
Bulletin of the Transilvania University of Braşov

Series III: Mathematics and Computer Science, Vol. 3(65), No. 1 - 2023, 185-198

https://doi.org/10.31926/but.mif.2023.3.65.1.14

BOTTLENECK SPANNING TREE INTERDICTION
PROBLEM WITH FIXED AND LINEAR COSTS

Abolfazl ABDOLAHZADEH1, Massoud AMAN∗,2

and Javad TAYYEBI3

Abstract

This paper investigates a combinatorial optimization interdiction prob-
lem, called bottleneck spanning tree interdiction. This problem is a game
containing two players with conflicting goals. The first player, called the
user, wants to find a bottleneck (min-max or max-min) spanning tree in
a weighted network. The other player, called the attacker, increases edge
weights under a budget constraint as well as bound constraints so that the
user does not achieve his/her goal. This game has a hierarchy structure.
It means that the attacker first perturbates the network and then, the user
chooses his/her strategy after observing the attacker’s action. This paper
considers the problem in two cases that there are fixed and linear costs for
the attacker. Two divide-and-conquer algorithms are developed to solve the
problem under both the costs in polynomial time.

2020 Mathematics Subject Classification: 90C23, 90C27, 91A68.
Key words: interdiction, spanning tree, divide-and-conquer, polynomial

time

1 Introduction

For any optimization problem, an interdiction problem can be defined. Op-
timization problems often have one decision maker whereas the corresponding
interdiction problems contain two decision makers having opposite goals. Similar
to the terminology used in [20], a decision maker is referred to as the user and the
other is called the attacker in this paper. However, several different names are

1Department of Mathematics, Faculty of Science, University of Birjand, Iran, e-mail:
a.abdolahzadeh@birjand.ac.ir

2∗ Corresponding author, Department of Mathematics, Faculty of Science, University of
Birjand, Iran, e-mail: mamann@birjand.ac.ir

3Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran,
e-mail: javadtayyebi@birjandut.ac.ir

186 Abolfazl Abdolahzadeh, Massoud Aman and Javad Tayyebi

used in different optimization interdiction problems due to their real-world appli-
cations (See [1, 7, 11] for instance). In an interdiction problem, the goal of the
user is to optimize the objective function of a given optimization problem while
the attacker would like to prevent that the user achieves his/her goal. Because
of the conflict existence in the goals, interdiction problems can be regarded as
zero-sum games, but with this difference that the strategy selection has a hierar-
chy structure. Namely, the attacker first chooses his/her strategy. Then, the user
observes the opponent’s strategy and chooses his/her strategy. Such problems are
referred to as Stackelberg games in the game theory literature [18].

Among all interdiction problems, combinatorial optimization interdiction prob-
lems are interested widely by researchers because they arise in many real-world
applications. The most prominent examples of these problems are matching inter-
diction problems [22], shortest path interdiction problems [9, 24], and maximum
capacity path interdiction problems [14]. This paper focuses only on interdiction
problems defined on spanning tree structures.

Two main classes of optimization problems are defined on spanning trees:

� minimum spanning tree (MST) problem,

� min-max spanning tree (MMST) problem.

The first is to find a spanning tree in a given weighted network G(V,A, c) so
that the summation of its weights is minimized. The second is to look for a
spanning tree so as to minimize the maximum of its weights. It is well known
that minimum spanning tree problems can be solved in O(|A|+ |V | log |V |) time
by Kruskal’s algorithm and Prime’s algorithm [2], and min-max spanning tree
problems can be solved in O(|A|) time by a recursive algorithm [5].

Interdiction problems can be defined for both the spanning tree optimization
problems. The earliest and simplest form of minimum spanning tree interdiction
problems is to find k edges whose removal results in the largest increase of the
spanning tree weight. This problem is called the k-most vital edges with respect
to minimum spanning tree [10, 16]. It is proved that the problem can be solved in
polynomial time for k = 1, whereas it is strongly NP-hard for k > 1. The other
interesting results can be found in [3, 4]. Various formulations of general minimum
spanning tree interdiction problems are presented in [21]. An O(1)-approximation
algorithm is presented to find a near-optimum solution [23].

