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NOTES ON SYMMETRIC BI-(a,a)-DERIVATIONS IN RINGS

Oznur GOLBASIl and Emine Kog SOGUTCU *2

Abstract

Let R be a prime ring with center Z, I a nonzero ideal of R and D :
R x R — R a symmetric bi—(«a, a)-derivation and d be the trace of D. In the
present paper, we have considered the following conditions: i) [d(z), Z]a,q =
0,1i)[d(2), 2]a.a € Ca,a ,1il)(d(x), )a.q = 0,1v)D1(d2(x), z) = 0, v)di (d2(z)) =
f(z), for all 2,y € I,where D; and D5 are two symmetric bi-(«, «)-derivations,
di, do are the traces of Dy, Dy respectively, B : R X R — R is a symmetric
bi-additive mapping, f is the trace of B.
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1 Introduction

Throughout R will represent an assosiative ring with center Z. A ring R is
said to be prime if xRy = (0) implies that either x = 0 or y = 0 and semiprime
if xRz = (0) implies that x = 0, where z,y € R. A prime ring is obviously
semiprime. For any z,y € R, the symbol [z, y| stands for the commutator zy —yx
and the symbol zoy stands for the commutator zy + yz. A mapping F' from R to
R is called centralizing on S if [F'(z),z] € Z, for all z € S and is called commuting
on S if [F(z),z] = 0, for all x € S. An additive mapping d : R — R is called a
derivation if d(xy) = d(z)y + xd(y) holds for all z,y € R.

The study of centralizing and commuting mappings on prime rings was ini-
tiated by the result of Posner [4] which states that the existence of a nonzero
centralizing derivation on a prime ring implies that the ring has to be commuta-
tive. Through the years, a lot work has been done in this subject by a number
of authors. The concept of commuting mappings is closely connected to the no-
tion of bi-derivations. Symmetric bi-derivation has been introduced by Maksa
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in [3] and Vukman [6] investigated symmetric bi-derivations on rings with cen-
tralizing mappings. A mapping D(.,.) : R x R — R is said to be symmetric if
D(z,y) = D(y,x) for all x,y € R. A mapping d : R — R is called the trace of
D(.,.) if d(z) = D(x,z) for all z € R. It is obvious that if D(.,.) is bi-additive
(i.e., additive in both arguments), then the trace d of D(.,.) satisfies the identity
dx +y) = d(z) + d(y) + 2D(z,y), for all z,y € R. If D(.,.) is bi-additive and

symmetric mapping satisfies
D(zy,z) = D(x,2)y +xD(y, 2)

and
D(z,yz) = D(z,y)z + yD(x, z),

for all z,y, z € R called symmetric bi-derivation. Besides, many mathematicians
showed that symmetric bi-derivations are related to general solutions of some
functional equations.

Inspired by the definition symmetric bi-derivation, we introduce the notion of
symmetric bi-(c, «)-derivation as follow:

Let o be an any automorphism of R. A bi-additive mapping D(.,.) : RxR — R
is said to be symmetric bi-(«, «)-derivation if it satisfies the identities

D(zy, z) = D(z, z)a(y) + a(z)D(y, 2)

and
D(z,yz) = D(z,y)a(z) + a(y)D(z, 2),

for all z,y,z € R. Of course a symmetric bi-(1,1)-derivation where 1 is the
identity map on R is symmetric bi-derivation. For any z,y € R, we set [z, y]a.o =
za(y) — a(y)z. We set Coo = {¢ € R | ca(z) = a(z)c, for all z € R} and
call this set the (o, a)—center of R. In particular, C1; = Z. It can be given
(v, ) —centralizing (resp. (a, &) —commuting) on R by the similarly definition
centralizing (resp. commuting).

The purpose of this paper can be regarded as a contribution to the theory
of centralizing and commuting symmetric bi-(«, «)-derivation. We obtained Vuk-
man’s result for a nonzero ideal of R with D a symmetric bi-(¢, o)-derivation in
[6, Theorem 2].

