(p, q)-POST-WIDDER OPERATORS OF SEMI EXPONENTIAL TYPE

Gunjan AGRAWAL ${ }^{*, 1}$ and Vijay GUPTA ${ }^{2}$
Dedicated to Professor Radu Păltănea on the occasion of his 70th anniversary

Abstract

We deal here with the (p, q)-variant of the Post-Widder operators of semiexponential type. By using the basic properties of post-quantum properties, we calculate the moments of these operators and obtain some direct findings for such (p, q)-semi-exponential Post-Widder operators.

2000 Mathematics Subject Classification: 41A25, 41A30 .
Key words: (p, q)-Semi-exponential type Post-Widder operators, moments, direct results, Lipschitz condition

1 (p, q)-Variant of Post-Widder operators

Professor Radu Pǎltannea is a renowned researcher in the area of approximation theory concerning linear positive operators and has produced excellent work on a variety of operators. The papers [13], [14] and [15] contain examples of his work. In [13], the author has dealt with the approximation properties of a modified family of Szász-Mirakjan operators. In the study [14], the author has generated a generic weighted modulus from a class of "admissible" functions and obtained an estimate relevant to general positive linear operators. Also discussed in [15] are the shape-preserving property and the simultaneous approximation by a sequences of Durrmeyer type modifications of Szász-Mirakjan operators with a parameter.

[^0]Tyliba and Wachnicki [16] first generalized the exponential-type operators given in [11], and they captured the semi-exponential Szász-Mirakyan and GaussWeierstrass operators. Very recently, Monika Herzog [10] captured one more semiexponential type operators namely Post-Widder operators, which for $x \in \mathbf{N} \cup\{0\}$ and $\varsigma \in \mathbf{N}$ is defined as follows:

$$
\begin{align*}
\left(P_{\varsigma}^{\beta} f\right)(x) & =\frac{\varsigma^{\varsigma}}{x^{\varsigma} e^{\beta x}} \sum_{l=0}^{\infty} \frac{(\varsigma \beta)^{l}}{l!\Gamma(l+\varsigma)} \int_{0}^{\infty} e^{-\varsigma \tau / x} \tau^{l+\varsigma-1} f(\tau) d \tau \tag{1}\\
& =: \int_{0}^{\infty} k_{\varsigma}^{\beta}(x, \tau) f(\tau) d \tau .
\end{align*}
$$

The below mentioned partial differential equation is satisfied by the kernel:

$$
\begin{equation*}
\frac{\partial}{\partial x} k_{\varsigma}^{\beta}(x, \tau)=\left[\frac{-\varsigma(x-\tau)}{x^{2}}-\beta\right] k_{\varsigma}^{\beta}(x, \tau) \tag{2}
\end{equation*}
$$

This prerequisite must be met for an operator to be of the semi-exponential type. Further, for $\beta=0$, the $\operatorname{PDE}(2)$ for kernel reduces to the condition of exponential type operators and (1) becomes the Post-Widder operators [11, (3.9)] defined by

$$
\begin{equation*}
\left(P_{\varsigma} f\right)(x)=\frac{\varsigma^{\varsigma}}{x^{\varsigma}} \frac{1}{\Gamma(\varsigma)} \int_{0}^{\infty} e^{-\varsigma \tau / x} \tau^{\varsigma-1} f(\tau) d \tau . \tag{3}
\end{equation*}
$$

Its not obvious to introduce the semi-exponential type operators from existing exponential-type operators. Recently Abel et al [1] captured and provided all possible semi-exponential type operators.