In spite of the fact that the minimum spanning tree interdiction problems
are widely investigated, the best of our knowledge, the min-max spanning tree
interdiction problem is not studied until now. This paper focuses on this problem.
It considers two distinct cases:

1. fixed interdiction costs;

2. linear interdiction costs.

It is shown that both the cases can be solved in polynomial time. This shows that
the problem’s behaviour is different from the minimum spanning tree interdiction
problem which is NP-hard in general.

Bottleneck spanning tree interdiction problem 187

The reminder of this paper is organized as follows. Section 2 states some
preliminaries which are used in the next sections. Section 3 formally introduces
the problem and formulates it as a bilevel programming problem. Sections 4 and
5 considers the problem for fixed and linear costs, respectively. Finally, some
concluding remarks are given in Section 6.

2 Preliminaries

This section states some notations used throughout the paper. Moreover, it
recalls the min-max spanning tree problem and states some results on it.

Suppose that a graph G(V,E) is given, where V = {1, 2, . . . , n} is the node
set and E ⊆ {{i, j} : i, j ∈ V and i ̸= j} is the edge set. We say that an edge is
incident to a node i if one of its endpoints is i. We apply the customary notation
(i, j) to denote the edge whose two endpoints are i and j. A path from i to
j is a sequence of edges so that any two consecutive edges intersect in one of
their endpoints and additionally, the first and last edges are incident to i and j,
respectively. A path without two repetitive nodes is called an elementary path.
Since we only deal with elementary paths, let us use the simple term ”path”
instead of ”elementary path” throughout the paper.

A graph G′(V ′, E′) is said to be a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A
subgraph G′(V ′, A′) is called spanning if it contains all node of G, i.e., V ′ = V . A
(sub)graph is said to be connected if there is at least a path between any two nodes.
Any maximal connected subgraph of G is referred to its connected component.
So, G contains only one connected component if it is connected. Throughout this
paper, we assume that G is connected. A cut is a set of edges whose removal ex-
actly converts the graph into two connected components. A cut can be determined
uniquely by the node set of the one of its connected components.

A path from a node to itself is called a cycle. A set of edges which does not
contain any cycle is referred to as a forest. A forest of G with n nodes and n− 1
edges is called a spanning tree. There is exactly a unique path between any two
nodes in a spanning tree. In other words, a spanning tree of G is a spanning and
connected subgraph which does not any cycle.

2.1 Bottleneck spanning tree problem

Now, suppose that a nonnegative weight wij is associated to each edge (i, j) ∈
E. The min-max (bottleneck) spanning tree (MMST) problem is to look for a
spanning tree in G so that the maximum of its weights is minimized. This problem
is formulated as a combinatorial optimization problem in the following form.

min
T∈T

w(T), (1)

in which T is the set of all spanning trees of G, and w(T) = max(i,j)∈T wij .

There are several formulations for the well-known minimum spanning tree
(MST) problem (see [6, 15], for instance). Since the only difference between

188 Abolfazl Abdolahzadeh, Massoud Aman and Javad Tayyebi

the MST and MMST problems is in their objective functions, one can use any
formulation of MST problems to model MMST problems. Based on this fact, a
flow-based formulation of MMST problems is stated below.

min z (2a)

wij(yij + yji) ≤ z ∀(i, j) ∈ E, (2b)∑
j:(i,j)∈E

xij − xji =

{
n− 1 i = 1,
−1 i ̸= 1,

∀i ∈ V, (2c)

yij ≤ xij ≤ (n− 1)yij ∀(i, j) ∈ E, (2d)

yji ≤ xji ≤ (n− 1)yji ∀(i, j) ∈ E, (2e)

yij + yji ≤ 1 ∀(i, j) ∈ E, (2f)

yij , yji ∈ {0, 1} ∀(i, j) ∈ E, (2g)

xij , xji ≥ 0 ∀(i, j) ∈ E, (2h)

in which xij and xji are flow values on edge (i, j) from i to j and from j to
i, respectively, and yij and yji are zero-one variables to determine whether any
flow passes through edge (i, j), or not. Constraint (2b) guarantees that z is the
maximum weight of the desired spanning tree. Constraint (2c) states that a single
unit of flow has to be sent from node 1 to the other nodes. Constraints (2d) and
(2e) ensure that yij = 1 (yij = 1) if and only if at least one unit of flow passes
through (i, j) ((j, i). Constraint (2f) is added due to sending flow only on a
direction of any edge.

