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Abstract

In [8, Theorem 1], Jain and Prasad obtained a kind of symmetry of reg-
ular rings which is interesting and useful in the theory of shorted operators
(cf. [9]). We show that this symmetry property indeed holds for endo-
morphism rings of Leavitt path algebras. Using this property, we analyze a
(strong/weak) regular inverse of an element of the regular the endomorphism
ring A of the Leavitt path algebra L := LK(E) (viewed as a right L-module).
We also introduce some partial orders on the endomorphism ring A of the
Leavitt path algebra L and investigate the behavior of regular elements in
A.
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1 Introduction

If E is a directed graph and K is a field, LK(E) denotes the Leavitt path al-
gebra of E over K. LK(E) was introduced independently by Abrams and Aranda
Pino [1], and by Ara, Moreno and Pardo [5], using different approaches. Since
then, these algebras garnered significant interest and attention of ring theorists
and operator algebraists, among others. Particular attention has been given to un-
derstanding basic algebra data: ideal structure, primeness, local chain conditions,
socle, etc.

Let E be a graph and K be a field. G. Aranda Pino, K. M. Rangaswamy
and M. Siles Molina [6] studied conditions on a graph E which are necessary and
sufficient for the endomorphism ring A of the Leavitt path algebra L := LK(E)
considered as a right L-module to be von Neumann regular (recall that a ring R
is von Neumann regular if for every a ∈ R there exists b ∈ R such that a = aba).

1∗ Corresponding author, Erzincan Binali Yıldırım University, Faculty of Science and
Art, Department of Mathematics, Erzincan, Turkey, e-mail: tufan.ozdin@hotmailcom;
tozdin@erzincan.edu.tr
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The algebra L embeds in A and A = L if the graph E has finitely many vertices.
The authors of [6] state that their focus is on the case when the graph E has
infinitely many vertices since some earlier works in the literature (for instance,
[2]) contain necessary and sufficient conditions on E for L to be von Neumann
regular, and they show in [6, Theorem 3.5] that, if E is a row-finite graph, A is von
Neumann regular if and only if E is acyclic and every infinite path ends in a sink
(equivalently, L is left and right self-injective and von Neumann regular if and only
if L is semisimple right L-module). In [8], Jain and Prasad obtained an interesting
symmetry property for von Neumann regular rings: Let R be a ring and a, b ∈ R.
If a+b is regular, then aR⊕bR = (a+b)R (equivalently, Ra⊕Rb = R(a+b)) if and
only if aR∩bR = 0 = Ra∩Rb. The authors of [13] introduced symmetry property
of endomorphism ring of the module. It is quite natural to ask if this symmetry
property holds in the case of endomorphism rings of Leavitt path algebras. Let E
be an arbitrary graph, K be any field, A be the endomorphism ring of L = LK(E)
as a right LK(E)-module and f, g ∈ A. If f + g is a regular element, then, by
[8], fA ⊕ gA = (f + g)A (equivalently, Af ⊕ Af = A(f + g)) if and only if
fA ∩ gA = (0) = Af ∩ Ag. Similarly, we have λf(x)L⊕ λg(x)L = λf(x)+g(x)L, for
all x ∈ L (equivalently, Lλf(x) ⊕ Lλg(x) = Lλf(x)+g(x), for all x ∈ L) if and only
if λf(x)L ∩ λg(x)L = (0) = Lλf(x) ∩ Lλg(x) for all x ∈ L, under the assumption
regularity of f+g. We also prove that, f+g is a regular element in A, if fA⊕gA =
(f+g)A (or equivalently, Af⊕Af = A(f+g)), then λf(x)L⊕λg(x)L = λf(x)+g(x)L,
for all x ∈ L (or equivalently, Lλf(x) ⊕ Lλg(x) = Lλf(x)+g(x), for all x ∈ L) , and
if fA∩ gA = (0) = Af ∩Ag, then λf(x)L∩ λg(x)L = (0) = Lλf(x) ∩Lλg(x), for all
x ∈ L.