In order to investigate the extension of quantum calculus, Acar [2] introduced (p, q)-Szász-Mirakyan operators. Recently, (p, q)-Szász-Durrmeyer operators were introduced by Aral and Gupta [3], who also established some direct results. In [8] and [12], authors also looked into Durrmeyer-style alterations to the Bernstein operators. The (p, q) - Szász-Baskakov operators were recently introduced by Gupta [7], who also produced some direct findings. [6] defined the Kantorovich variation of the (p, q)-Baskakov operators. Certain basic properties of (p, q) calculus is discussed in [9]. The following list includes some fundamental (p, q)-calculus notations, where $0<q<p \leq 1$:
The (p, q)-numbers are expressed as

$$
[\varsigma]_{p, q}=\frac{p^{\varsigma}-q^{\varsigma}}{p-q} .
$$

It is obvious to observe that $[\varsigma]_{p, q}=p^{\varsigma-1}[\varsigma]_{q / p}$. The definition of (p, q)-factorial is

$$
[\varsigma]_{p, q}!=\prod_{l=1}^{\varsigma}[l]_{p, q}, \varsigma \geq 1, \quad[0]_{p, q}!=1
$$

$$
\left[\begin{array}{c}
\varsigma \\
l
\end{array}\right]_{p, q}=\frac{[\varsigma]_{p, q}!}{[\varsigma-l]_{p, q}![l]_{p, q}!}, \quad 0 \leq l \leq \varsigma
$$

represents the (p, q)-binomial coefficient. The (p, q)-variants of exponential functions, i.e. $e_{p, q}(x)$ and $E_{p, q}(x)$ are given as

$$
e_{p, q}(x)=\sum_{i=0}^{\infty} \frac{p^{i(i-1) / 2}}{[i]_{p, q}!} x^{i} \text { and } E_{p, q}(x)=\sum_{j=0}^{\infty} \frac{q^{j(j-1) / 2}}{[j]_{p, q}!} x^{j}
$$

It is evident that functions

$$
e_{p, q}(x) E_{p, q}(-x)=1
$$

For any $\varsigma \in \mathbf{N}$, we suggest (p, q)-Gamma function as

$$
\begin{equation*}
\Gamma_{p, q}(\varsigma)=\int_{0}^{\infty} p^{(\varsigma-1)(\varsigma-2) / 2} x^{\varsigma-1} E_{p, q}(-q x) d_{p, q} x \tag{4}
\end{equation*}
$$

It can be seen that $\Gamma_{p, q}(\varsigma+1)=[\varsigma]_{p, q}!, \quad \varsigma \in \mathbf{N}$.
Let $0<q<p \leq 1$, then (p, q)-Semi exponential Post-Widder operators can be defined as:

$$
\begin{aligned}
& \left(P_{\varsigma}^{\beta, p, q} f\right)(x)=\frac{[\varsigma]_{p, q}}{E_{p, q}(\beta x)} \sum_{l=0}^{\infty} \frac{q^{l(l-1) / 2}(\beta x]_{p, q}^{l} \Gamma_{p, q}(\varsigma+l)}{[\varsigma} \times \\
& \quad \times \int_{0}^{\infty} p^{(\varsigma+l-1)(l+\varsigma-2) / 2} E_{p, q}\left(-q[\varsigma]_{p, q} u\right)\left([\varsigma]_{p, q} u\right)^{l+\varsigma-1} f\left(x u q^{1-\varsigma-l} p^{\varsigma+l}\right) d_{p, q} u
\end{aligned}
$$

For $p=q=1$, we immediately get the semi-exponential Post-Widder operators (1).

2 Moment estimation

Lemma 1. For $x \in[0, \infty), 0<q<p \leq 1$, the following holds:

$$
\begin{aligned}
\left(P_{\varsigma}^{\beta, p, q} e_{0}\right)(x)= & 1 \\
\left(P_{\varsigma}^{\beta, p, q} e_{1}\right)(x)= & q^{1-\varsigma} p x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q}} \\
\left(P_{\varsigma}^{\beta, p, q} e_{2}\right)(x)= & q^{(3-2 \varsigma)} p x^{2}+\frac{1}{[\varsigma]_{p, q}}\left(q^{2(1-\varsigma)} x^{2} p^{\varsigma+1}+\beta x^{3} p^{\varsigma+1} q^{-2 \varsigma+1}(p+q)\right) \\
& +\frac{1}{[\varsigma]_{p, q}^{2}}\left(\beta x^{3} p^{\varsigma+1} q^{-2 \varsigma}(p+q)+\beta^{2} x^{4} q^{-2 \varsigma-1} p^{2 \varsigma+3}\right) .
\end{aligned}
$$

