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Abstract

This note concerns the study of an approximation linear positive process
introduced by R. Păltănea in 2008. Considering the impact of this class of
operators that depends on two parameters, in a distinct section we present
a brief radiograph of the main properties highlighted over time in various
papers. Our contribution materializes in the definition and study of the ap-
proximation properties of King variant of these operators.
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1 Introduction

This note falls under the field of Approximation Theory, more precisely it
aims at the study of linear and positive approximation processes. It is known
that Szász operators, along with the many discrete and integral generalizations
obtained over time, play a significant role in this domain.

Our present study concerns a class of Szász-Durrmeyer type operators intro-
duced by Păltănea in 2008 [9]. They depend on two parameters and are described
as follows. For α > 0, ρ > 0 and x ∈ R+ = [0,∞),

Lρ
α(f ;x) = e−αxf(0) +

∞∑
k=1

sα,k(x)

∫ ∞

0
Θρ

α,k(t)f(t)dt, (1)
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where

sα,k(x) = e−αx (αx)k

k!
,

Θρ
α,k(t) =

αρ

Γ(kρ)
e−αρt(αρt)kρ−1 (2)

and f : R+ → R is a locally integrable function for which formula (1) is well
defined for all x ≥ 0.

Păltănea operators preserve affine functions and make a link between the
Phillips operators and the classical Szász operators. In the particular case ρ = 1
and α = n ∈ N, the above operators become Phillips operators [11]

Ln(f ;x) = e−nxf(0) + n

∞∑
k=1

sn,k(x)

∫ ∞

0
sn,k−1(t)f(t)dt, x ≥ 0.

In the limit case ρ → ∞ (see Theorem 2) one obtains the classical Szász
operators defined by

Sn(f ;x) =
∞∑
k=0

sn,k(x)f

(
k

n

)
, x ≥ 0. (3)

The extension in the Durrmeyer sense of Sn operators was achieved by Mazhar
and Totik [7] in 1985. Unlike Păltănea operators, this extension does not repro-
duce affine functions.

Our goal is twofold: to collect some known properties of Păltănea’s operators
in a brief synopsis as well as to construct a version of King type by investigating
its utility and its approximation properties. Wanting to create a self-contained
presentation, all the notions used are described explicitly. As much as possible,
we have kept the original notations used in the papers cited.

2 An eclectic collection of known results

We did not propose an exhaustive presentation of the results obtained over
time, but scoring of the most significant properties of this approximation process.
Păltănea studied this class of operators in the papers [9], [10], the following main
properties being proved.

Set W , the space of functions f : R+ → R which are Riemann integrable on
each compact interval of R+ and for which exist certain numbers M > 0, q > 0
such that |f(t)| ≤ Meqt, t ≥ 0. For α > 0 and ρ > 0, denote by W ρ

α the subspace
of W of those functions f which satisfy the above inequality with q < αρ. One
has

W =
⋃

α>0, ρ>0

W ρ
α .

In [9, Theorem 2.1 ] it was showed that Lρ
αf exists for any f ∈ W ρ

α , α > 0,
ρ > 0.
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An approximation property in the particular case ρ = n ∈ N will be read as
follows.

Theorem 1. ([9, Theorem 3.4 ]). For any function f ∈ W ∩ C(R+) and any
number n ∈ N, there exists α0 > 0 such that Ln

αf exists for α > α0 and for any
compact set K ⊂ R+ we have

lim
α→∞

Ln
αf = f, uniformly on K.

The limit of the functions Lρ
αf has been established when ρ tends to infinity.

Theorem 2. ([10, Theorem 4 ]). For any α > 0, any f ∈ W and any b > 0, there
is ρ0 > 0 such that Lρ

αf exists for all ρ ≥ ρ0 and we have

lim
ρ→∞

Lρ
α(f ;x) = Sα(f ;x), uniformly for x ∈ [0, b],

where the Szász operator Sαf is defined in (3).