Shorted operators associated to positive semidefinite Hermitian matrices were
introduced by Anderson [3]; they correspond to impedance matrices of electrical
networks with some ports shorted out. Let S denote the set of positive semidefinite
Hermitian n×n matrices, and let e be an idempotent n×n complex matrix. For
a ∈ S\eSe∗, there is a unique shorted operator of a corresponding to the subspace
eCn, the formulas for which were given by Anderson and Trapp [4]. In [9], the
authors showed that the above shorted operator is permutation equivalent to
af+

a f , where f = e∗ and f+
a is the a-weighted Moore-Penrose inverse of f . They

also obtained this result from an analysis of a partial order ≤⊕ on Mn(C), by
proving that if the partially ordered set C = {s ∈ eSe∗ : s ≤⊕ a} has maximal
(meaning maximal proper) elements, then af+

a f is the unique maximal element
of C. In the literature, many of the papers involve extensions of these ideas to
elements of an arbitrary (von Neumann) regular ring R; specialization to the case
in which R = Mn(C) yields the above results. The relation ≤⊕ on R is defined as
follows: ≤⊕ if and only if bR = aR⊕ (b− a)R. Now we recall again [8, Theorem
1]. The latter condition is right-left symmetric by [8, Theorem 1]. Moreover,
as proved in [8, Remark 1], ≤⊕ coincides with a differently defined partial order
introduced by Hartwig [7]. Hartwig-Luh showed that, when R is a regular ring,
the statement (2) is equivalent to the statement (3) in [8, Theorem 1] with the
additional hypothesis that a ∈ bRb (see [12, page 5]). For any two elements a, b
in a von Neumann regular ring R, the relations ≤⊕, ≤− and ≤s on R are also
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defined as follows:

1. a ≤⊕ b if bR = aR⊕ (b− a)R.

2. a ≤− b if there exists an x ∈ R such that ax = bx and xa = xb, where
axa = a, and called it that a is less than or equal to b under the minus
partial order.

3. a ≤s b, if aR ⊆ bR and Ra ⊆ Rb.

In the present paper, we will introduce the relations ≤⊕, ≤− and ≤s on a
von Neumann regular endomorphism ring A of Leavitt path algebra LK(E) and
investigate the behavior of regular elements in A.

2 Definitions and preliminaries

We recall some graph-theoretic concepts, the definition and standard examples
of the Leavitt path algebras.

Definition 1. A (directed) graph E = (E0, E1, r, s) consist of two set E0 and E1

(with no restriction on their cardinals) together with maps r, s : E1 → E0. The
elements of E0 are called vertices and the elements of E1 edges. For e ∈ E1, the
vertices s(e) and r(e) are called the source and range of e. If s−1(v) is a finite set
for every v ∈ E0, then the graph is called row-finite. If E0 is finite and E is row
finite, then E1 must necessarily be finite as well; in this case we say simply that
E is finite.

A vertex which emits (receives) no edges is called a sink (source). A vertex v is
called an infinite emitter if s−1 is an infinite set. A path α in a graph E is a finite
sequence of edges α = e1...en such that r(ei) = s(ei+1) for 1 ≤ i ≤ n− 1. In this
case, s(α) = s(e1) and r(α) = r(en) are the source and range of α, respectively,
and n is the length of α. We view the elements of E0 as paths of length 0.

If α is a path in E, with v = r(α) = s(α) and s(ei) ̸= s(ej) for every i ̸= j,
then α is a called a cycle. A graph which contains no cycles is called acyclic.

Definition 2. (The Leavitt Path Algebras of Arbitrary Graph)
For an arbitrary graph E and a field K, the Leavitt path K-algebra of E,

denoted by LK(E), is the K-algebra generated by the set E0 ∪ E1 ∪ {e∗|e ∈ E1}
with the following relations,

(1) vivj = δvi,vjvi for every vi, vj ∈ E0

(2) s(e)e = e = er(e) for all e ∈ E1.

(3) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.