Liu and Yao [13] used an optimality condition of MMST problems to investi-
gate inverse MMST problems. Let us mention it below.

Lemma 1. (Lemma 2.1 in [13]) A spanning tree T of G is a min-max spanning
tree under a weight vector w if and only if G becomes disconnected after deleting
the edges whose costs are not less than max(i,j)∈T wij.

Using the notion of cuts, one can simply state Lemma 1 in another fashion.

Lemma 2. A spanning tree T is a min-max spanning tree with optimal value p
if and only if there is a cut C so that{

wij ≤ p (i, j) ∈ T,
wij ≥ p (i, j) ∈ C,

∀(i, j) ∈ E. (3)

Proof. For a proof, see [19].

Notice that, based on optimality conditions (3), all edges belonging to C ∩ T
have the same weight equal to p.

Remark 1. Although the min-max spanning tree problem is considered in this
section, similar results can be obtained for the max-min spanning tree problems

Bottleneck spanning tree interdiction problem 189

3 Problem statement

This section introduces the bottleneck (min-max) spanning tree interdiction
problem and formulates it.

In the conventional min-max spanning tree problem, a decision maker, called
the user, wants to find a spanning tree so that its maximum weight is minimized.
So he/she requires to solve problem (2). Now, consider the situation in which
another decision maker, called the attacker, wants to increase the objective value
of problem (2) since he/she follows a conflicting goal. This can be achieved either
by removing some edges or by increasing edge weights. This paper selects the
latter because as early discussed, the former is a special case of the other. Two
constraints restrict the attacker in increasing weights:

� The bound constraints: Each edge has an upper bound wU
ij which is the

maximum amount that its weight is allowed to be increased.

� The budget constraint: There is a total budget B which can be spent for
increasing weights.

Based on this argument, the min-max spanning tree interdiction problem is for-
mulated as follows:

max z′ (4a)∑
(i,j)∈E

bij(w̄ij) ≤ B, (4b)

wij ≤ w̄ij ≤ wU
ij (i, j) ∈ E, (4c)

z′ = min{z : (4d)

w̄ij(yij + yji) ≤ z ∀(i, j) ∈ E, (4e)∑
j:(i,j)∈E

xij − xji =

{
n− 1 i = 1,
−1 i ̸= 1,

∀i ∈ V, (4f)

yij ≤ xij ≤ (n− 1)yij ∀(i, j) ∈ E, (4g)

yji ≤ xji ≤ (n− 1)yji ∀(i, j) ∈ E, (4h)

yij + yji ≤ 1 ∀(i, j) ∈ E, (4i)

yij , yji ∈ {0, 1} ∀(i, j) ∈ E, (4j)

xij , xji ≥ 0 ∀(i, j) ∈ E}. (4k)

Formulation (4) is a bilevel programming problem in which w̄ij ’s are decision
variables of the first level to be determined by the attacker and bij is a cost
function of (i, j) which calculates the cost amount of increasing weight of (i, j)
from wij to w̄ij . The second level is an instance of problem (2) with respect to
new edge weights w̄ij .