Also it was proved that Lρ
α preserves convexity of higher order and it has the

property of simultaneous approximation on the compact sets [10, Theorems 6, 9 ].
Further, we will highlight some papers based on Păltănea operators and which

bear his name in the title.
We recall that in [5] the authors gave a generalization of Szász operators based

on Appell polynomials. Let g(z) =

∞∑
k=0

akz
k be an analytic function in the disc

|z| < R, R > 1, and g(1) ̸= 0. The Appell polynomials pk, k ∈ N0 = {0} ∪ N, are
defined by the generating function

g(u)eux =
∞∑
k=0

pk(x)u
k. (4)

For f ∈ C(R+), Verma and Gupta [14] proposed the Jakimovski-Leviatan-
Păltănea operators defined as

Mn,ρ(f ;x) = ln,0(x)f(0) +

∞∑
k=1

ln,k(x)

∫ ∞

0
Θρ

n,k(t)f(t)dt, (5)

where Θρ
n,k is defined at (2) and

ln,k(x) =
e−nx

g(1)
pk(nx), k ∈ N0, (6)

pk being described at (4).
To establish the rate of convergence, the authors used the moduli of smooth-

ness of the first and second order which give direct information about the smooth-
ness of f . We recall their definitions.

ω1(f, δ) = sup
0≤h≤δ

sup
x≥0

|f(x+ h)− f(x)|, (7)
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ω2(f, δ) = sup
0≤h≤δ

sup
x≥0

|f(x+ 2h)− 2f(x+ h) + f(x)|, (8)

where f ∈ CB(R+), the space of continuous and bounded real valued functions
defined on R+. The following result was proved.

Theorem 3. ([14, Theorem 2 ]). For f ∈ CB(R+), we have

|Mn,ρ(f ;x)− f(x)| ≤ ω2(f, δ) + ω1

(
f,

∣∣∣∣ g′(1)ng(1)

∣∣∣∣) ,

where δ =

(
Mn,ρ((· − x)2;x) +

(
g′(1)

ng(1)

)2
)1/2

.

Considering the space

Bw(R+) = {f : R+ → R | |f(x)| ≤ Mf (1 + x2), x ∈ R+}

Mf being a constant depending on f , a Voronovskaja type asymptotic formula
was also obtained.

Theorem 4. ([14, Theorem 3 ]). For any function f ∈ Bw(R+) ∩ C(R+) such
that f ′, f ′′ are continuous and belong to Bw(R+), we have

lim
n→∞

n(Mn,ρ(f ;x)− f(x)) =
g′(1)

g(1)
f ′(x) +

x

2

(
1 +

1

ρ

)
f ′′(x), x ≥ 0.

Goyal and Agrawal [3] defined and studied the Bézier variant of the operators
Mn,ρ, n ∈ N.

Set Cγ(R+) = {f ∈ C(R+) : f(t) = O(eγt) as t → ∞}, where γ > 0 is fixed.
For θ ≥ 1 and f ∈ Cγ(R+), the Jakimovski-Leviatan-Păltănea-Bézier operator is
of the form

M θ
n,ρ(f ;x) = Xθ

n,0(x)f(0) +
∞∑
k=1

Xθ
n,k(x)

∫ ∞

0
Θρ

n,k(t)f(t)dt,

where

Xθ
n,k(x) = (Jn,k(x))

θ − (Jn,k+1(x))
θ, Jn,k(x) =

∞∑
j=k

ln,j(x),

see [3, Eq. (1.2)].

Clearly, Jn,k(x)− Jn,k+1(x) = ln,k(x) defined by (6), k ∈ N0. For θ = 1, M1
n,ρ

turns out to be Mn,ρ defined by (5). A substantial result is the establishment of
the rate of convergence for functions having a derivative of bounded variation.

Let DBVγ(R∗
+), γ ≥ 0, be the class of all functions defined on R∗

+ having
a derivative of bounded variation on every bounded subinterval of R∗

+ and any
function f of this class enjoys the property |f(t)| ≤ Mtγ , t ∈ R∗

+.
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Theorem 5. ([3, Theorem 5 ]). Let f ∈ DBVγ(R∗
+), θ ≥ 1 and let V d

c (f
′
x) be the

total variation of f ′
x on [c, d] ⊂ R∗

+. For every x ∈ R∗
+ and sufficiently large n,

we have

|M θ
n,ρ(f ;x)− f(x)| ≤

√
θ

θ + 1

√
Cx(1 + ρ)

nρ
|f ′(x+) + θf ′(x−)|

+
θ
√
θ

θ + 1

√
Cx(1 + ρ)

nρ
|f ′(x+)− f ′(x−)|

+ θ
C(1 + ρ)

nρ

[
√
n]∑

k=1

x∨
x−(x/k)

(f ′
x) +

x√
n

x∨
x−(x/

√
n)

(f ′
x)

+ θ
C(1 + ρ)

nρ

[
√
n]∑

k=1

x+(x/k)∨
x

(f ′
x) +

x√
n

x+(x/
√
n)∨

x

(f ′
x),

where C > 1 and the function f ′
x is defined by

f ′
x(t) =


f ′(t)− f ′(x−), 0 ≤ t < x,
0, t = x,
f ′(t)− f ′(x+), x < t < ∞.

