NOTES ON SYMMETRIC BI- (α, α)-DERIVATIONS IN RINGS

Öznur GÖLBAŞI ${ }^{1}$ and Emine Koç SÖGÜTCÜ ${ }^{*, 2}$

Abstract

Let R be a prime ring with center Z, I a nonzero ideal of R and D : $R \times R \rightarrow R$ a symmetric bi- (α, α)-derivation and d be the trace of D. In the present paper, we have considered the following conditions: i) $[d(x), x]_{\alpha, \alpha}=$ 0, ii $\left.)[d(x), x]_{\alpha, \alpha} \subseteq C_{\alpha, \alpha}, \operatorname{iii}\right)(d(x), x)_{\alpha, \alpha}=0$, iv $) D_{1}\left(d_{2}(x), x\right)=0$, v $) d_{1}\left(d_{2}(x)\right)=$ $f(x)$, for all $x, y \in I$, where D_{1} and D_{2} are two symmetric bi- (α, α)-derivations, d_{1}, d_{2} are the traces of D_{1}, D_{2} respectively, $B: R \times R \rightarrow R$ is a symmetric bi-additive mapping, f is the trace of B.

2000 Mathematics Subject Classification: 16W25.
Key words: derivations, symmetric bi-derivations, symmetric bi- (α, α) derivations, commutativity, prime rings.

1 Introduction

Throughout R will represent an assosiative ring with center Z. A ring R is said to be prime if $x R y=(0)$ implies that either $x=0$ or $y=0$ and semiprime if $x R x=(0)$ implies that $x=0$, where $x, y \in R$. A prime ring is obviously semiprime. For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $x y-y x$ and the symbol $x o y$ stands for the commutator $x y+y x$. A mapping F from R to R is called centralizing on S if $[F(x), x] \in Z$, for all $x \in S$ and is called commuting on S if $[F(x), x]=0$, for all $x \in S$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$.

The study of centralizing and commuting mappings on prime rings was initiated by the result of Posner [4] which states that the existence of a nonzero centralizing derivation on a prime ring implies that the ring has to be commutative. Through the years, a lot work has been done in this subject by a number of authors. The concept of commuting mappings is closely connected to the notion of bi-derivations. Symmetric bi-derivation has been introduced by Maksa

[^0]in [3] and Vukman [6] investigated symmetric bi-derivations on rings with centralizing mappings. A mapping $D(.,):. R \times R \rightarrow R$ is said to be symmetric if $D(x, y)=D(y, x)$ for all $x, y \in R$. A mapping $d: R \rightarrow R$ is called the trace of $D(.,$.$) if d(x)=D(x, x)$ for all $x \in R$. It is obvious that if $D(.,$.$) is bi-additive$ (i.e., additive in both arguments), then the trace d of $D(.,$.$) satisfies the identity$ $d(x+y)=d(x)+d(y)+2 D(x, y)$, for all $x, y \in R$. If $D(.,$.$) is bi-additive and$ symmetric mapping satisfies
$$
D(x y, z)=D(x, z) y+x D(y, z)
$$
and
$$
D(x, y z)=D(x, y) z+y D(x, z),
$$
for all $x, y, z \in R$ called symmetric bi-derivation. Besides, many mathematicians showed that symmetric bi-derivations are related to general solutions of some functional equations.

Inspired by the definition symmetric bi-derivation, we introduce the notion of symmetric bi- (α, α)-derivation as follow:

Let α be an any automorphism of R. A bi-additive mapping $D(.,):. R \times R \rightarrow R$ is said to be symmetric bi- (α, α)-derivation if it satisfies the identities

$$
D(x y, z)=D(x, z) \alpha(y)+\alpha(x) D(y, z)
$$

and

$$
D(x, y z)=D(x, y) \alpha(z)+\alpha(y) D(x, z),
$$

for all $x, y, z \in R$. Of course a symmetric bi-(1,1)-derivation where 1 is the identity map on R is symmetric bi-derivation. For any $x, y \in R$, we set $[x, y]_{\alpha, \alpha}=$ $x \alpha(y)-\alpha(y) x$. We set $C_{\alpha, \alpha}=\{c \in R \mid c \alpha(x)=\alpha(x) c$, for all $x \in R\}$ and call this set the (α, α)-center of R. In particular, $C_{1,1}=Z$. It can be given (α, α) -centralizing (resp. (α, α) -commuting) on R by the similarly definition centralizing (resp. commuting).