Throughout the paper, we denote a symmetric bi-(«, )-derivation D : R x
R — R and d be the trace od D. For z,y € R, (2,9)a,o Will denote the Jordan
commutator za(y) + a(y)x and make some extensive use of the basic commutator
identities:

[z, yz] = ylz, 2] + [z, y]2

[zy, 2] = [, 2]y + z[y, 2]
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2 Results

Lemma 1. [1, Lemma 3.1]/Let R be a 2—torsion free semiprime ring and I a
nonzero ideal of R. If a,b € R such that axb + bra = 0 for all x € I, then
axb =0 = bxa for all x € I.

Lemma 2. [2, Lemma 2 (b)]If R be a semiprime ring, then the center of a nonzero
ideal of R is contained the center of R.

Lemma 3. Let R be a prime ring, I a nonzero ideal of R and a,b € R. If
alb = (0), thena=0 orb=0.

Proof. We get
arb=0, for all x € I.

Replacing x by zr, r € R in this equation, we have
axrb=0, forallx € I, r € R.

That is axRb = (0). Since R is a prime ring, we have az = 0 or b = 0. In the
former case, we get ax = 0, for all z € I. Replacing x by rx,r € R in last equation,
we have aRz = (0) . Since I a nonzero ideal of R and R is a prime ring, we have
a = 0. We conclude that a =0 or b= 0. O

Lemma 4. Let R be a prime ring, I a nonzero ideal of R and d a nonzero
derivation of R. If a € R such that ad(x) =0 for all x € I, then a = 0.

Proof. Replacing x by xs,s € R in the hypothesis, we have
axd(s) =0, forall z € I,s € R.
By Lemma 3 and d # 0, we obtain that a = 0. O

Lemma 5. Let R be a prime ring. If a nonzero ideal of R is in the center of R,
then R is a commutative ring.

Proof. By the hypothesis, we get
[,r] =0, forallz € I,r € R.

Replacing x by sz, s € R in this equation and using this, we obtain that
[s,r]x = for all z € I, € R.

Thus, [R, R|I = (0). Multiplying this equation on the right by [R, R], we have
[R,R]I[R,R] = (0). By Lemma 3, we conclude that R is a commutative ring.
The proof is completed. O

Lemma 6. Let R be a prime ring and I a nonzero ideal of R. If a € R such that
aD(z,y) =0 (D(x,y)a =0) for all z,y € I, then a =0 or D = 0.
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Proof. Replacing x by zr,r € R in the hypothesis, we have
ac(z)D(r,y) =0, for all z,y € I,r € R.

That is,
aVD(r,y) = (0), forally € I, € R,

where a(I) =V is ideal of R. By Lemma 3, we see that

a=0or D(r,y) =0, forall z € I,r € R.

Let D(r,y) =0, for all y € I,r € R. Taking y by ys,s € R in this equation and
using this, we get

a(y)D(r,s) =0, forally € I,r,s € R

and so, VD(r,s) = (0), for all r,s € R. Again by Lemma 3, we conclude that
D(r,s) = (0), for all r, s € R. This completes the proof.

Using the similar arguments, we prove that D(z,y)a = 0 for all z,y € I, then
a=0or D=0. O

Lemma 7. Let R be a prime ring and I a nonzero ideal of R. If D(x,y) =0 for
all x,y € I, then D = 0.

Proof. Replacing x by xr,r € R in the hypothesis, we see that
a(z)D(r,y) =0, for all z,y € I, € R.

This implies that
VD(r,y) =0, forally € I,r € R,

where a(I) =V is ideal of R. By Lemma 3, we have
D(r,y) =0, forallz € I,r € R.
Writting y by ys, s € R in this equation and using this, we arrive at D =0. [

Lemma 8. Let R be a 2—torsion free prime ring and I a nonzero ideal of R. If
d(x) =0 for all x € I, then D = 0.