Motivated by the above mentioned construction, in [8] the authors introduced
the Bézier-Păltănea operators based on Gould-Hopper polynomials. For this new
generalization of Păltănea operators, the authors obtained both the quantitative
Voronovskaja type theorem in terms of Ditzian-Totik modulus of smoothness and
the rate of pointwise convergence for the functions having a derivative of bounded
variation.

In the final part we mention a recent result obtained by Gupta and Agrawal
[4]. They proposed a hybrid integral type operator containing both Szász as well
as Baskakov bases in summation. More precisely, in (1) they replaced sα,k(x),
k ∈ N0, x ∈ R+, with pα,k(x, c), where

pα,k(x, c) =
(α/c)k
k!

(cx)k

(1 + cx)α/c+k
,

c being a constant belonging to the interval (0, 1]. In the above (α/c)k stands for
rising factorial, also called Pochhammer function. We recall (α/c)0 is taken to be
1. For these new operators, the notation Bρ

α(f ; ·, c) was used. Among the results
obtained we mention a Grüss-Voronovskaja type theorem. Setting

C∗
2 (R+) =

{
f ∈ Bw(R+) ∩ C(R+) : lim

x→∞

f(x)

w(x)
exists and is finite

}
, (9)

where w(x) = 1 + x2, the following statement was proved.

Theorem 6. ([4, Theorem 3.2 ]). Let f, g, f ′, g′, f ′′, g′′, (fg)′, (fg)′′ belong to C∗
2 (R+).

For any x ∈ R+ we have

lim
α→∞

α(Bρ
α(fg;x, c)−Bρ

α(f ;x, c)B
ρ
α(g;x, c)) =

x(1 + ρ(1 + cx))

ρ
f ′(x)g′(x).
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3 On the King variant of the operators Lρ
α

Set e0(x) = 1, ej(x) = xj (j ∈ N), x ≥ 0.
Two decades ago, King [6] had the idea to modify the Bernstein operators

in order to to reproduce the monomials e0 and e2. Consequently, the modified
operators enjoy the property of keeping the functions c1e0 + c2e2 as fixed points,
for any real constants c1 and c2.

From approximation theory point of view the construction is useful. In spite
of the fact that the new operators have the degree of exactness null, the maximum
rate of convergence is smaller. Over time this technique was applied to many linear
approximation processes, becoming known as the King method. We propose to
apply it to Păltănea operators (1). It is known that

Lρ
αe0 = e0, L

ρ
αe1 = e1, L

ρ
αe2 = e2 +

ρ+ 1

αρ
e1, α > 0, ρ > 0, (10)

see [10, Eq. (2.1)]. Considering

u(x) =
1

2

(√
β2(α, ρ) + 4x2 − β(α, ρ)

)
, x ≥ 0, (11)

where β(α, ρ) = (ρ+ 1)/(αρ), we define the operators

L∗
α,ρ(f ;x) = e−αu(x)f(0) +

∞∑
k=1

sα,k(u(x))

∫ ∞

0
Θρ

α,k(t)f(t)dt, x ≥ 0, (12)

f ∈ W .
Remarks. (i) By using a bivariate kernel, we can write (12) in a more compact
form, as follows

L∗
α,ρ(f ;x) =

∫ ∞

0
Hα,ρ(x, t)f(t)dt, α > 0,

where

Hα,ρ(x, t) = e−αu(x)δ(0) +
∞∑
k=1

sα,k(u(x))Θ
ρ
α,k(t), (x, t) ∈ R+ × R+.

In the above δ represents Dirac delta function for which∫ ∞

0
δ(t)f(t)dt = f(0).

(ii) For any f ∈ CB(R+) we can easily deduce that the operators are non-
expansive, this means ∥L∗

α,ρf∥ ≤ ∥f∥. The proof uses the identities∫ ∞

0
Θρ

α,k(t)dt = 1, k ∈ N. (13)

Relations (10) and (11) involve the identities

L∗
α,ρe0 = e0, L

∗
α,ρe1 = u, L∗

α,ρe2 = e2, α > 0, ρ > 0. (14)

Since any compact interval K ⊂ R+ is isomorphic to [0, b], b > 0 arbitrarily
fixed, in our approach will use only this interval.
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Theorem 7. For any b > 0, any function f ∈ W ∩C(R+) and any number n ∈ N,
there exists α0 > 0 such that for α > α0, L

∗
α,n is well-defined and we have

lim
α→∞

L∗
α,nf = f, uniformly on [0, b].