(4) (CK1) e∗f = δe,fr(e) for all e, f ∈ E1.

(5) (CK2)v =
∑

{e∈E1,s(e)=v} ee
∗ for every v ∈ E0 that is neither a sink nor an

infinite emitter.
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The first three relations are the path algebra relations. The last two are the so-
called Cuntz-Krieger relations. We let r(e∗) denote s(e), and we let s(e∗) denote
r(e). If α = e1...en is a path in E, we write α∗ for the element e∗n...e

∗
1 of LK(E).

With this notation, the Leavitt path algebra LK(E) can be viewed as a K−vector
space span of {pq∗ | p, q are paths in E}.

We remark that the Leavitt path algebras that we look at will not necessary
have a unit. If E is a graph and K is a field, the Leavitt path algebra LK(E) is
unital if and only if the vertex set E0 is finite, in which case

∑
v∈E0 v = 1LK(E).

However, every Leavitt path algebra does have a set of local units (A set of local
units for a ring R is a set S ⊆ R of commuting idempotents with the property
that for any x ∈ R there exists t ∈ S such that tx = xt = x. If R is a ring with
a set of local units S, then for any finite number of elements x1, ..., xn ∈ R, there
exists t ∈ S such that txi = xit = xi for all 1 ≤ i ≤ n.)

Let E be a graph with the field K and the Leavitt path algebra L := LK(E),
A the unital ring End(LL) and L be identified with a subring of A. Let Φ : L →
End(LL) be a monomorphism of rings such that x 7→ λx, where λx : L → L is a left
multiplication by x, i.e. for every y ∈ L, λx(y) := xy which is a homomorphism
of right L-modules. The map Φ is also a monomorphism because given a nonzero
x ∈ L there exists an idempotent u ∈ L such that xu = x, hence 0 ̸= x = λx(u).

Throughout the paper, we will assume that E is an arbitrary graph, K is any
field and A is the endomorphism ring of L := LK(E) as a right L-module.

3 Main results

An element a ∈ R is called regular if axa = a for some x ∈ R and x is called
an inverse of a. We will denote an arbitrary regular inverse of a by a(1). An
element a ∈ R is called weakly regular if xax = x for some x ∈ R, and x is called
a weak regular inverse of a. We will denote a weak regular inverse of a by a(2).
If axa = a and xax = x, then x is called a strong von Neumann inverse of a. We
will denote a strong regular inverse of a by a(1,2).

The regularity of HomR(M,N), where M and N right-R modules, was intro-
duced by Kasch and Mader in [10] to extend the notion of the regularity of a ring
to HomR(M,N). Recall that f ∈ HomR(M,N) is called regular if f = fgf for
some g ∈ HomR(N,M). The module HomR(M,N) is said to be regular if each
f ∈ HomR(M,N) is regular. (see also some result of HomR(M,N) in [14], [15]
and [16]).

Let E be an arbitrary graph, K be any field, A be the endomorphism ring of
L := LK(E) as a right L-module. By [6, Proposition 3.1], if x is a regular inverse
of a ∈ A, then, choosing an idempotent u ∈ L satisfying ua = a = au so that
λa = λua, there is a regular inverse λf(u) of λa in L.

If a ∈ A is a regular element, then λa is the regular element in L by [6,
Proposition 3.1].
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Lemma 1. 1. For any a, b ∈ L, λa+b = λa + λb.

2. If f, g ∈ A such that λf(x) ∈ {λg(x)
(1)} for all x ∈ L, then f ∈ {g(1)}.

3. If f, g ∈ A such that f + g is a regular element, then λf(x)+g(x) is regular
element in L, for any x ∈ L.

Proof. (1) For every x ∈ L, we get

λa+b(x) = (a+ b)x
= ax+ bx
= λa(x) + λb(x)
= (λa + λb)(x),

which implies λa+b = λa + λb.
(2) Let λf(x) ∈ {λg(x)

(1)} for all x ∈ L. Then λg(x)λf(x)λg(x) = λg(x), for all
x ∈ L. So λg(x)f(x)g(x) = λg(x), and hence g(x)f(x)g(x) = f(x) for all x ∈ L.