Proof. Taking x by x 4 y in the hypothesis and using this, we get
0=d(z+vy)=d(z)+d(y)+2D(x,y)
and so, 2D(x,y) =0, for all z,y € I. By Lemma 7, we get D = 0. ]

Lemma 9. Let R be a 2—torsion free prime ring and I a nonzero ideal of R. If
D(z,y) C Coq for all z,y € I, then D =0 or R is commutative ring.
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Proof. By the hypothesis, we have

[D(z,y),7]a,a =0,for all z,y € I,r € R.
Taking xt,t € I instead of x in this equation and using this, we find that

D(z,y)[a(t),a(r)] + [a(x), a(r)]|D(z,y) = 0, for all z,y,t € I,r € R.

Replacing r by x in this equation, we get

D(z,y)[a(t),a(z)] =0, for all z,y,t € I.
Taking st,s € I instead of ¢ and using this, we have

D(z,y)a(s)[a(t),a(z)] = 0,for all z,y,t,s € I.
We obtain that
D(z,y)V]a(t),a(z)] = (0),for all z,y,t € I,
where a(I) =V is ideal of R. By Lemma 3, we obtain that
D(z,y) =0 or [a(t),a(x)] = 0,for all x,y,t,s € I.

Let K={x€l|D(z,y)=0,forally € I} and L = {z € I | [a(t),a(x)] =0, for
all ¢t € I'} of additive subgroups of I. Morever, I is the set-theoretic union of K
and L. But a group can not be the set-theoretic union of two proper subgroups,
hence K = I or L = I. In the former case, we get D = 0 by Lemma 7. In the
latter case, [a(I),a(I)] = (0). We have [V, V] = (0). That is V' C Z by Lemma
2, and so R is a commutative ring by Lemma 5. This completes the proof. ]

The following theorem gives a generalization of Posner’s well known result [4,
Lemma 3] and a extension of [6, Theorem 1].

Theorem 1. Let R be a 2—torsion free prime ring, I a nonzero ideal of R and D, d
a symmetric bi-(a, )-deriation and the trace of D, respectively. If [d(z), T]q,a =
0, for all x € I, then D = 0.

Proof. By the hypothesis, we have
[d(x), z]a,a =0,for all x € I. (1)
A linearization of (1) yields that

[d(z),Yla,a + [AY), T]a,a + 2[D(z,9), 2] a0 + 2[D(2,Y), Yla,o = 0, for all z,y G(I.)
2

Replacing = by —z in (2), we obtain that

[d(2), Y]a,a — [A(Y), Z]a,a + 2[D(2,Y), T]a,a — 2[D(2,Y), Yoo = 0, for all z,y E(I.)
3
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Comparing (2) and (3), using 2—torsion freeness of R, we get
[d(z), Yla,a +2[D(2,y), o, =0, for all z,y € 1. (4)
Replacing y by zy in (4) and using the hypothesis, we see that

0=

—

d(2), 2yla,a + 2[D(2, 2Y), 7]a,a
= a(@)[d(2), Ylaa + [d(2), 2]a,ac(y) + 2[d(x)aly) + alz)D(z, y), t]a,q
= a()[d(2), Yla,a + 2d(x)[a(y), a(x)] + 2[d(2), 2la.aa(y) + 2a(2)[D(z, ), T]a.a-
By (4) and using 2—torsion freeness of R, we get
d(z)[a(y), a(x)] =0, for all z,y € I.
Again replacing y by yz, z € I in the last equation and using this, we have
d(z)a(y)a(z),a(z)] =0, for all x,y,z € I,
and so
d(x)V]a(z),a(x)] = (0), for all z,z € I,

where o(I) = V isideal of R.By Lemma 3, we get either d(x) = 0 or [V, a(x)] = (0)
for each x € I. By Lemma 2, we have d(z) = 0 or a(x) € Z for each = € I. Since
« is automorphism of R, we obtain that d(z) =0 or z € Z for each = € I.
Let x € Z,y ¢ Z. Then x +y ¢ Z and —y ¢ Z. Also, d(z + y) = 0. Then we
get
0=d(z+vy) =d(z)+2D(z,y).

Taking = by —x in this equation, we have
0=d(z) —2D(z,y).

Comparing the last two equations, we arrive at d(x) = 0, for all x € Z. Hence we
obtain that d(x) = 0, for all x € I, and so, D = 0 by Lemma 8. This completes
the proof. O

The following theorem is a generalization of [6, Theorem 2] and [4, Theorem
2].