Proof. By (p, q)-Gamma function (4), we have

$$
\begin{aligned}
\left(P_{\varsigma}^{\beta, p, q} e_{0}\right)(x)= & \frac{[\varsigma]_{p, q}}{E_{p, q}(\beta x)} \sum_{l=0}^{\infty} \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!\Gamma_{p, q}(\varsigma+l)} \\
& \int_{0}^{\infty} p^{(l+\varsigma-1)(l+\varsigma-2) / 2} E_{p, q}\left(-q[\varsigma]_{p, q} u\right)\left([\varsigma]_{p, q} u\right)^{l+\varsigma-1} d_{p, q} u \\
= & \frac{1}{E_{p, q}(\beta x)} E_{p, q}(\beta x)=1
\end{aligned}
$$

and by $[\varsigma+l]_{p, q}=q^{l}[\varsigma]_{p, q}+p^{\varsigma}[l]_{p, q}$, we get

$$
\begin{aligned}
&\left(P_{\varsigma}^{\beta, p, q} e_{1}\right)(x)=\frac{[\varsigma]_{p, q}}{E_{p, q}(\beta x)} \sum_{l=0}^{\infty} \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!\Gamma_{p, q}(\varsigma+l)} \times \\
& \times \int_{0}^{\infty} p^{(l+\varsigma-1)(l+\varsigma-2) / 2} E_{p, q}\left(-q[\varsigma]_{p, q} u\right)\left([\varsigma]_{p, q} u\right)^{l+\varsigma-1} x u q^{1-\varsigma-l} p^{\varsigma+l} d_{p, q} u \\
&=\frac{x[\varsigma]_{p, q}}{[\varsigma]_{p, q} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{1-\varsigma-l} p \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!\Gamma_{p, q}(\varsigma+l)} \\
& \int_{0}^{\infty} p^{(\varsigma+l)(l+\varsigma-1) / 2} E_{p, q}\left(-q[\varsigma]_{p, q} u\right)\left([\varsigma]_{p, q} u\right)^{\varsigma+l} d_{p, q} u \\
&=\frac{x}{[\varsigma]_{p, q} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{1-\varsigma-l} p \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!\Gamma_{p, q}(\varsigma+l)} \Gamma_{p, q}(l+\varsigma+1) \\
&=\frac{x}{[\varsigma]_{p, q} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{1-\varsigma-l} p \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!}[\varsigma+l]_{p, q} \\
&=\frac{x}{[\varsigma]_{p, q} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{1-\varsigma-l} p \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!}\left(q^{l}[\varsigma]_{p, q}+p^{\varsigma}[l]_{p, q}\right) \\
&=q^{1-\varsigma} p x+\frac{\beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{-\varsigma-l} \frac{q^{l(l+1) / 2}(\beta x)^{l}}{[l]_{p, q}!} \\
&=q^{1-\varsigma} p x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q}}