Let b > 0 be arbitrarily fixed. The relation lim
α→∞

u(x) = x uniformly on [0, b]

takes place. Based on (14), the proof of the above theorem follows exactly the
same line as the proof of Theorem 3.4 from [9], so we omit it.

For a positive linear operator Λ its second central moment defined by

µ2(Λ;x) = (Λφ2
x)(x),

where
φx(t) = t− x, (t, x) ∈ R+ × R+ (15)

plays a crucial role when estimating its local rate of convergence.
The identities (10) and (14) imply

µ2(L
ρ
α;x) = β(α, ρ)x, µ2(L

∗
α,ρ;x) = 2x(x− u(x)). (16)

It turns out that the second central moment of their King type variant (12)
is smaller than the second central moment of the Păltănea operators (1) on the
whole interval (0,+∞).

Lemma 1. (i) For x > 0, there holds

0 < x− u(x) < β(α, ρ)/2.

(ii) The inequality
µ2(L

∗
α,ρ;x) < µ2(L

ρ
α;x)

is valid, for each x > 0.

Proof. (i) Let x > 0. The first inequality follows from the observation

u(x) =
2x2√

β2 (α, ρ) + 4x2 + β(α, ρ)
<

2x2√
4x2

= x,

since β(α, ρ) > 0. Furthermore, we have

2(x− u(x)) = 2x−
√

β(α, ρ)2 + 4x2 + β(α, ρ) < β(α, ρ),

which proves the second inequality.
(ii) By (16), this statement is a consequence of the previous result.

By virtue of the classical results regarding the local rate of convergence estab-
lished by Shisha and Mond [12], the relations (10), (14) and (16) guarantee

|Lρ
α(f ;x)− f(x)| ≤ 2ω1

(
f,
√

β(α, ρ)x
)
,

|L∗
α,ρ(f ;x)− f(x)| ≤ 2ω1

(
f,
√
2x(x− u(x))

)
,



8 Ulrich Abel and Octavian Agratini

for any f ∈ CB(R+), where ω1 is defined at (7).
Remark. Since ω1 associated with a function f is an increasing function, Lemma
1 (ii) demonstrates that the upper bound for the absolute error of L∗

α,ρ is smaller
than that for Lρ

α.
The evaluation of the rate of convergence can be carried out in weighted spaces,

for example in C∗
2 (R+) defined at (9) and endowed with the usual norm ∥·∥C∗

2 (R+),

∥f∥C∗
2 (R+) = sup

x≥0

|f(x)|
w(x)

,

where w(x) = 1 + x2, x ≥ 0.

Theorem 8. Let L∗
α,ρ be defined by (12). For every f ∈ W ∩ C∗

2 (R+), L∗
α,ρ

converges to f in norm, i.e.,

lim
α→∞

∥L∗
α,ρf − f∥C∗

2 (R+) = 0. (17)

Proof. It is known that {e0, e1, e2} is a Korovkin set in C∗
2 (R+), see, e.g., [1,

Proposition 4.2.5.-(6)]. Taking in view identities (14), it remains for us to prove
(17) only for f := e1. Applying two times Lemma 1 (i), we obtain the estimate∣∣L∗

α,ρ (e1;x)− x
∣∣

1 + x2
=

|u (x)− x|
1 + x2

=
x− u (x)

1 + x2
≤ x

1 + x2
β (α, ρ) ≤ 1

2
β (α, ρ) ,

for all x ≥ 0, from which we deduce

∥L∗
α,ρe1 − e1∥C∗

2 (R+) ≤
ρ+ 1

2αρ
.

Thus, we got what we proposed, consequently (17) takes place.

To obtain the following new result we need an inequality that we present in
what follows. Any discrete or integral linear positive operator Λ of summation
type satisfies the classical inequality

Λ|φx| ≤ (Λφ2
x)

1/2,

where φx is given at (15). Because the operators L∗
α,ρ contain as the first term a

quantity not included in the sum, for a self-contained presentation, we prove the
relation

L∗
α,ρ|φx| ≤ (L∗

α,ρφ
2
x)

1/2, x ≥ 0. (18)

The proof is based on Cauchy–Schwarz inequality both for integrals and for series,
and it runs as follows.∫ ∞

0
Θρ

α,k(t)|φx|(t)dt ≤
(∫ ∞

0
Θρ

α,k(t)dt

)1/2(∫ ∞

0
Θρ

α,k(t)φ
2
x(t)dt

)1/2

=

(∫ ∞

0
Θρ

α,k(t)φ
2
x(t)dt

)1/2

, k ≥ 1,
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see (13).