Theorem 2. Let R be a 2 and 3—torsion free prime ring, I a nonzero ideal of
R and D,d a symmetric bi-(«, a)-derivation and the trace of D, respectively. If
[d(z),x]a,a € Ca,q for all x € I, then D = 0.

Proof. Linearizing [d(z), Z]a,a € Ca,a, We get
[d(2), Yla,a + [d(Y), T]a,a + 2[D(2,Y), Tlaa + 2[D(2,Y), Ylaa € Caa- (5)
Taking « by —z in (5), we have

[d(2), Y]a,a — [d(Y); T]a,a + 2[D(2,Y), Tla,a — 2[D(2,Y), Ylaa € Casa- (6)
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Using (5) and (6) and since R is a 2—torsion free, we get
[d(x), Yla,a +2[D(2,Y), ]aa € Cae for all z,y € 1. (7)
Replacing y by 22 in (7) and using the hypothesis, we find that

[d(z), $2]a,a +2[D(z, 372)7 )0
a(z)[d(z), z]a,a + [d(2), 2]a,ea(z) + 2[d(2), 2]a,0a(z) + 2a(x)[d(x), ]a,q € Caa-

)
Using (7) and the assumptations that R is a 2, 3—torsion free ring, we get
a(z)[d(x), z]a,q € Ca,a for all z € 1.
Commuting this term with y and using [d(x), ]a,a € Ca,a, We have
[a(x), a(y)][d(x), x]a,n =0, for all z,y € I.
Writing y by yz, 2 € I in this equation, we get
[a(), a(y)]a(2)[d(2), ¥]a,a = 0, for all z,y,2 € I.

That is,
[a(x), a(y)]V][d(z), z]a,a = (0), for all z,y € I,

where () =V is ideal of R. By Lemma 3, we arrive at
[a(x),V]=(0) or [d(z),z]q,e =0, for each z € I.
By Lemma 2, we have
a(x) € Z or [d(z), z]a,a =0, for each z € I.

If a(x) € Z, then [d(x), x]a,o = d(z)a(z) — a(xz)d(x) = 0. Thus we obtain that
[d(z),z]q,o =0, for all z € I, for any cases. By Theorem 1, we obtain that D = 0.
This completes the proof. O

Theorem 3. Let R be a 2—torsion free prime ring, I a nonzero ideal of R and D, d
a symmetric bi-(a, o) -derivation and the trace of D, respectively. If (d(z),%)a,a =
0, for all x € I, then D = 0.

Proof. By the hypothesis, we have
(d(x),x)a,q = 0,for all z € 1. (8)
A linearization of this equation yields that

(d(:(}), y)a,a + (d(y)7 w)a,a + 2<D(x7 y)a x)a,a + 2(D(m, y), y)a,a = 07 for all x,Yy G(I)-
9

Replacing = by —x in (9), we obtain that

(d(x),Y)a,a — (dY), %) a0 +2(D(2,Y), %) a,a —2(D(,Y), Y)a,a = 0, for all z,y (e I).
10
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Comparing (9) and (10) and using 2—torsion freeness of R, we get
(d(x),Y)a,a +2(D(x,Y),T)aa =0, forall z,y € I. (11)

Replacing y by yx in (11) and using the hypothesis, we see that

0 = (d(z), yx)wa + 2(D(x,yx),x)a7a
= (d(2),Y)aec(z) — a(y)[d(z), z]aa + 2(D(z, y)a(z) + a(y)d(z), 2)a,a
= (d(2),Y)acc(z) — a(y)[d(z), z]aa + 2(D(2, y), ¥)aac(z) — 2l(y), a(z)]d(z)

By (11), we get
a(y)d(z), z]a,a + 2[a(y), a(z)]d(xz) =0, for all x,y € I. (12)

Again replacing y by ry,r € R in the last equation and using this, we have

2[a(r), a(z)]a(y)d(x) =0, for all z,y € I,r € R.
Using 2—torsion freeness of R, we have

[a(r), a(z)]a(y)d(x) =0, for all z,y € I,r € R.
Since « is a automorphism of R, we have

[r,a(x)]Vd(x) = (0), for all z,y € I,r € R,
where o(I) =V is a ideal of R. By Lemma 3 and Lemma 2, we obtain that
a(r) € Z or d(x) =0, for each x € I.