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(P_{\varsigma}^{\beta, p, q} e_{2}\right)(x)= \frac{[\varsigma]_{p, q}}{E_{p, q}(\beta x)} \sum_{l=0}^{\infty} \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!\Gamma_{p, q}(\varsigma+l)} \times \\
& \times \int_{0}^{\infty} p^{(\varsigma+l-1)(l+\varsigma-2) / 2} E_{p, q}\left(-q[\varsigma]_{p, q} u\right)\left([\varsigma]_{p, q} u\right)^{l+\varsigma-1} x^{2} u^{2} q^{2(1-\varsigma-l)} p^{2(\varsigma+l)} d_{p, q} u \\
&= \frac{x^{2}[\varsigma]_{p, q}}{[\varsigma]_{p, q}^{2} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{2(1-\varsigma-l)} p \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!\Gamma_{p, q}(\varsigma+l)} \\
& \int_{0}^{\infty} p^{(l+\varsigma+1)(\varsigma+l) / 2} E_{p, q}\left(-q[\varsigma]_{p, q} u\right)\left([\varsigma]_{p, q} u\right)^{l+\varsigma+1} d_{p, q} u
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{x^{2}}{[\varsigma]_{p, q}^{2} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{2(1-\varsigma-l)} p \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!\Gamma_{p, q}(\varsigma+l)} \Gamma_{p, q}(l+\varsigma+2) \\
= & \frac{x^{2}}{[\varsigma]_{p, q}^{2} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{2(1-\varsigma-l)} p \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!}[l+\varsigma+1]_{p, q}[\varsigma+l]_{p, q} \\
= & \frac{x^{2}}{[\varsigma]_{p, q}^{2} E_{p, q}(\beta x)} \sum_{l=0}^{\infty} q^{2(1-\varsigma-l)} p \frac{q^{l(l-1) / 2}(\beta x)^{l}}{[l]_{p, q}!} \\
& {\left[q^{2 l}[\varsigma+1]_{p, q}[\varsigma]_{p, q}+p^{\varsigma} q^{l}[l]_{p, q}\left(p[\varsigma]_{p, q}+[\varsigma+1]_{p, q}+\frac{p^{\varsigma+1}}{q}\right)\right.} \\
& \left.+p^{2 \varsigma+2}[l]_{p, q}[l-1]_{p, q}\right] \\
= & \frac{[\varsigma+1]_{p, q}[\varsigma]_{p, q} x^{2}}{[\varsigma]_{p, q}^{2}} q^{2(1-\varsigma)} p+\frac{\beta x^{3} p^{\varsigma+1} q^{-2 \varsigma}}{[\varsigma]_{p, q}^{2}}\left(p q[\varsigma]_{p, q}+q[\varsigma+1]_{p, q}+p^{\varsigma+1}\right) \\
& +\frac{\beta^{2} x^{4} q^{-2 \varsigma-1} p^{2 \varsigma+3}}{[\varsigma]_{p, q}^{2}} \\
= & q^{(3-2 \varsigma)} p x^{2}+\frac{1}{[\varsigma]_{p, q}}\left(q^{2(1-\varsigma)} x^{2} p^{\varsigma+1}+\beta x^{3} p^{\varsigma+1} q^{-2 \varsigma+1}(p+q)\right) \\
& +\frac{1}{[\varsigma]_{p, q}^{2}}\left(\beta x^{3} p^{\varsigma+1} q^{-2 \varsigma}(p+q)+\beta^{2} x^{4} q^{-2 \varsigma-1} p^{2 \varsigma+3}\right)
\end{aligned}
$$