(3) Take x ∈ L. Since f + g is a regular element in A, there is an h ∈ A such
that f + g = (f + g)h(f + g). Hence,

λf(x)+g(x) = λ(f(x)+g(x))h(x)(f(x)+g(x))

= λf(x)+g(x)λh(x)λf(x)+g(x).

Thus λf(x)+g(x) is regular element in L for all x ∈ L.

In [8, Theorem 1], the authors obtained a kind of symmetry of regular rings
which is interesting and useful in the theory of shorted operators (cf. [9] and
[13]). So we have this symmetry property indeed holds for endomorphism rings
of Leavitt path algebras:

Corollary 1. Let f, g ∈ A. If f + g is a regular element, then the following are
equivalent :

1. fA⊕ gA = (f + g)A

2. Af ⊕Ag = A(f + g)

3. fA ∩ gA = (0) = Af ∩Ag.

Similarly, we have the following equivalent implications under the assumption
regularity of f + g by Lemma 1:

4. λf(x)L⊕ λg(x)L = λf(x)+g(x)L, for all x ∈ L,

5. Lλf(x) ⊕ Lλg(x) = Lλf(x)+g(x), for all x ∈ L,

6. λf(x)L ∩ λg(x)L = (0) = Lλf(x) ∩ Lλg(x), for all x ∈ L,
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Theorem 1. Let f, g ∈ A. Assume that f + g is a regular element.

1. If fA⊕gA = (f+g)A (or equivalently, Af⊕Af = A(f+g)), then λf(x)L⊕
λg(x)L = λf(x)+g(x)L, for all x ∈ L (or equivalently, Lλf(x) ⊕ Lλg(x) =
Lλf(x)+g(x), for all x ∈ L) .

2. If fA ∩ gA = (0) = Af ∩Ag, then λf(x)L ∩ λg(x)L = (0) = Lλf(x) ∩ Lλg(x),
for all x ∈ L.

Proof. Let Af ⊕ Ag = A(f + g). Since f + g is a regular element, by Lemma
1, we get λf(x)+g(x) is regular in L. Hence there exists an h ∈ A such that
λf(x)+g(x) = λf(x)+g(x)λh(x)λf(x)+g(x) for all x ∈ L. Write f = r(f + g) and
g = s(f + g) for some r, s ∈ A. Clearly,

λf(x) = λr(x)(f(x)+g(x))

= λr(x)λf(x)+g(x)

and
λg(x) = λs(x)(f(x)+g(x))

= λs(x)λf(x)+g(x).

They imply that

λf(x)λh(x)λf(x)+g(x) = λr(x)λf(x)+g(x)λh(x)λf(x)+g(x)

= λr(x)λf(x)+g(x)

= λf(x)

and
λg(x)λh(x)λf(x)+g(x) = λs(x)λf(x)+g(x)λh(x)λf(x)+g(x)

= λs(x)λf(x)+g(x)

= λg(x).

Note that λf(x) ∈ λf(x)L and λg(x) ∈ λg(x)L. Since Af ⊕ Ag = A(f + g) and
Af ∩Ag = (0), by Lemma 1,

λf(x) = λf(x)λh(x)λf(x)+g(x) = λf(x)λh(x)λf(x) + λf(x)λh(x)λg(x)

which implies
λf(x) = λf(x)λh(x)λf(x)

0 = λf(x)λh(x)λg(x)

λg(x) = λg(x)λh(x)λf(x)+g(x) = λg(x)λh(x)λf(x) + λg(x)λh(x)λg(x),

and so
λg(x) = λg(x)λh(x)λg(x)

0 = λg(x)λh(x)λf(x).