If a(z) € Z, then (d(z),2)a,a = d(z)o(z) + a(z)d(z) = 2d(x)a(xz) = 0, and so,
d(z)a(z) = 0. Again using a(z) € Z, we obtain that

z=0ord(x)=0, for each x € I.

If x = 0, then d(z) = D(x,z) = D(0,0) = 0. Thus we find that d(z) = 0 for any
cases, and so, D = 0 by Lemma 8. This completes the proof. O

Theorem 4. Let R be a 2—torsion free prime ring, I a nonzero ideal of R and
Dy, dy a symmetric bi-(a, )-derivation, Do, ds symmetric bi-derivation and the
traces of D1, Do respectively. If Dy(da(x),x) = 0, for all x € I, then either Dy = 0
or Dy = 0.

Proof. Linearizing of the hypothesis, we get
Dy(da(y), ) + 2D1(Da(z,y), ©) + Di(da(x),y) + 2D1(Da(z,y),y) = 0. (13)
Substituing in (13) z by —z, we have

—D1(d2(y), x) + 2D1(D2(z,y), ) + D1(d2(x),y) — 2D1(Da(z,y),y) = 0. (14)
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Comparing (13) and (14) and using 2—torsion free, we obtain that
Dy (dao(x),y) + 2D1(D2(x,y),xz) =0, for all z,y € I. (15)

Replacing y by zy in (15), using this equation and the hypothesis, we see that

= Di(da(z), zy) + 2D1(Da(z, zy), x)

(z) 2 )
= Di(da(x), x)a(y) + a(2) Di(da(x),y) + 2D1(Da(, ©)y + x D2 (2, y), )
= Di(da(x), x)a(y) + az) Di(da(x),y) + 2D1(d2(2), x)a(y)
2a(dz(x)) D1(z,y) + 20(2) D1 (Da(,y), 2) + 2d1 (z) (D2 (2, )

and so
a(de(x))D1(x,y) + di(z)a(Da(z,y)) =0, for all z,y € I. (16)

Taking y by yz in (16), we have

0 = a(da(x)) D1 (z,yx) + di(z)a(Da(z, yx))
= a(d(@)) D1 (1, y)a(r) + a(dalz))oly)ds (2)
T di@)aly)alds(@)) + di(2)a(Daz, y))a()

and so
a(da(z))a(y)di(z) + di(x)a(y)a(da(z)) =0, for all z,y € I.
That is,
a(da(x))ydi (z) + di(x)ya(da(x)) =0, forallz € I, y €'V, (17)

where y € o(I) =V is a ideal of R. If di(z) = 0 or da(z) = 0, for all z € I, then
we get the required result by Lemma 8. Now, we assume that d; and do are both
different from zero. Hence there exist elements x1,x9 € I such that di(z1) # 0
and da(x2) # 0. It follows dy(z2) = 0 and da(x1) = 0 from (17) and Lemma
1. Since di(z2) = 0, the equation (16) reduces to a(da(z2))Di(x2,y) = 0. Now,
we define that F': R — R, F(y) = D1(x2,y). It is clear that F' is a derivation.
By Lemma 4 and daz(x2) # 0, we find that D;(x2,y) = 0. In particular, we get
Dy(x2,21) = 0. Similarly we see that Ds(x2,21) = 0 holds as well.
Let us write y for 1 + x2. Then

dl(y) = dl(ﬂfl + CL‘Q) = dl(l‘l) + dl(CL‘Q) + 2D1(f)§'1,$2) == dl(xl) 75 0
and
da(y) = da(x1 + w2) = da(x1) + da(w2) + 2D2(71, 72) = da(w2) # 0.

