forz € [0,00), 0 < ¢ < p <1, the following holds:
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Proof. By (p, q)-Gamma function (4), we have
= 7 (50)
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Lemma 2. If the m-th order central moment is denoted by i, B2 () = (PPP9(eq—
xeg)™)(z), then
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3 Direct estimates

Let’s use the symbol H,4 [0, co) to represent the collection of all functions f
defined on the positive real axis that meet the statement |f (z)| < Kgy (14 z%),
where K, is an absolute constant dependent on f. The subspace of continuous
functions that are a part of H, 4 [0, 00) is referred to as Cy4 [0, 00) . Additionally, let

C7, [0, 00) be the subspace of all functions f € C4 [0, 00) , for which lim,) ﬁ—?l
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has finite value. The norm of the class C74 [0, c0) is

Wl = sup L@

z€[0, o0) 1+ a4

The weighted approximation theorem, which holds that the the approximation
formula is accurate along the positive real axis, is covered below (refer [5]).

Theorem 1. Assume p = p. and q = qc satisfy the conditions 0 < q. < pc < 1
and for sufficiently large <, ¢¢ — a, p; — b and p; — 1, qc — 1. For each
f€C%4 0, 00), we have
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Proof. 1t is enough to confirm the following three requirements using Korovkin’s
theorem:

lim [[(RErsees) —e,

L =0r=012 (5)

For v = 0, the first condition of the above equality is satisfied since (Pg'g Pleg)(z) =
1.

Now, for ¢ € N, we have
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which implies that for v = 1,2
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Thus the proof is completed. O
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Let a function g € C'[0, o), then g is considered to meet Lipschitz condition
Lip,in I, n € (0, 1], I C [0, oo) provided
9 (t) =g ()] < Kgp|t —af”, zel, tel0, oo,
where K, is a constant that depends on 7 and g.

Theorem 2. Let g € Lip, on I C [0, c0) and n € (0, 1], then

(2295)(0) - gta)| < Ko (4287))" 2w 1))

where the distance between x and I is shown by the expression d(x,I).

Proof. Let I represent the set I's closure. Then, for xy € I, where z is the closest
point of I from z and z € [0, oo), we have

lg (1) — g (@)] < g (x0) —g ()| + |9 () — g (z0)|, tE€[0, 00).

By definition of Lipschitz class, we get
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As (PP is monotone
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Then, using Holder’s inequality with p := "

and % =1- }%, we are led to
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Using (6), (7) and Lemma 2, we immediately get the desired result. O

Theorem 3. Let f € Cp[0,00), the class of continuous and bounded functions
defined on RT U {0} and 0 < g < p < 1. Then for all natural numbers s and
x € RTU{0}, the absolute constant C' > 0 exists in such a way that

| <P§57P7Qf) (z) — f(z)| <w (f, ]uffq(:r)o + Cwy <f, \/ufjé”q(x) + (ufjf’q(w)f) .

Proof. Let h € W2 = {h € Cg[0,00) : ', " € Cg[0,00)} Using Taylor’s formula,
we get
¢
() = (o) + B (@)t~ 2) + [ (= wh"(wdu, (8)
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where z,t € [0,00). Consider the following operator:

q7<6x2p§+1
[Slp.q
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Applying the operators P27 on (8), we get

<I5f’p7qh> (x) —h(x) = K () <Pf’p’q(t — x)) (x)+

+ (Pfyp’q < /x t(t — u)h"(u)du)) (z).
) (2) +

Therefore
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where norm-||.|| is the supremum norm. Therefore

[(PP79f) (@) = F@) < | (PEP9(f = h) (2) = ( = W) (@) | +
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2
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Finally taking the infimum over all h € W2 and using the Peetre’s K-functional:

) - f@

q7§6$2p<+1

*“(ﬁkfﬁp‘”x+ Klra

Ko (f,6) = inf[{|lf — hl[ +8|lR7[| : h € WL}

Then apply the inequality K(f,8) < Cwy(f,6Y2),6 > 0 (see [4, pp. 177]), the
required result follows.
O
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