Lemma 2. If the m-th order central moment is denoted by $\mu_{\varsigma, m}^{\beta, p, q}(x)=\left(P_{\varsigma}^{\beta, p, q}\left(e_{1}-\right.\right.$ $\left.\left.x e_{0}\right)^{m}\right)(x)$, then

$$
\begin{aligned}
\mu_{\varsigma, 0}^{\beta, p, q}(x)= & 1 \\
\mu_{\varsigma, 1}^{\beta, p, q}(x)= & \left(q^{1-\varsigma} p-1\right) x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q}} \\
\mu_{\varsigma, 2}^{\beta, p, q}(x)= & x^{2}\left(q^{3-2 \varsigma} p-2 q^{1-\varsigma}+3\right)+\frac{x^{2} p^{\varsigma+1} q^{-\varsigma}}{[\varsigma]_{p, q}}\left(q^{2-\varsigma}+\beta x q^{-\varsigma+1}(p+q)-2 x \beta\right) \\
& +\frac{\beta x^{3} p^{2 \varsigma+1} q^{-2 \varsigma}}{[\varsigma]_{p, q}^{2}}\left(q+p+\beta x q^{-1} p^{2}\right)
\end{aligned}
$$

3 Direct estimates

Let's use the symbol $H_{x^{4}}[0, \infty)$ to represent the collection of all functions f defined on the positive real axis that meet the statement $|f(x)| \leq K_{g \eta}\left(1+x^{4}\right)$, where $K_{g \eta}$ is an absolute constant dependent on f. The subspace of continuous functions that are a part of $H_{x^{4}}[0, \infty)$ is referred to as $C_{x^{4}}[0, \infty)$. Additionally, let $C_{x^{4}}^{*}[0, \infty)$ be the subspace of all functions $f \in C_{x^{4}}[0, \infty)$, for which $\lim _{|x| \rightarrow \infty} \frac{f(x)}{1+x^{4}}$
has finite value. The norm of the class $C_{x^{4}}^{*}[0, \infty)$ is

$$
\|f\|_{x^{4}}=\sup _{x \in[0, \infty)} \frac{|f(x)|}{1+x^{4}} .
$$

The weighted approximation theorem, which holds that the the approximation formula is accurate along the positive real axis, is covered below (refer [5]).

Theorem 1. Assume $p=p_{\varsigma}$ and $q=q_{\varsigma}$ satisfy the conditions $0<q_{\varsigma}<p_{\varsigma} \leq 1$ and for sufficiently large $\varsigma, q_{\varsigma}^{\varsigma} \rightarrow a, p_{\varsigma}^{\varsigma} \rightarrow b$ and $p_{\varsigma} \rightarrow 1, q_{\varsigma} \rightarrow 1$. For each $f \in C_{x^{4}}^{*}[0, \infty)$, we have

$$
\lim _{\varsigma \rightarrow \infty}\left\|\left(P_{\varsigma}^{\beta, p_{\varsigma}, q_{\varsigma}} f\right)-f\right\|_{x^{4}}=0 .
$$

Proof. It is enough to confirm the following three requirements using Korovkin's theorem:

$$
\begin{equation*}
\lim _{\varsigma \rightarrow \infty}\left\|\left(P_{\varsigma}^{\beta, p_{\varsigma}, q_{\varsigma}} e_{\nu}\right)-e_{\nu}\right\|_{x^{4}}=0, \nu=0,1,2 \tag{5}
\end{equation*}
$$

For $\nu=0$, the first condition of the above equality is satisfied since $\left(P_{\varsigma}^{\beta, p, q} e_{0}\right)(x)=$ 1.

Now, for $\varsigma \in \mathbf{N}$, we have

$$
\begin{aligned}
\left\|\left(P_{\varsigma}^{\beta, p_{\varsigma}, q_{\varsigma}} e_{1}\right)-e_{1}\right\|_{x^{4}} \leq & \left(q_{\varsigma}^{1-\varsigma} p_{\varsigma}-1\right) \sup _{x \in[0, \infty)} \frac{x}{1+x^{4}} \\
& +\frac{q_{\varsigma}^{-\varsigma} \beta p_{\varsigma}^{\varsigma+1}}{[\varsigma]_{p_{\varsigma}, q_{\varsigma}}} \sup _{x \in[0, \infty)} \frac{x^{2}}{1+x^{4}}
\end{aligned}
$$

and

$$
\begin{aligned}
\|\left(P_{\varsigma}^{\beta, p_{\varsigma}, q_{\varsigma}} e_{2}\right) & -e_{2} \|_{x^{4}} \leq\left(\frac{[\varsigma+1]_{p_{\varsigma}, q_{\varsigma}}[\varsigma]_{p_{\varsigma}, q_{\varsigma}}}{[\varsigma]_{p_{\varsigma}, q_{\varsigma}}^{2}} q_{\varsigma}^{2(1-\varsigma)} p_{\varsigma}-1\right) \sup _{x \in[0, \infty)} \frac{x^{2}}{1+x^{4}} \\
& +\frac{\beta p_{\varsigma}^{\varsigma+1} q_{\varsigma}^{-2 \varsigma}}{[\varsigma]_{p_{\varsigma}, q_{\varsigma}}^{2}}\left(q_{\varsigma}[\varsigma+1]_{p_{\varsigma}, q_{\varsigma}}+p_{\varsigma} q_{\varsigma}[\varsigma]_{p_{\varsigma}, q_{\varsigma}}+p_{\varsigma}^{\varsigma+1}\right) \sup _{x \in[0, \infty)} \frac{x^{3}}{1+x^{4}} \\
& +\frac{\beta^{2} q_{\varsigma}^{-2 \varsigma-1} p_{\varsigma}^{2 \varsigma+3}}{[\varsigma]_{p_{\varsigma}, q_{\varsigma}}^{2}} \sup _{x \in[0, \infty)} \frac{x^{4}}{1+x^{4}},
\end{aligned}
$$