Hence,

λf(x)+g(x) = λf(x) + λg(x)

= λf(x)λh(x)λf(x) + λf(x)λh(x)λg(x) + λg(x)λh(x)λf(x) + λg(x)λh(x)λg(x)

= (λf(x) + λg(x))λh(x)λf(x) + (λf(x) + λg(x))λh(x)λg(x)

= (λf(x) + λg(x))(λh(x)λf(x) + λh(x)λg(x)),
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which implies λf(x)+g(x)L = λf(x)L+ λg(x)L.
Now we show that λf(x)L ∩ λg(x)L = 0. Let y ∈ λf(x)L ∩ λg(x)L. Then

y = λf(x)k = λg(x)l for some k, l ∈ L. Thus

y = λf(x)k

= λf(x)λh(x)λf(x)k

= λf(x)λh(x)λg(x)︸ ︷︷ ︸
0

l

= 0

and so λf(x)L ∩ λg(x)L = 0. Finally, λf(x)L⊕ λg(x)L = λf(x)+g(x)L.

According to [8] and [9], for any two elements a, b in a von Neumann regular
ring R, the relations ≤⊕, ≤− and ≤s on R are defined as follows:

a ≤⊕ b if and only if bR = aR⊕ (b− a)R, and called it the direct sum partial
order.

a ≤− b if there exists an x ∈ R such that ax = bx and xa = xb, where axa = a,
and called it that a is less than or equal to b under the minus partial order.

a ≤s b, if aR ⊆ bR and Ra ⊆ Rb.
It is easy to see that ≤s is pre-order and that a ≤− b implies a ≤s b.

Proposition 1. If A is regular and f, g ∈ A, then the following conditions hold.

1. If f ≤⊕ g, then λf(x) ≤⊕ λg(x) for all x ∈ L

2. If f ≤− g, then λf(x) ≤− λg(x) for all x ∈ L.

3. If f ≤s g, then λf(x) ≤s λg(x) for all x ∈ L.

Proof. (1) If f ≤⊕ g then we have gA = fA ⊕ (g − f)A. By Theorem 1 and
Lemma 1,

λf(x)L⊕ λf(x)−g(x)L = λg(x)L

which implies
λf(x)L⊕ (λf(x) − λg(x))L = λg(x)L

for any x ∈ L. Hence, λf(x) ≤⊕ λg(x) for all x ∈ L.
(2) By the hypothesis, there is an h ∈ A such that fh = gh and hf = hg,

where fhf = f . Take any x ∈ L. It is easy to see that λf(x)h(x) = λg(x)h(x) implies
λf(x)λh(x) = λg(x)λh(x), and λh(x)f(x) = λh(x)g(x) implies λh(x)λf(x) = λh(x)λg(x),
where λf(x) = λf(x)h(x)f(x) = λf(x)λh(x)λf(x). So λf(x) ≤− λg(x) for any x ∈ L.

(3) Let x ∈ L. Since f ≤s g we have fA ⊆ gA and Af ⊆ Ag, so there exist
an h ∈ A such that f = gh. We show, λf(x) ≤s λg(x) for all x ∈ L. Take any
y ∈ λf(x)L. Then y = λf(x)z for some z ∈ L. Clearly,

y = λf(x)z

= f(λx)z
= g(λx)h(λx)z
= λg(x)λh(x)z.
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Therefore, y ∈ λg(x)L and so λf(x)L ⊆ λg(x)L. Similarly, λg(x)L ⊆ λf(x)L. Thus
λf(x) ≤s λg(x) for all x ∈ L.

Remark 1. If A is regular and a, b ∈ A, then each of the statements (1)-(3) in
Corollary 1 is equivalent to

(1) f ≤− f + g
and each of the statements (4)-(6) in Corollary 1 is equivalent to

(2) λf(x) ≤− λf(x)+g(x), for all x ∈ L.

Let us continue with a study of the minus partial order in terms on a
(strong/weak) regular inverse of an element of the regular ring A.

Theorem 2. If A is regular and f, g ∈ A, then the following conditions are
equivalent

1. f ≤− g

2. λf(x) ≤− λg(x), for all x ∈ L.

3. {g(1)} ⊆ {f (1)}

4. {λg(x)
(1)} ⊆ {λf(x)

(1)}, for all x ∈ L.