Further, we define b0 = φ2
x(0) = x2 and bk =

∫ ∞

0
Θρ

α,k(t)φ
2
x(t)dt, k ≥ 1. We

get

(L∗
α,ρ|φx|)(x) ≤

∞∑
k=0

sα,k(u(x))b
1/2
k =

∞∑
k=0

√
sα,k(u(x))

√
sα,k(u(x)) b

1/2
k

≤

( ∞∑
k=0

sα,k(u(x))

)1/2( ∞∑
k=0

sα,k(u(x))bk

)1/2

= ((L∗
α,ρφ

2
x)(x))

1/2

and the proof of (18) is completed.
A less frequently used tool to approximate signals is the so called Steklov mean.

The benefit of special function is that continuous functions can be approximated
by smoother functions. For f ∈ CB(R+), the Stelov mean of second order and
step h/2 is defined by

fh(x) =
4

h2

∫ h/2

0

∫ h/2

0
(2f(x+ u+ v)− f(x+ 2(u+ v)))dudv (19)

and verifies the inequalities

∥fh − f∥ ≤ ω2(f, h), (20)

and if f ′
h, f

′′
h ∈ CB(R+) exist,

∥f ′
h∥ ≤ 5

h
ω1(f, h), ∥f ′′

h∥ ≤ 9

h2
ω2(f, h). (21)

In the above ∥ · ∥ stands for the sup-norm, ∥h∥ = sup
x≥0

|h(x)|, h ∈ CB(R+).

The key of the proofs of these relations consists in rewriting the definitions (7)
and (8) as follows

ω1(f, δ) = sup
x,u,v≥0
|u−v|≤δ

|f(x+ u)− f(x+ v)|,

ω2(f, δ) = sup
x,u,v≥0
|u−v|≤δ

|f(x+ 2u)− 2f(x+ u+ v) + f(x+ 2v)|,

where δ ≥ 0. The proofs of (20) and (21) can be found in [2, Eqs. (5.2)-(5.4)].
Remark. For the full information of the reader, in accordance with The Great
Soviet Encyclopedia, 3rd Edition (1969-1978), we mention that the initial form of
this type of function was introduced in 1907 by Vladimir Steklov (Stekloff) [13]
by the equality

Φ(x, h) =
1

h

∫ x+h

x
f(t)dt,

where h > 0 is so small that the interval (x, x + h) lies in the domain of the
definition of the locally integrable function f .
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Theorem 9. Let L∗
α,ρ be defined by (11). For every f ∈ CB(R+) and x ≥ 0, the

following inequality

|L∗
α,ρ(f ;x)− f(x)| ≤ 5ω1

(
f,
√
2x(x− u(x))

)
+

13

2
ω2

(
f,
√
2x(x− u(x))

)
holds.

Proof. Let f ∈ CB(R+) be arbitrarily fixed. For x = 0, our relation is obvious.
Let x > 0. Applying the Steklov mean fh given at (19), we can write

|L∗
α,ρ(f ;x)− f(x)| ≤ L∗

α,ρ(|f − fh|;x) + |L∗
α,ρ(fh − fh(x);x)|

+ |fh(x)− f(x)|. (22)

Using the fact that the operators are non-expansive and taking in view (20), we
obtain

L∗
α,ρ(|f − fh|;x) ≤ ∥f − fh∥ ≤ ω2(f, h).

Further, using successively Taylor’s expansion, the identity L∗
α,ρe0 = e0 and rela-

tions (18), (21) we get

|L∗
α,ρ(fh − fh(x);x)| ≤ ∥f ′

h∥
√

µ2(L∗
α,ρ;x) +

1

2
∥f ′′

h∥µ2(L
∗
α,ρ;x)

≤ 5

h
ω1(f, h)

√
2x(x− u(x))

+
9

2h2
ω2(f, h)(2x)(x− u(x)).

At this point we choose h :=
√

2x(x− u(x)) > 0 and returning at (22) we assemble
the established increases. Our statement is fully proven.
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