which implies that for $v=1,2$

$$
\lim _{\varsigma \rightarrow \infty}\left\|\left(P_{\varsigma}^{\beta, p_{\varsigma}, q_{\varsigma}} e_{\nu}\right)-e_{\nu}\right\|_{x^{4}}=0
$$

Thus the proof is completed.

Let a function $g \in C[0, \infty)$, then g is considered to meet Lipschitz condition $L i p_{\eta}$ in $I, \eta \in(0,1], I \subset[0, \infty)$ provided

$$
|g(t)-g(x)| \leq K_{g \eta}|t-x|^{\eta}, \quad x \in I, \quad t \in[0, \infty),
$$

where $K_{g \eta}$ is a constant that depends on η and g.
Theorem 2. Let $g \in \operatorname{Lip} \eta$ on $I \subset[0, \infty)$ and $\eta \in(0,1]$, then

$$
\left|\left(P_{\varsigma}^{\beta, p, q} g\right)(x)-g(x)\right| \leq K_{g \eta}\left(\left(\mu_{\varsigma, 2}^{\beta, p, q}(x)\right)^{\frac{\eta}{2}}+2(d(x, I))^{\eta}\right)
$$

where the distance between x and I is shown by the expression $d(x, I)$.
Proof. Let \bar{I} represent the set $I^{\prime} s$ closure. Then, for $x_{0} \in \bar{I}$, where x_{0} is the closest point of \bar{I} from x and $x \in[0, \infty)$, we have

$$
|g(t)-g(x)| \leq\left|g\left(x_{0}\right)-g(x)\right|+\left|g(t)-g\left(x_{0}\right)\right|, \quad t \in[0, \infty) .
$$

By definition of Lipschitz class, we get

$$
\begin{align*}
\left|\left(P_{\varsigma}^{\beta, p, q} g\right)(x)-g(x)\right| & \left.\leq\left|g\left(x_{0}\right)-g(x)\right|+\left(P_{\varsigma}^{\beta, p, q} \mid g(t)\right)-g\left(x_{0}\right) \mid\right)(x) \\
& \leq K_{g \eta}\left|x_{0}-x\right|^{\eta}+K_{g \eta}\left(P_{\varsigma}^{\beta, p, q}\left|t-x_{0}\right|^{\eta}\right)(x) . \tag{6}
\end{align*}
$$

As $\left(P_{\varsigma}^{\beta, p, q}\right)$ is monotone

$$
\left(P_{\varsigma}^{\beta, p, q}\left|t-x_{0}\right|^{\eta}\right)(x) \leq\left|x_{0}-x\right|^{\eta}+\left(\left(P_{\varsigma}^{\beta, p, q}|t-x|^{2}\right)(x)\right)^{\frac{\eta}{2}}
$$

Then, using Hölder's inequality with $p:=\frac{2}{\eta}$ and $\frac{1}{r}:=1-\frac{1}{p}$, we are led to

$$
\begin{equation*}
\left(P_{\varsigma}^{\beta, p, q}|t-x|^{\eta}\right)(x) \leq\left(\left(P_{\varsigma}^{\beta, p, q} e_{0}\right)(x)\right)^{1-\frac{\eta}{2}}\left(\left(P_{\varsigma}^{\beta, p, q}|t-x|^{2}\right)(x)\right)^{\frac{\eta}{2}} . \tag{7}
\end{equation*}
$$