The purpose of this paper can be regarded as a contribution to the theory of centralizing and commuting symmetric bi- (α, α)-derivation. We obtained Vukman's result for a nonzero ideal of R with D a symmetric bi- (α, α)-derivation in [6, Theorem 2].

Throughout the paper, we denote a symmetric bi- (α, α)-derivation $D: R \times$ $R \rightarrow R$ and d be the trace od D. For $x, y \in R,(x, y)_{\alpha, \alpha}$ will denote the Jordan commutator $x \alpha(y)+\alpha(y) x$ and make some extensive use of the basic commutator identities:

```
\([x, y z]=y[x, z]+[x, y] z\)
\([x y, z]=[x, z] y+x[y, z]\)
\([x y, z]_{\alpha, \alpha}=x[y, z]_{\alpha, \alpha}+[x, \alpha(z)] y=x[y, \alpha(z)]+[x, z]_{\alpha, \alpha} y\)
\([x, y z]_{\alpha, \alpha}=\alpha(y)[x, z]_{\alpha, \alpha}+[x, y]_{\alpha, \alpha} \alpha(z)\)
\((x y, z)_{\alpha, \alpha}=x(y, z)_{\alpha, \alpha}-[x, \alpha(z)] y=x[y, \alpha(z)]+(x, z)_{\alpha, \alpha} y\)
\((x, y z)_{\alpha, \alpha}=\alpha(y)(x, z)_{\alpha, \alpha}+[x, y]_{\alpha, \alpha} \alpha(z)=(x, y)_{\alpha, \alpha} \alpha(z)-\alpha(y)[x, z]_{\alpha, \alpha}\).
```


2 Results

Lemma 1. [1, Lemma 3.1]Let R be a 2 -torsion free semiprime ring and I a nonzero ideal of R. If $a, b \in R$ such that $a x b+b x a=0$ for all $x \in I$, then $a x b=0=b x a$ for all $x \in I$.

Lemma 2. [2, Lemma 2 (b)]If R be a semiprime ring, then the center of a nonzero ideal of R is contained the center of R.

Lemma 3. Let R be a prime ring, I a nonzero ideal of R and $a, b \in R$. If $a I b=(0)$, then $a=0$ or $b=0$.

Proof. We get

$$
a x b=0, \text { for all } x \in I
$$

Replacing x by $x r, r \in R$ in this equation, we have

$$
a x r b=0, \text { for all } x \in I, r \in R .
$$

That is $a x R b=(0)$. Since R is a prime ring, we have $a x=0$ or $b=0$. In the former case, we get $a x=0$, for all $x \in I$. Replacing x by $r x, r \in R$ in last equation, we have $a R x=(0)$. Since I a nonzero ideal of R and R is a prime ring, we have $a=0$. We conclude that $a=0$ or $b=0$.

Lemma 4. Let R be a prime ring, I a nonzero ideal of R and d a nonzero derivation of R. If $a \in R$ such that $a d(x)=0$ for all $x \in I$, then $a=0$.

Proof. Replacing x by $x s, s \in R$ in the hypothesis, we have

$$
\operatorname{axd}(s)=0, \text { for all } x \in I, s \in R
$$

By Lemma 3 and $d \neq 0$, we obtain that $a=0$.
Lemma 5. Let R be a prime ring. If a nonzero ideal of R is in the center of R, then R is a commutative ring.

Proof. By the hypothesis, we get

$$
[x, r]=0, \text { for all } x \in I, r \in R .
$$

Replacing x by $s x, s \in R$ in this equation and using this, we obtain that

$$
[s, r] x=\text { for all } x \in I, r \in R
$$

Thus, $[R, R] I=(0)$. Multiplying this equation on the right by $[R, R]$, we have $[R, R] I[R, R]=(0)$. By Lemma 3, we conclude that R is a commutative ring. The proof is completed.

Lemma 6. Let R be a prime ring and I a nonzero ideal of R. If $a \in R$ such that $a D(x, y)=0(D(x, y) a=0)$ for all $x, y \in I$, then $a=0$ or $D=0$.