5. {g(1,2)} ⊆ {f (1)}

6. {λg(x)
(1,2)} ⊆ {λf(x)

(1)}, for all x ∈ L.

Proof. (1) ⇒ (2) This follows from Proposition 1.
(1) ⇒ (3) As f ≤− g, there exists some h ∈ A such that fh = gh and hf = hg

where fhf = f . Clearly,

f(x) = f(x)h(x)f(x) = f(x)h(x)g(x) = g(x)h(x)f(x)

for any x ∈ L. For any t ∈ {g(1)} and for any x ∈ L, we have,

f(x)t(x)f(x) = (f(x)h(x)g(x))t(x)(g(x)h(x)f(x))
= f(x)h(x)(g(x)t(x)g(x))h(x)f(x)
= f(x)h(x)g(x)h(x)f(x)
= f(x)h(x)f(x) = f(x),

which implies t ∈ {f (1)}, i.e., {g(1)} ⊆ {f (1)}.
(2) ⇒ (4) Since λf(x) ≤− λg(x) for all x ∈ L, there exists a λh(x) ∈ {λf(x)

(1)}
such that λf(x)λh(x) = λg(x)λh(x) and λh(x)λf(x) = λh(x)λg(x). For any z ∈
{λg(x)

(1)},
λf(x)zλf(x) = λf(x)λh(x)λg(x)zλg(x)λh(x)λf(x)

= λf(x)λh(x)λg(x)λh(x)λf(x)

= λf(x)λh(x)λf(x)

= λf(x)

which implies z ∈ {λf(x)
(1)}. Thus {λg(x)

(1)} ⊆ {λf(x)
(1)} for all x ∈ L.
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(3) ⇒ (4) Let {g(1)} ⊆ {f (1)}. Take any λh(x) ∈ {λg(x)
(1)} for all x ∈ L. Then

λg(x) = λg(x)λh(x)λg(x)

= λg(x)h(x)g(x),

which implies g(x) = g(x)h(x)g(x), i.e., g = ghg. Thus, h ∈ {g(1)}. By the
hypothesis, h ∈ {f (1)}. Also, f(x) = f(x)h(x)f(x) implying

λf(x) = λf(x)h(x)f(x)

= λf(x)λh(x)λf(x),

and so λh(x) ∈ {λf(x)
(1)}. Hence {λg(x)

(1)} ⊆ {λf(x)
(1)} for all x ∈ L.

(3) ⇒ (5) and (4) ⇒ (6) are trivial.
(5) ⇒ (1) Fix h ∈ {g(1,2)} and set r = gh, s = hg. By the hypothesis,

h ∈ {f (1)}. So we get
f(x)h(x)f(x) = f(x)
g(x)h(x)g(x) = g(x)
h(x)g(x)h(x) = h(x)

for all x ∈ L. On the other hand,

f(x) = f(x)h(x)f(x)
= f(x)h(x)g(x)h(x)f(x)
= f(x)s(x)h(x)f(x)
= f(x)h(x)r(x)f(x).

Let t = hfh. Then, for any x ∈ L,

t(x) = h(x)f(x)h(x)
= h(x)g(x)h(x)f(x)h(x)
= h(x)f(x)h(x)g(x)h(x)
= h(x)g(x)h(x)f(x)h(x)g(x)h(x)

which implies
t(x) = h(x)r(x)f(x)s(x)h(x)

= s(x)h(x)f(x)h(x)r(x).

Since h(x) = h(x)g(x)h(x) = h(x)r(x) = s(x)h(x) for all x ∈ L, we get

h = hr = sh ∈ {g(1,2)} ⊆ {f (1)},

f(x)s(x) = f(x)h(x)(r(x)f(x)s(x)) = f(x)h(x)f(x) = f(x)

and
r(x)f(x) = (r(x)f(x)s(x))h(x))f(x) = f(x)h(x)f(x) = f(x).