This paper considers problem (4) for two distinct cases of cost functions
bij(w̄ij). In the first case, bij(w̄ij) is a bi-valued function. It takes zero if w̄ij = wij

and a fixed value rij > 0 otherwise. In the second case, bij(w̄ij) is a linear function

190 Abolfazl Abdolahzadeh, Massoud Aman and Javad Tayyebi

Figure 1: An instance of the min-max spanning tree interdiction problem with the total budget
B = 6 and wU

ij = 6 for every edge (i,j)

Table 1: The payoff matrix of players
Spanning trees\Cuts {(1, 2), (1, 3)} {(1, 2), (2, 3)} {(1, 3), (2, 3)} {(2, 4)}
{(1, 3), (1, 2), (2, 4)} 6 6 6 4
{((1, 3), (3, 2), (2, 4)} 6 5 6 5
{(1, 2), (2, 3), (2, 4)} 6 6 5 5

as cij(w̄ij −wij) in which cij is a fixed value equal to the cost per unit increment
in (i, j). The first case is an extension of the problem in which the attacker’s
strategy is to remove edges because one can set upper bounds to a very large
number so that if the attacker increases the weight of an edge to its upper bound,
then the user never selects the edge. In the special case when all rij = 1, the
problem is converted to finding the B-most vital edges [10, 16].

4 Fixed costs

This section considers problem (4) in the case that costs are fixed. It presents
an efficient algorithm to solve the problem.

Based on Lemma 1, if the attacker increases weights of a cut, then the best
payoff of the user is at most equal to the maximum weight of the cut. So it is
reasonable that the attacker begins with increasing weights of the cut (from small
to large) until his/her budget is insufficient. This gives us the idea that a pure
strategy of the attacker is to choose a cut while the pure strategy of the user is
to select a spanning tree. As an example, consider the instance shown in Figure
1. It contains 3 spanning trees and 4 cuts. Before the attacker’s play, the user’s
optimal spanning tree is {((1, 3), (1, 2), (2, 4)} whose weight is equal to 4. If the
attacker chooses the cut {(1, 2), (1, 3)}, then he/she first increases the weight of
(1, 2) from 2 to 6 and then increases the weight of (1, 3) from 4 to 6. This causes
that the optimal weight of the user becomes 6. One can simply check that the
same solution is optimal. Table 1 displays the payoff matrix for the players. It
is easy to see that the Nash-equilibrium strategy is the same optimal solution.

Bottleneck spanning tree interdiction problem 191

Although this idea can be extended to the general case, it cannot be applied
to as an approach for solving problem (4) because the number of the players’
pure strategies grows exponentially. However, it gives the worthwhile result that
problem (4) can be seen to as a simultaneous zero-sum game which has always
a pure equilibrium solution. Notice that if the attacker chooses a cut C, then
he/she can solve the following bottleneck knapsack problem to understand how
to increase edge weights:

min max
(i,j)∈C

{w̄ij}

s.t.
∑

(i,j)∈C

bij(w̄ij) ≤ B,

wij ≤ w̄ij ≤ wU
ij (i, j) ∈ C,

where the parameters are defined similar to problem (2). It is easy to see that
the optimal value of this problem is a upper bound on the payoff of the zero-sum
game.

To develop an efficient algorithm, we introduce a new weight vector corre-

sponding to a cut C and a value p. This vector is denoted by w̄
(C,p)
ij and is defined

as

w̄
(C,p)
ij =

{
p wij < p ∧ (i, j) ∈ C,
wij otherwise,

∀(i, j) ∈ E. (5)

It is easy to see that the user’s payoff is at least equal to p with respect to the
new weight vector w̄.

Lemma 3. If there is a feasible weight vector of problem (4) whose objective value
is equal to p, then there is a cut so that w̄(C,p) is also feasible.

Proof. The proof is straightforward.

Based on Lemma 3, we can restrict ourselves to weight vectors defined as (5)
to find an optimal solution. The proposed approach is to find the greatest value
of p so that w̄(C,p) satisfies the bound and budget constraints. For this purpose,
we introduce a new cost vector bp as follows:

bpij =

0 p ≤ wij ,
rij wij < p ≤ wu

ij ,

+∞ wu
ij < p,

∀(i, j) ∈ E. (6)

The following lemma states the relationship between the new weight vector and
the new cost vector.

Lemma 4. The capacity of a cut C with respect to bp is less than or equal to B
if and only if w̄(C,p) satisfies the bound and budget constraints.

Proof. By definition, the proof is immediate.

