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Abstract

The divided differences of Bernstein polynomials were investigated by
Alexandru Lupasg in 1995. We extend the results of that investigation. More-
over, we establish new relations between them and the theory of dual func-
tionals.
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1 Introduction

Among other interesting results, A. Lupas presented in [6] a method for com-
puting the divided differences of the Bernstein polynomials B, f in terms of di-
vided differences of the function f. In this context he introduced an array of
numbers aygj. This paper is devoted to extending these results. In Section 2 we
present the pertinent definition and compute explicitly some values c,s;. Section
3 is devoted to the operators F;, introduced in [2] and later investigated in [3], [4],
[9]. We give a new expression of F,f and then present new properties of aus;,
in particular a method for computing them recursively. In Section 4 we recall
some definitions and properties of the dual functionals associated with Bernstein
operators. Then we establish new relations between them and the divided differ-
ences, using the numbers a,,s;. These relations are used in order to describe new
methods for computing divided differences of B,, f.
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2 Bernstein polynomials and divided diferences

The Bernstein operators are given by

~ . (k
B, :C[0,1] — C[0,1], Bp(f;x)=)» f <> byk(x), (2.1)
k=0 "
where
bos(o) = ()t =07, 2 e 0.1
The divided difference of a function f at the distinct points xg,z1,..., Ty is

denoted by [z, z1,. .., Tm; f].
From the theory of divided differences it is well known that

[0, X1y ey T €m] = 1, (2.2)

[Lﬂo,.fl,...,.fmfl;em] :$0+"'+xm717 (23)

(0,1, f] = (o I L 0Bt ) (g )
Tm — X0

where ey (z) :=z*, k=0,1,...
Let n,s,j be integers, 1 < s <n,0<j <n—s. Define

n r o
\Ilnsj(x) = S(S) /(; (.%' - y) 1bn—s,j(y)dya
1 5 n® o k(S k

Moreover, set

anoj =0, g=1,...,n; ano = 1.
Example 2.1. By a direct calculation we find

1) \Ijnno(*r) =2", opno =1,

3n—1
2 )

2) \Iln,nfl,()(x) =nz" ! — x", A n—1,0 =

n—1
5

3) \Ijn,nfl,l(x) =", Apn—1,1 = —

In Tables 1 and 2 we present the explicit expressions of the functions ¥,,;,
respectively the numbers a,,;, for n = 5.
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Table 1. Functions ¥y, n =5

Jj\s 1 2 3 4 5
0 [2°—b2x®+102°—102%+5z —®+521—102°+102% z°—b52T+1025 —P+52% 2°
1 | -2 +152* —2023 + 1022 3% —102* 41023 —22° 452 z®
2 6x° — 152 + 1023 —3xz° + 5zt x°
3 —4z° + 5zt x®
4 x

Table 2. Values of cpsj, n =195

i\s 1 2 3 4 5
0 | 4651/625  438/25 17 7 1
1 | —1829/625 —229/25 -8 -2
2 331/625  44/25 1

3 | —29/625  —3/25

4 1/625

The following result was obtained by Lupas in [6, pp.206-207].

Theorem 2.1. With the above notation,

1 d° n .
;%\Prw](l‘) = s bn—S,j(x)v 1<s<n, 0<j<n-—s, (25)
1 IR o jj+1l  j+4s c e
07_57“"_ﬁ’ nf —nsz;)ans] E, n geeey n ,f ,Oisin, (26)
j:
s! —— 1 S sl (n
EJ_Oansj = [0,—n,-~~ ,—n;Bnes} = ns(s>’ 0<s<n. (2.7)

Remark 2.1. We will need (2.6) in the next section. A more general result,
expressing [xo, x1,...,xs; Bpf] for arbitrary knots, can be found in [6, p.207].

3 The operator F),

The Beta operators introduced by Miihlbach [7, 8] and Lupas [5] are defined
as

f(0)7 x =0,
= 1

1
B (f;z)= LWM/(]tml(l—t)"(l’”)lf(t)dt, ze(0,1), (3.1

f(l)a T = 1,
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where B(-,-) is the Beta function, f € C[0, 1] and z € [0, 1].
Let II,, be the linear space of all real polynomials of degree < n. Using the
inverse of Beta operator, by composing the operators

B, :C[0,1] —» II,, and Egl 11, — I,

one obtains the operators F, := B, o B,, F,:C[0,1] — II,, n > 1. They were
introduced in [2] and later investigated in [3], [4], [9].

Theorem 3.1. For f € C[0,1] we have

~ (n)s 8! o= g+l j+s
an:Z ns ;Zansj ) PR ;f €s, (32)

- n n n
s=0 7=0

where (n)s :=n(n+1)...(n+s—1), (n)o:=1.

Proof. Tt was proved in [9] that

"L (n)s 1 s
F.f = —_—— e, ——; . .
f =2 |0 =i Baf | e (3:3)
7=0
Now (3.2) is a consequence of (3.3) and (2.6). O

The next result presents some properties of the numbers o, .

Corollary 3.1. a) For 0 < s < n one has

Samj - (Z) (3.4)

b) Let 1 <s<mn,0<j<n—s. Then, ansj > 0 for j even, and ouys; < 0 for j
odd.