Using (6), (7) and Lemma 2, we immediately get the desired result.
Theorem 3. Let $f \in C_{B}[0, \infty)$, the class of continuous and bounded functions defined on $R^{+} \cup\{0\}$ and $0<q<p \leq 1$. Then for all natural numbers ς and $x \in R^{+} \cup\{0\}$, the absolute constant $C>0$ exists in such a way that

$$
\left|\left(P_{\varsigma}^{\beta, p, q} f\right)(x)-f(x)\right| \leq \omega\left(f,\left|\mu_{\varsigma}^{\beta, p, q}(x)\right|\right)+C \omega_{2}\left(f, \sqrt{\mu_{\mathrm{\varsigma}, 2}^{\beta, p, q}(x)+\left(\mu_{\mathrm{\varsigma}, 1}^{\beta, p, q}(x)\right)^{2}}\right) .
$$

Proof. Let $h \in W_{\infty}^{2}=\left\{h \in C_{B}[0, \infty): h^{\prime}, h^{\prime \prime} \in C_{B}[0, \infty)\right\}$ Using Taylor's formula, we get

$$
\begin{equation*}
h(t)=h(x)+h^{\prime}(x)(t-x)+\int_{x}^{t}(t-u) h^{\prime \prime}(u) d u \tag{8}
\end{equation*}
$$

where $x, t \in[0, \infty)$. Consider the following operator:

$$
\begin{equation*}
\left(\check{P}_{\varsigma}^{\beta, p, q} f\right)(x)=\left(P_{\varsigma}^{\beta, p, q} f\right)(x)-f\left(q^{1-\varsigma} p x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q}}\right)+f(x) . \tag{9}
\end{equation*}
$$

Applying the operators $\check{P}_{S}^{\beta, p, q}$ on (8), we get

$$
\begin{aligned}
\left(\check{P}_{\varsigma}^{\beta, p, q} h\right)(x)-h(x)= & h^{\prime}(x)\left(\check{P}_{\varsigma}^{\beta, p, q}(t-x)\right)(x)+ \\
& +\left(\check{P}_{\varsigma}^{\beta, p, q}\left(\int_{x}^{t}(t-u) h^{\prime \prime}(u) d u\right)\right)(x) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mid\left(\check{P}_{\varsigma}^{\beta, p, q} h\right)(x)- & h(x) \mid \leq\left(P_{\varsigma}^{\beta, p, q}\left|\int_{x}^{t}\right| t-u| | h^{\prime \prime}(u)|d u|\right)(x)+ \\
& +\left|\int_{x}^{q^{1-\varsigma} p x+\frac{q^{-\varsigma} x^{2} p^{\varsigma+1}}{\lfloor\varsigma p, q}}\left(q^{1-\varsigma} p x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q}}-u\right) h^{\prime \prime}(u) d u\right| \\
& \leq\left\{\mu_{\beta, \varsigma, 2}^{p, q}(x)+\left(\left(q^{1-\varsigma} p-1\right) x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q}}\right)^{2}\right\}\left\|h^{\prime \prime}\right\|,
\end{aligned}
$$

where norm-||.|| is the supremum norm. Therefore

$$
\begin{aligned}
& \begin{array}{l}
\left|\left(P_{\varsigma}^{\beta, p, q} f\right)(x)-f(x)\right| \leq \mid\left(\check{P}_{\varsigma}^{\beta, p, q}(f-h)(x)-(f-h)(x) \mid+\right. \\
\quad+\left|\left(\check{P}_{\varsigma}^{\beta, p, q} h\right)(x)-h(x)\right|+\left|f\left(q^{1-\varsigma} p x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{\lceil\varsigma]_{p, q}}\right)-f(x)\right| \\
\leq 2\|f-h\|+\left\{\mu_{\varsigma, 2}^{\beta, p, q}(x)+\left(\left(q^{1-\varsigma} p-1\right) x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q}}\right)^{2}\right\}\left\|h^{\prime \prime}\right\|+ \\
+\omega\left(f,\left|\left(q^{1-\varsigma} p-1\right) x+\frac{q^{-\varsigma} \beta x^{2} p^{\varsigma+1}}{[\varsigma]_{p, q}}\right|\right) .
\end{array} .
\end{aligned}
$$