192 Abolfazl Abdolahzadeh, Massoud Aman and Javad Tayyebi

We are ready to state our proposed algorithm in complete details. This al-
gorithm uses a binary search on a set of possible objective values to look for the
greatest value p so that w̄(C,p) satisfies the bound and budget constraints for some
cut C. From Lemma 4, a minimum cut can be found with respect to bp. If the
capacity of the minimum cut is less than or equal to B, then w̄(C,p) is feasible
and otherwise, there is no feasible solution with the objective value greater than
or equal to p. The following lemma establishes the search space for finding the
optimal value.

Lemma 5. The optimal value of problem (4) belongs to
⋃

(i,j)∈E{wij , w
U
ij}.

Proof. The proof is trivial.

The algorithm is stated formally in Algorithm 1.

Algorithm 1 to solve problem (4) with fixed costs.

Input: An instance of problem (4) with fixed costs.
Output: An optimal solution w̄∗ with optimal value z∗.
Sort the elements of

⋃
(i,j)∈E{wij , w

U
ij} in nondecreasing order. Let p1 ≤ p2 ≤

. . . p2m be the ordered list.
Set L = 1 and U = 2m.
Find the minimum cut C with respect to bpU defined by (6).
if the capacity of C is greater than B then

Stop because the problem is infeasible.
end if
while U − L ≥ 1 do

Set mid = ⌈L+U
2 ⌉.

Find the minimum cut C with respect to bpmid defined by (6).
if the capacity of C is greater than B then

Set U = mid− 1.
else:

Set L = mid, w̄∗ = w̄(C,pmid) and z∗ = max(i,j)∈C w∗
ij .

end if
end while

Theorem 1. Algorithm 1 solves problem (4) with fixed costs in O(log(n)S(n,m))
where S(n,m) is the required time for finding a minimum cut in the network G
with n nodes and m edges.

Proof. The correctness of Algorithm 1 is valid based on the above argument. Since
the bottleneck operation of the algorithm is finding a minimum cut in While loop,
and the number of iterations in the loop are O(log(2m)) = O(log(n)), it follows
that the complexity of Algorithm 1 is O(log(n)S(n,m)).

Since a minimum cut can be iteratively constructed by n − 1 maximum flow
computations in (n − 1)O(mn log n) = O(mn2 log n) time [8, 17], it follows that
Algorithm 1 solves problem (4) with fixed costs in polynomial time.

Bottleneck spanning tree interdiction problem 193

5 Linear costs

In this section, we consider problem (4) with linear costs. Hereafter, it is
assumed that bij(w̄ij) = cij(w̄ij − wij) for every edge (i, j) ∈ E.

Since the only difference between the problems with linear and fixed costs is
in the budget constraint, we can use the same notion of solution presented in (5)
again. For this purpose, we recall that if the capacity of a minimum cut C with
respect to b′p defined as

b′
p
ij =

0 p ≤ wij ,
cij(p− wij) wij < p ≤ wu

ij ,

+∞ wu
ij < p,

(7)

is less than or equal to B, then the vector w̄(C,p) defined by (5) is a feasible
solution of problem (4) with linear costs. On the other hand, if the capacity of
a minimum cut C with respect to b′p is greater than B, then problem (4) does
not contain any feasible solution with the objective value better than p. So, we
restrict ourselves to the solution in the form of (5) to find an optimal solution.
Hereafter, we denote the total cost corresponding to w̄(C,p) by c(p), i.e.,

c(p) =
∑

(i,j)∈C

cij(w̄
(C,p)
ij − wij).

As mentioned, Algorithm 1 searches the optimal value z∗ among a finite number
of elements (see Lemma 5). In the case of linear costs, the total cost is not discrete
and Lemma 5 is not valid. So, we have to look for the optimal value in a continuous
interval. Hence, by using the binary search, we can find a small interval containing
the optimal value z∗. Nevertheless, we have to reply this question how to find the
exact value z∗ in a small interval. For this purpose, we must impose an additional
assumption to the problem.