Thus, for all x ∈ L,

f(x)t(x)f(x) = f(x)(h(x)f(x)h(x))f(x)
= (f(x)h(x)f(x))h(x)f(x)
= f(x)h(x)f(x)
= f(x),
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f(x)t(x) = f(x)(h(x)r(x)f(x)h(x))
= (f(x)h(x)r(x)f(x))h(x)
= f(x)h(x)
= r(x)f(x)h(x)
= g(x)h(x)f(x)h(x)
= g(x)t(x)

and
t(x)f(x) = (h(x)f(x)s(x)h(x))f(x)

= h(x)(f(x)s(x)h(x)f(x))
= h(x)f(x)
= h(x)f(x)s(x)
= h(x)f(x)h(x)g(x)
= t(x)g(x).

Hence, f ≤− g.

It is well known that the minus partial order is a partial order on A, when A
is regular.

Theorem 3. If A is regular and f, g ∈ A, then the following conditions are
equivalent.

1. f ≤s g

2. λf(x) ≤s λg(x) for all x ∈ L.

3. f = gg(1)f = fg(1)g

4. λf(x) = λg(x)λg(x)
(1)λf(x) = λf(x)λg(x)

(1)λg(x) for all x ∈ L.

5. fg(1)g is invariant under the all choices of g(1).

6. λf(x)λg(x)
(1)λf(x) is invariant under the all choices of λg(x)

(1) for all x ∈ L.

Proof. (1) ⇒ (2) This follows from Proposition 1.
(1) ⇒ (3) Let f ≤s g. Then fA ⊆ gA and Af ⊆ Ag. There exist h, t ∈ A

such that f = gh and f = tg. For all x ∈ L and for all g(1) ∈ {g(1)}, we obtain

f(x) = g(x)h(x)

= (g(x)g(1)(x)g(x))h(x)

= g(x)g(1)(x)f(x)

which implies f = gg(1)f and

f(x) = t(x)g(x)

= t(x)(g(x)g(1)(x)g(x))

= f(x)g(1)(x)g(x)

which implies f = fg(1)g.
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(3) ⇒ (4) Let f = gg(1)f = fg(1)g. For all x ∈ L, we have

f(λx) = g(λx)g
(1)(λx)f(λx)

implying
λf(x) = λg(x)λg(x)

(1)λf(x)

and
f(λx) = f(λx)g

(1)(λx)g(λx)

implying
λf(x) = λf(x)λg(x)

(1)λg(x).

(3) ⇒ (5) Let h, t ∈ {g(1)} be arbitrary. For every x ∈ L, we obtain that

f(x)h(x)f(x) = (f(x)g(1)(x)g(x))h(x)(g(x)g(1)(x)f(x))

= f(x)g(1)(x)(g(x)h(x)g(x))g(1)(x)f(x)

= f(x)g(1)(x)g(x)g(1)(x)f(x)

= (f(x)g(1)(x)g(x))g(1)(x)f(x)

= f(x)g(1)(x)f(x)

which implies fhf = fg(1)f and

f(x)t(x)f(x) = (f(x)g(1)(x)g(x))t(x)(g(x)g(1)(x)f(x))

= f(x)g(1)(x)(g(x)t(x)g(x))g(1)(x)f(x)

= f(x)g(1)(x)g(x)g(1)(x)f(x)

= (f(x)g(1)(x)g(x))g(1)(x)f(x)

= f(x)g(1)(x)f(x)

which implies ftf = fg(1)f . Hence fg(1)f is not depend on g(1).
(4) ⇒ (6) Let λh(x) ∈ {λg(x)

(1)} with x ∈ L. For every λg(x)
(1) ∈ {λg(x)

(1)},
we have λf(x) = λf(x)λg(x)

(1)λf(x).