Proof. a) For s =0, (3.4) can be verified directly. For 1 < s < n, it follows from
(2.7).
b) According to the mean value theorem for divided differences, there exists

€0 € (—%,0) such that

1 d°
sl dxs

1 s

ansj = |:O7—n,...,—n;\lfnsj:| = \I/ns](gns)

Now (2.5) shows that

Qnsj = (Z) bn—s,j (1/}713) - <Z> <nj_ S) ‘57]15(1 - gns)n—s—j’

and this entails the conclusion b). O
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Let S(j,s) be the Stirling numbers of second kind. Denote

. (n+s—1D!I(=1)8(s+7,5) 0<s<m 0<j<n—s
" (n—s—7)n2-1sln)y ~ — — 7 —7— '

Theorem 3.2. For f € C[0,1] we have

—[jj+1 j+s — /[ 1 j+s
]Z_g[n —. f]am]_Z[O,n,..., ,f]cnsj. (3.5)

n
7=0

Proof. It was proved in [2, (19)] that

Rt =3 0ot g e b 1Sk

This can be written as

n

+s5—1 o 1 ;
nf Z Znn_jS'an)l( )] S(])‘S) |:0’77/,’il7f:| €g,

and also

— (n+s—1)(=1)'S(s+1,s) 1 i+s
Z(Z n_s_z)|n25+2z 1 [Ovnv"-a n 5f}>€s' (3.6)

=0

From (3.2) and (3.6) we get

amngf [jj+1 j+s }
Qnsj | —» PRI ;f

n2s < n n n
J=0

n—s

M

n+s—1 S1PS(s+gis) [, 1 Jts
0 (n—s— )'n25+2ﬂ 1 n -
]:

and this implies (3.5). O

Remark 3.1. The relation (3.5) can be used in order to compute successively
the numbers s, Qnsts - - -, Onsn—s. Indeed, let i € {0,1,...,n} and a,; € C[0,1]

k
piecewise linear, an; (z) =1, an () =0, k #1i. Taking in (3.5) f = ano we
n n

compute anso; then f = ay1 leads to apg1, and so on.
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4 Dual functionals and divided differences
In this section we use results from [1]. Let /\,(Cn)

the associated monic eigenpolynomials and uén) the corresponding dual function-

als, k =0,1,...,n. It is known that

be the eigenvalues of B,,, p,gn)

n!

(n)
A= 4.1
(n — k)Ink’ (41)
n k
p,(C )(:L') =zF - 5% 2! 4 terms of lower degree, (4.2)
Buf = Z NP (), f € Clo,1]. (4.3)
From(2.6) and (4.3) we get the following result.
Theorem 4.1. For s =0,1,...,n one has
[, 1 ]
ZAk |:07_n7"') 7pk :|:U’
J J+1 J+s
= nsi | =, e HE 4.4
Z o | 21T (14
Example 4.1. Let s =n. In this case (4.4) entails
)\1(1n) |:07 _l) ) 7p£Ln):| lu’ﬁzn) = iiannﬂ |:07 l7 ) ﬁv :| .
n n n n
|
Since A" = n—n (see (4.1)) and anno =1 (see Example 2.1), we obtain
n
1
W) = [o”] | (45)
n n

So, we recover a result from [1, p.164].
Example 4.2. Let s=n —1. Now (4.4) yields

(n—1)! 1 n—1 1 2 n
= pow Qnn—1,0 0,—,..., vl Fomp—11 | = — -0y 75 .
n n n n’'n n
Using (4.1), (4.2), (4.5), (2.2) and (2.3), we get

n 2n—1 1

n—1
n—l 1 2 n
+an,n—1,1 R B i I
n n n

0,

1
+ appn—1,0 -
n
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Combined with (2.4) and Example 2.1, this implies after some calculation
(n) 1 1 n—1 11 2 n

=—10,—,... x — ==, =]

/Ln_l 2 9 nv 9 n 9 + 2 9 9

n’'n n
So, we recover another result from [1, p.164]. With the above arguments one can
determine the other dual functionals.

Theorem 4.2. For f € C[0,1] we have

n! 1
[xnylw"axn? ’I’Lf] n|: 57"‘7

313

;f] , (4.6)

[ﬂ?o,xl,...,{L‘n_l, nf] (n_l{< z; ) |:07:L 7n’r_11;f:|
1
;7

+<n§_§w>[ szH (4.7)

Proof. Using (4.3) we see that

[0, X1, ..., Zs; Bnf] :Z)\,(gn)[xo,xl,.. a:s,p,g )] (n)(f) (4.8)

Therefore, (4.8), (4.1), (4.2), (4.5) and (2.2) show that

['IOa Z1s---yTn; an] = )‘7(171) [l’o, Tlyeeoy xn,pgzn)]/‘(n) (f)

n
! 1
:n |:077"'7n;f:|7
n" n n

and (4.6) is proved. Now

[':anxlw"?xn—l; nf]
= A 0,21, () 4 A 0,1, s ) ()

n! n! n .
- nn—1 [xO’xh“ » Tn—1; En— 1] 51)1(f)+ﬁ [$07x17---axn—l;en_§en—l :ugl)(f)

n—1

_onm n! on\
T opn— 1 Hn= l(f)+n” (;xz 2>,Un (f)

! 1 1 -1 11
- nl{[07v-~-7n ;f}r [ ..,n;f]

n" 2 n n n n

S (oS e (B 22

This concludes the proof.
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Remark 4.1. The divided differences of B, f on other knots can be calculated
stmilarly.

Funding. Project financed by National Recovery and Resilience Plan PNRR-III-
C9-2022-18.
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