Assumption All the parameters of problem (4) are integer. It is obvious that
if all parameters are rational, then we can transform them into integer numbers
by multiplying them with the common denominator of all considered rational
numbers. Moreover, if some parameters are irrational, then we have to convert
them into rational numbers for storing them on a computer. Hence, Assumption
?? is not a restrictive assumption in practice.

Lemma 6. Let z∗ be the optimal value of problem (4) and w̄∗ = w(C,z∗) be its cor-
responding optimal solution for some minimum cut C. Either z∗ ∈

⋃
(i,j)∈E{wU

ij}
or the budget constraint is satisfied in the equality form, i.e.,

c(z∗) =
∑

(i,j)∈C

cij(w̄
(C,z∗) − wij) =

∑
(i,j)∈C

cij max{0, z∗ − wij} = B.

Proof. If z∗ /∈
⋃

(i,j)∈E{wU
ij}, then any bound constraint is not binding. So, if

the budget constraint is not satisfied in the equality form, then we can increase
z∗ by a small value ϵ satisfying all the constraints in the first level. This is a
contradiction with the fact that z∗ is the optimal value.

194 Abolfazl Abdolahzadeh, Massoud Aman and Javad Tayyebi

Suppose that we have found an interval (pL, pU) containing the optimal value
and its length is less than 1. Without loss of the generality, we can assume that

(pL, pU) ∩
⋃

(i,j)∈E

{wij , w
U
ij} = ∅

because based on Assumption ??, they have at least one common element p,
which can be removed in an additional step by assuming either pL = p or pU = p.
Suppose that E′ = {(i, j) : wij < pL and pU < wU

ij} is the set of edges which
are potential to be modified. By this argument, we know that the optimal value
satisfies the budget constraint in the equality form. So, the optimal value can be
obtained explicitly as follows:∑

(i,j)∈C

cij max{0, z∗ − wij} = B,

=⇒
∑

(i,j)∈C∩E′

cijz
∗ − cijwij = B,

=⇒ z∗ =
B +

∑
(i,j)∈C∩E′ cijwij∑
(i,j)∈C∩E′ cij

. (8)

Hence, we have proved the following lemma.

Lemma 7. If (pL, pU) is an interval which contains the optimal value and it
has not any intersection with

⋃
(i,j)∈E{wij , w

U
ij}, then finding the optimal value is

equivalent to solving the following maximum ratio cut problem (8).

max
C∈C

B +
∑

(i,j)∈C∩E′ cijwij∑
(i,j)∈C∩E′ cij

(9)

in which E′ = {(i, j) : wij < pL ∧ pU < wU
ij} and C is the set of all cuts.

Since the set C is finite, then the number of objective values in problem (9)
is also finite. If we can find a small interval (pL, pU) containing only one ob-
jective value, then it is the same optimal value. For this purpose, let p1 =
B+

∑
(i,j)∈C1∩E′ cijwij∑
(i,j)∈C1∩E′ cij

and p2 =
B+

∑
(i,j)∈C2∩E′ cijwij∑
(i,j)∈C2∩E′ cij

be two distinct objective val-

ues for some cuts C1, C2 ∈ C. Then,

|p2 − p1| = |
B +

∑
(i,j)∈C1∩E′ cijwij∑
(i,j)∈C1∩E′ cij

−
B +

∑
(i,j)∈C2∩E′ cijwij∑
(i,j)∈C2∩E′ cij

| (10)

≥ 1∑
(i,j)∈C1∩E′ cij

∑
(i,j)∈C2∩E′ cij

(11)

≥ 1

n2C2
. (12)

where C = max(i,j)∈E{cij}. Here, the first inequality is derived from Assumption

?? and the fact that p1 ̸= p2. So, if the length of (pL, pU) is less than
1

n2C2 , then

Bottleneck spanning tree interdiction problem 195

we can assure that there is only one value
B+

∑
(i,j)∈C∩E′ cijwij∑
(i,j)∈C∩E′ cij

at this interval which

is the same optimal value. Hence, the optimal value can be computed by a linear
search from either pL or pU .