Finally taking the infimum over all $h \in W_{\infty}^{2}$ and using the Peetre's K-functional:

$$
K_{2}(f, \delta)=\inf \left[\left\{\|f-h\|+\delta\|h "\|: h \in W_{\infty}^{2}\right\}\right.
$$

Then apply the inequality $K_{2}(f, \delta) \leq C \omega_{2}\left(f, \delta^{1 / 2}\right), \delta>0$ (see [4, pp. 177]), the required result follows.

Acknowledgements

The authors are extremely thankful to the reviewers for their valuable suggestions, leading to overall improvements in the manuscript.

References

[1] Abel, U., Gupta, V. and Sisodia, M., Some new semi-exponential type operators, Rev. R. Acad. Cienc. Exactas F'ıs. Nat. Ser. A Math. RACSAM 116, 87 (2022).
[2] Acar, T., (p, q)-Generalization of Szász-Mirakyan operators, Math. Methods Appl. Sci. 39 (2016), no. 10, 2685-2695.
[3] Aral, A. and Gupta, V., Applications of (p, q)-Gamma function to Szász Durrmeyer operators, Publ. Inst. Math. (Beograd) 102 (116) (2017), 211220.
[4] DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993.
[5] Gadzhiev, A. D., Theorems of the type of P. P. Korovkin type theorems, Math. Zametki 20 (1976), no. 5, 781-786.
[6] Gupta, V., (p, q)-Baskakov-Kantorovich operators, Appl. Math. Inform. Sci. 10 (2016), no. 4, 1551-1556.
[7] Gupta, V., (p, q)-Szász-Mirakyan-Baskakov operators, Complex Anal. Oper. Theory 12 (2018), 17-25 .
[8] Gupta, V. and Aral, A., Bernstein Durrmeyer operators based on two parameters, Facta Univ Ser. Math. Infor. 31 (2016), no.1, 79-95.
[9] Gupta, V., Rassias, T. M., Agrawal, P. N. and Acu, A. M., Basics of Postquantum Calculus, In: Recent advances in constructive approximation theory, Springer, Optimization and Its Applications, 138, Springer, Berlin, Germany, 73-89.
[10] Herzog, M., Semi-exponential operators, Symmetry, 13, 637 (2021).
[11] Ismail, M. and May, C. P., On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), no. 1, 446-462.
[12] Milovanović, G. V., Gupta, V. and Malik, N., (p, q)-Beta functions and applications in approximation, Boletín de la Sociedad Matemática Mexicana 24 (2018), no. 1, 219-237.
[13] Pǎltǎnea, R., Modified Szász-Mirakjan operators of integral form, Carpathian J. Math. 24 (2008), no. 3, 378-385.
[14] Pǎltǎnea, R., Estimates of approximation in terms of a weighted modulus of continuity, Bull. Transilvania Univ. Braşov, 54 (2011), no. 4, 67-74.
[15] Pǎltǎnea, R., Simultaneous approximation by a class of Szász Mirakjan operators, J. Appl. Funct. Anal. 9 (2014), no. 3-4, 356-368.
[16] Tyliba, A. and Wachnicki, E., On some class of exponential type operators, Comment. Math. 45 (2005), 59-73.

[^0]: ${ }^{1 *}$ Corresponding author, Department of Mathematics, Netaji Subhas University of Technology, Sector 3 Dwarka, New Delhi 110078, India, e-mail: gunjan.guptaa88@gmail.com
 ${ }^{2}$ Department of Mathematics, Netaji Subhas University of Technology, Sector 3 Dwarka, New Delhi 110078, India, e-mail: vijaygupta2001@hotmail.com