Proof. Replacing x by $x r, r \in R$ in the hypothesis, we have

$$
a \alpha(x) D(r, y)=0, \text { for all } x, y \in I, r \in R .
$$

That is,

$$
a V D(r, y)=(0), \text { for all } y \in I, r \in R,
$$

where $\alpha(I)=V$ is ideal of R. By Lemma 3, we see that

$$
a=0 \text { or } D(r, y)=0, \text { for all } x \in I, r \in R .
$$

Let $D(r, y)=0$, for all $y \in I, r \in R$. Taking y by $y s, s \in R$ in this equation and using this, we get

$$
\alpha(y) D(r, s)=0, \text { for all } y \in I, r, s \in R
$$

and so, $V D(r, s)=(0)$, for all $r, s \in R$. Again by Lemma 3, we conclude that $D(r, s)=(0)$, for all $r, s \in R$. This completes the proof.

Using the similar arguments, we prove that $D(x, y) a=0$ for all $x, y \in I$, then $a=0$ or $D=0$.

Lemma 7. Let R be a prime ring and I a nonzero ideal of R. If $D(x, y)=0$ for all $x, y \in I$, then $D=0$.

Proof. Replacing x by $x r, r \in R$ in the hypothesis, we see that

$$
\alpha(x) D(r, y)=0, \text { for all } x, y \in I, r \in R .
$$

This implies that

$$
V D(r, y)=0, \text { for all } y \in I, r \in R,
$$

where $\alpha(I)=V$ is ideal of R. By Lemma 3, we have

$$
D(r, y)=0, \text { for all } x \in I, r \in R
$$

Writting y by $y s, s \in R$ in this equation and using this, we arrive at $D=0$.
Lemma 8. Let R be a 2 -torsion free prime ring and I a nonzero ideal of R. If $d(x)=0$ for all $x \in I$, then $D=0$.

Proof. Taking x by $x+y$ in the hypothesis and using this, we get

$$
0=d(x+y)=d(x)+d(y)+2 D(x, y)
$$

and so, $2 D(x, y)=0$, for all $x, y \in I$. By Lemma 7 , we get $D=0$.
Lemma 9. Let R be a 2 -torsion free prime ring and I a nonzero ideal of R. If $D(x, y) \subseteq C_{\alpha, \alpha}$ for all $x, y \in I$, then $D=0$ or R is commutative ring.

Proof. By the hypothesis, we have

$$
[D(x, y), r]_{\alpha, \alpha}=0, \text { for all } x, y \in I, r \in R .
$$

Taking $x t, t \in I$ instead of x in this equation and using this, we find that

$$
D(x, y)[\alpha(t), \alpha(r)]+[\alpha(x), \alpha(r)] D(x, y)=0, \text { for all } x, y, t \in I, r \in R .
$$

Replacing r by x in this equation, we get

$$
D(x, y)[\alpha(t), \alpha(x)]=0, \text { for all } x, y, t \in I .
$$

Taking $s t, s \in I$ instead of t and using this, we have

$$
D(x, y) \alpha(s)[\alpha(t), \alpha(x)]=0, \text { for all } x, y, t, s \in I .
$$

We obtain that

$$
D(x, y) V[\alpha(t), \alpha(x)]=(0), \text { for all } x, y, t \in I,
$$

where $\alpha(I)=V$ is ideal of R. By Lemma 3, we obtain that

$$
D(x, y)=0 \text { or }[\alpha(t), \alpha(x)]=0, \text { for all } x, y, t, s \in I .
$$

Let $K=\{x \in I \mid D(x, y)=0$, for all $y \in I\}$ and $L=\{x \in I \mid[\alpha(t), \alpha(x)]=0$, for all $t \in I\}$ of additive subgroups of I. Morever, I is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two proper subgroups, hence $K=I$ or $L=I$. In the former case, we get $D=0$ by Lemma 7 . In the latter case, $[\alpha(I), \alpha(I)]=(0)$. We have $[V, V]=(0)$. That is $V \subseteq Z$ by Lemma 2 , and so R is a commutative ring by Lemma 5 . This completes the proof.

The following theorem gives a generalization of Posner's well known result [4, Lemma 3] and a extension of [6, Theorem 1].

Theorem 1. Let R be a 2 -torsion free prime ring, I a nonzero ideal of R and D, d a symmetric bi- (α, α)-derivation and the trace of D, respectively. If $[d(x), x]_{\alpha, \alpha}=$ 0 , for all $x \in I$, then $D=0$.