Algorithm 2 describes our proposed approach for solving problem (4) with
linear costs.

Theorem 2. Algorithm 2 solves problem (4) in O(log(nCW)S(n,m)) time where
W = max(i,j)∈E{wU

ij}, C = max(i,j)∈E{cij}, and S(n,m) is the required time for
finding a minimum cut in the network G with n nodes and m edges.

Proof. The correctness of Algorithm 2 follows from the above argument. The
length of the initial interval (pL, pU) is at most nW . On the other hand, the
While loop decreases it by a factor 2 at each iteration until its length becomes
less than 1

n2C2 . So, the number of iterations of While loop is at most log(nCW) =
log(n3C2W). Since the bottleneck operation of the algorithm is to find a minimum
cut in While loop, it follows that the complexity of Algorithm 2 is O(log(nCW)
S(n,m)).

6 Conclusion

This paper studied the bottleneck spanning tree interdiction problem under
two kinds of edge costs: fixed costs and linear costs. In both the cases, it presented
the algorithms to solve the problem in polynomial time. Both the algorithms are
designed based on the divide-and-conquer approach.

As the future works, it will be meaningful to consider other interdiction prob-
lems on spanning tree structures, such as min+sum spanning tree interdiction
problem.

196 Abolfazl Abdolahzadeh, Massoud Aman and Javad Tayyebi

Algorithm 2 to solve problem (4) with linear costs.

Input: An instance of problem (4) with linear costs.
Output: An optimal solution w̄∗ with optimal value z∗.
Find a min-max spanning tree with respect to wU . Let pU be its optimal value.
Find the minimum cut C with respect to bpU defined by (6).
if the capacity of C is less than or equal to B then

Stop because the problem has the optimal solution w̄∗ = w̄(C,pU) and z∗ =
pU .
end if
Set pL = 0
while pU − pL ≥ 1

n2C2 do

Set p = [pU+pL
2].

Find the minimum cut C with respect to bp defined by (6).
if the capacity of C is equal to B then

Stop because the problem has the optimal solution w̄∗ = w̄(C,p) and
z∗ = max(i,j)∈C w∗

ij .
else if the capacity of C is greater than B then

Set pU = p.
else

Set pL = p.
end if

end while
if (pL, pU) ∩

⋃
(i,j)∈E{wij , w

U
ij} ≠ ∅ then

Let p ∈ (pL, pU) ∩
⋃

(i,j)∈E{wij , w
U
ij}.

Find the minimum cut C with respect to bp defined by (6).
if the capacity of C is equal to B then

Stop because the problem has the optimal solution w̄∗ = w̄(C,p) and
z∗ = p.

else if the capacity of C is greater than B then
Set pU = p.

else
Set pL = p.

end if
end if
Obtain the capacities mL and mU of minimum cuts with respect to bpL and
bpU , respectively.
Set p1 = pL + B−c(pL)

mL
and p2 = pU + B−c(pU)

mU
.

Find the minimum cut C with respect to bp1 defined by (6).
if the capacity of C is equal to B then

The problem has the optimal solution w̄∗ = w̄(C,p1) and z∗ = p1.
else

Find the minimum cut C with respect to bp2 defined by (6).
The problem has the optimal solution w̄∗ = w̄(C,p2) and z∗ = p2.

end if

Bottleneck spanning tree interdiction problem 197

References

[1] Abdolahzadeh, A., Aman, M. and Tayyebi, J., Minimum st-cut interdiction
problem, Computers & Industrial Engineering, 148, (2020), 106708.

[2] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B., Network Flows: Theory,
Applications and Algorithms, Prentice-Hall, Englewood Cliffs, New Jersey,
USA Arrow, KJ, (1993).

[3] Bazgan, C., Toubaline, S. and Vanderpooten, D., Critical edges/nodes for the
minimum spanning tree problem: complexity and approximation, Journal of
Combinatorial Optimization, 26, (2013), no. 1, 178-189.