Then (λg(x)λg(x)
(1))λg(x) = (λg(x)λg(x)

(1))λf(x)λg(x)
(1)λg(x), and so λf(x) =

λg(x)λg(x)
(1)λf(x)λg(x)

(1)λg(x). So, λf(x) = λg(x)λh(x)λf(x)λh(x)λg(x).
Now,

λf(x)λg(x)
(1)λf(x) = (λg(x)λh(x)λf(x)λh(x)λg(x))λg(x)

(1)(λg(x)λh(x)λf(x)λh(x)λg(x))

= λg(x)λh(x)λf(x)λh(x) (λg(x)λg(x)
(1)λg(x))︸ ︷︷ ︸

λg(x)

λh(x)λf(x)λh(x)λg(x)

= λg(x)λh(x)λf(x)λh(x)λg(x)λh(x)λf(x)λh(x)λg(x)

which does not depend on λg(x)
(1).

(5) ⇒ (6) Let λh(x), λt(x) ∈ {λg(x)
(1)} with x ∈ L and let fg(1)f be invariant

under the all choices of {g(1)}. By Lemma 1, h, t ∈ {g(1)}. Then

λf(x)λh(x)λf(x) = f(λx)h(λx)f(λx)

= f(λx)t(λx)f(λx)
= λf(x)λt(x)λf(x).
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Hence, λf(x)λg(x)
(1)λf(x) is invariant under the all choices of {λg(x)

(1)} for all
x ∈ L.

(5) ⇒ (1) Fix h ∈ {g(1)} and set

e1 := gh, e2 := 1− gh, f1 := hg, f2 := 1− hg

Then 1 = e1 + e2 and 1 = f1 + f2 are two decomposition of identity of the
endomorphism ring A of LK(E). If g(1) ∈ {g(1)} then, for every x ∈ L,

f1(x)g
(1)(x)e1(x) = (h(x)g(x))g(1)(x)(g(x)h(x))

= h(x)(g(x)g(1)(x)g(x))h(x)
= h(x)g(x)h(x)

so we have f1g
(1)e1 = hgh and

g(x)(f1(x)g
(1)(x)e1(x))g(x) = g(x)(h(x)g(x)h(x))g(x).

Thus g(x)g(1)(x)g(x) = g(x) so gg(1)g = g. Therefore g(1) ∈ {g(1)} if and only if

g(1) =

[
hgh α12

α21 α22

]
where αi,j ∈ fiAej , i, j = 1, 2 are arbitrary. Now,

f(x)g(1)(x)f(x)

=
[
f(x)f1(x) f(x)f2(x)

] [ h(x)g(x)h(x) α12(x)
α21(x) α22(x)

] [
e1(x)f(x)
e2(x)f(x)

]
= f(x)f1(x)h(x)g(x)h(x)e1(x)f(x) + f(x)f1(x)α12(x)e2(x)f(x)

+f(x)f2(x)α21(x)e1(x)f(x) + f(x)f2(x)α22(x)e2(x)f(x)

= f(x)h(x)g(x)h(x)f(x) + f(x)α12(x)f(x) + f(x)α21(x)f(x)

+f(x)α22(x)f(x)

does not depend on α12, α21, α22. Setting α12 = α22 = 0, we have f(x)α21(x)f(x) =
0 for all α21 ∈ f2Ae1 and for all x ∈ L. Then f(x)f2(x)t(x)e1(x)f(x) = 0 for all
t ∈ A and for all x ∈ L. Multiplying this equation by e1(x) from left and by f2(x)
from the right, we get, for all x ∈ L

(e1(x)f(x)f2(x))t(x)(e1(x)f(x)f2(x)) = 0.

Since A is regular we can choose t = (e1ff2)
(1) ∈ {e1ff (1)

2 }. Hence e1(x)f(x)f2(x)
for all x ∈ L. Similarly, e2(x)f(x)f1(x) = 0 and e2(x)f(x)f2(x) = 0, so we
conclude, for all x ∈ L,

f(x) = e1(x)f(x)f1(x) = g(x)h(x)f(x)h(x)g(x)

which implies f = e1ff1 = ghfhg. Consequently, fA ⊆ gA and Af ⊆ Ag.
(6) ⇒ (2) This is similar to (5) ⇒ (1).
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