That is d1(y) and da(y) are not from zero. But they cannot be both different from
zero according to (17) and Lemma 1. It is a contradiction. Hence we must have
di(z) = 0 or da(x) = 0,for all z € I, and so, D; =0 or Dy = 0. O
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The following theorem gives a generalization of Posner’s result [4, Theorem 1]
and a extension of [6, Theorem 5].

Theorem 5. Let R be a 2,3—torsion free prime ring, I a nonzero ideal of R and
Dy, dy a symmetric bi-(a, )-derivation, Do, ds symmetric bi-derivation and the
traces of D1, Dy respectively. If B: R X R — R a symmetric bi-additive mapping
such that dy(d2(x)) = f(z), for all x € I, where f is the trace of B, then either
D1 =0 or D2 = 0.

Proof. The linearization of the the hypothesis, we have

2d1(Da(z,y))+D1(d2 (), d2(y))+2D1(d2(z), Do, y))+2D1(da(y), Da(z,y)) = B(x,y).

(18)
Taking x by —x in (18), we get
2d1 (D2 (2, y))+D1(d2(x), d2(y))—2D1(da(x), Da(z,y))=2D1(d2(y), D2(2,y)) = —B(z,y).
Comparing (18) and (19) and using 2—torsion free, we obtain that 1
2dy(D2(x,y)) + D1(d2(x),d2(y)) =0, for all z,y € I. (20)

Using (20) in (18), we arrive at
2D1(d2(2), D2(x,y)) + 2D1(d2(y), D2(2,y)) = B(x,y), for all z,y € 1.

Taking = by y in this equation and using d; (d2(z)) = f(x), we have

2D;(d2(x), Do(x,x)) + 2D1(da(z), Dao(x, z)) = B(z,x)
4dy(dz(z)) = f(x) = di(da(z))
3d1 (dg(l’)) =0.

Since R is 3—torsion free, we get
dy(d2(x)) =0, for all z € I.

On the other hand, again comparing (18) and (19) and using d;(dz2(z)) = 0, for
all x € I, we find that

2D (d2(x), Do(x,y)) + 2D1(d2(y), Da(z,y)) = B(z,y), for all z,y € I.  (21)
Replacing = by 2z in (21), we see that
8D1(dz(x), D2(w,y)) + 2D1(d2(y), D2(,y)) = B(,y), forallz,y € . (22)
By (21) and (22), we get
6D1(da(z), D2(2,y)) =0

and so
Di(d2(x), Da(x,y)) =0, for all z,y € I. (23)
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Replacing y by yx in (23) and using this, dq(da2(z)) = 0, we see that

and so
a(Dy(z,y))D1(d2(x), ) + D1(do(x),y)a(d2(x)) = 0, for all x,y € I. (24)
Let in y by zy in (24) and using this, we have

0 = a(D2(x, 2y))D1(d2(x), z) + D1(d2(), zy)a(d2(x))
= a(x)a(Da(z,y)) D1 (d2(x), ) + a(dz(z))e(y) D1(da(z), )
+ D1(d2(2), z)a(y)a(da()) + a(x) D1(d2(z), y)a(da(z))

and so

a(da(z))a(y)Di(da(x), ) + Di(da(z), z)a(y)a(dy(z)) = 0, for all z,y € 1.
That is,

a(de(x))yDy(d2(x),x) + Di(da(z), z)ya(de(z)) =0, forallz € I, y € V, (25)

where y € a(l) = V is ideal of R. If Di(da(z),x) # 0, for some x € I, then
da(z) = 0 by Lemma 1, and so D;(dz(z),z) = 0, a contrary to the assumption
Dy (da(x),x) # 0. Hence, D1(da2(x),z) =0, for all z € I, and so D; = 0 or Dy =0
by Theorem 4. We get the required result. O
3 Conclusion

The present study has shown some essential properties of a nonzero ideals
of a prime rings with symmetric bi-(a, a)-derivations. In future research, some
well-known results in symmetric bi-derivations can be applied to symmetric bi-
(a, B)-derivations. Besides, the findings herein could help to uncover properties
of symmetric bi-(a, av)-derivations in Lie ideals or square-closed Lie ideals.
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