[4] Bazgan, C., Toubaline, S. and Vanderpooten, D., Efficient determination of
the k most vital edges for the minimum spanning tree problem, Computers
and Operations Research, 39, (2012), no. 11, 2888-2898.

[5] Camerini, P. M., The min-max spanning tree problem and some extensions.
Information Processing Letters, 7, (1978), no. 1, 10-14.

[6] Feremans, C., Labbé, M. and Laporte, G., A comparative analysis of several
formulations for the generalized minimum spanning tree problem, Networks:
An International Journal, 39, (2002), no. 1, 29-34.

[7] Ghorbani-Renani, N., González, A. D. and Barker, K., A decomposition ap-
proach for solving tri-level defender-attacker-defender problems, Computers
and Industrial Engineering, 153, (2021), 107085.

[8] Hartmann, T. and Wagner, D., Fast and simple fully-dynamic cut tree con-
struction, In International Symposium on Algorithms and Computation,
Springer, Berlin, Heidelberg, (2012), 95-105.

[9] Holzmann, T. and Smith, J. C., The shortest path interdiction problem with
randomized interdiction strategies: Complexity and algorithms, Operations
Research, 69, (2021), no. 1, 82-99.

[10] Hsu, L. H., Jan, R. H., Lee, Y. C., Hung, C. N. and Chern, M. S., Finding
the most vital edge with respect to minimum spanning tree in weighted graphs,
Information Processing Letters, 39, (1991), no. 5, 277-281.

[11] Johnson, M. P., Gutfraind, A. and Ahmadizadeh, K., Evader interdiction:
algorithms, complexity and collateral damage, Annals of operations research,
222, (2014), no. 1, 341-359.

[12] Julien, L. A., Stackelberg games, In Handbook of Game Theory and Industrial
Organization, Volume I, Edward Elgar Publishing, 2018.

[13] Liu, L. and Yao, E., Inverse min-max spanning tree problem under the
weighted sum-type Hamming distance, In International Symposium on

198 Abolfazl Abdolahzadeh, Massoud Aman and Javad Tayyebi

Combinatorics, Algorithms, Probabilistic and Experimental Methodologies,
Springer, Berlin, Heidelberg, (2007), 375-383.

[14] Mohammadi, A. and Tayyebi, J. (2019). Maximum capacity path interdiction
problem with fixed costs. Asia-Pacific Journal of Operational Research, 36
(2019), no. 4, 1950018.

[15] Pop, P. C., The generalized minimum spanning tree problem: An overview of
formulations, solution procedures and latest advances, European Journal of
Operational Research, 283, (2020), no. 1, 1-15.

[16] Shen, H., Finding the k most vital edges with respect to minimum spanning
tree, Acta Informatica, 36, (1999), no. 5, 405-424.

[17] Sleator, D. D. and Tarjan, R. E., A data structure for dynamic trees, Journal
of computer and system sciences, 26, (1983), no. 3, 362-391.

[18] Smith, J. C. and Song, Y., A survey of network interdiction models and
algorithms, European Journal of Operational Research, 283 (2020), no. 3,
797-811.

[19] Tayyebi, J. and Sepasian, A. R., Partial inverse min-max spanning tree prob-
lem, Journal of Combinatorial Optimization, 40, (2020), no. 4, 1075-1091.

[20] Washburn, A. and Wood, K., Two-person zero-sum games for network inter-
diction, Operations research, 43, (1995), no. 2, 243-251.

[21] Wei, N., Walteros, J. L. and Pajouh, F. M., Integer programming formulations
for minimum spanning tree interdiction, INFORMS Journal on Computing,
33, (2021), no. 4, 1461-1480.

[22] Zenklusen, R., Matching interdiction, Discrete Applied Mathematics, 158
(2010), no. 15, 1676-1690.

[23] Zenklusen, R., An O(1)-approximation for minimum spanning tree interdic-
tion, In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science (2015), 709-728.

[24] Zhang, Q., Guan, X., Wang, H. and Pardalos, P. M., Maximum shortest path
interdiction problem by upgrading edges on trees under hamming distance,
Optimization Letters, 15 (2021), no. 8, 2661-2680.