Proof. By the hypothesis, we have

$$
\begin{equation*}
[d(x), x]_{\alpha, \alpha}=0, \text { for all } x \in I . \tag{1}
\end{equation*}
$$

A linearization of (1) yields that

$$
\begin{equation*}
[d(x), y]_{\alpha, \alpha}+[d(y), x]_{\alpha, \alpha}+2[D(x, y), x]_{\alpha, \alpha}+2[D(x, y), y]_{\alpha, \alpha}=0, \text { for all } x, y \in I \tag{2}
\end{equation*}
$$

Replacing x by $-x$ in (2), we obtain that

$$
\begin{equation*}
[d(x), y]_{\alpha, \alpha}-[d(y), x]_{\alpha, \alpha}+2[D(x, y), x]_{\alpha, \alpha}-2[D(x, y), y]_{\alpha, \alpha}=0, \text { for all } x, y \in I . \tag{3}
\end{equation*}
$$

Comparing (2) and (3), using 2 -torsion freeness of R, we get

$$
\begin{equation*}
[d(x), y]_{\alpha, \alpha}+2[D(x, y), x]_{\alpha, \alpha}=0, \text { for all } x, y \in I \tag{4}
\end{equation*}
$$

Replacing y by $x y$ in (4) and using the hypothesis, we see that

$$
\begin{aligned}
0 & =[d(x), x y]_{\alpha, \alpha}+2[D(x, x y), x]_{\alpha, \alpha} \\
& =\alpha(x)[d(x), y]_{\alpha, \alpha}+[d(x), x]_{\alpha, \alpha} \alpha(y)+2[d(x) \alpha(y)+\alpha(x) D(x, y), x]_{\alpha, \alpha} \\
& =\alpha(x)[d(x), y]_{\alpha, \alpha}+2 d(x)[\alpha(y), \alpha(x)]+2[d(x), x]_{\alpha, \alpha} \alpha(y)+2 \alpha(x)[D(x, y), x]_{\alpha, \alpha} .
\end{aligned}
$$

By (4) and using 2 -torsion freeness of R, we get

$$
d(x)[\alpha(y), \alpha(x)]=0, \text { for all } x, y \in I .
$$

Again replacing y by $y z, z \in I$ in the last equation and using this, we have

$$
d(x) \alpha(y)[\alpha(z), \alpha(x)]=0, \text { for all } x, y, z \in I,
$$

and so

$$
d(x) V[\alpha(z), \alpha(x)]=(0), \text { for all } x, z \in I,
$$

where $\alpha(I)=V$ is ideal of R.By Lemma 3, we get either $d(x)=0$ or $[V, \alpha(x)]=(0)$ for each $x \in I$. By Lemma 2, we have $d(x)=0$ or $\alpha(x) \in Z$ for each $x \in I$. Since α is automorphism of R, we obtain that $d(x)=0$ or $x \in Z$ for each $x \in I$.

Let $x \in Z, y \notin Z$. Then $x+y \notin Z$ and $-y \notin Z$. Also, $d(x+y)=0$. Then we get

$$
0=d(x+y)=d(x)+2 D(x, y) .
$$

Taking x by $-x$ in this equation, we have

$$
0=d(x)-2 D(x, y)
$$

Comparing the last two equations, we arrive at $d(x)=0$, for all $x \in Z$. Hence we obtain that $d(x)=0$, for all $x \in I$, and so, $D=0$ by Lemma 8 . This completes the proof.

The following theorem is a generalization of $[6$, Theorem 2] and $[4$, Theorem 2].

Theorem 2. Let R be a 2 and 3 -torsion free prime ring, I a nonzero ideal of R and D, d a symmetric bi- (α, α)-derivation and the trace of D, respectively. If $[d(x), x]_{\alpha, \alpha} \subseteq C_{\alpha, \alpha}$ for all $x \in I$, then $D=0$.

Proof. Linearizing $[d(x), x]_{\alpha, \alpha} \in C_{\alpha, \alpha}$, we get

$$
\begin{equation*}
[d(x), y]_{\alpha, \alpha}+[d(y), x]_{\alpha, \alpha}+2[D(x, y), x]_{\alpha, \alpha}+2[D(x, y), y]_{\alpha, \alpha} \in C_{\alpha, \alpha} \tag{5}
\end{equation*}
$$

Taking x by $-x$ in (5), we have

$$
\begin{equation*}
[d(x), y]_{\alpha, \alpha}-[d(y), x]_{\alpha, \alpha}+2[D(x, y), x]_{\alpha, \alpha}-2[D(x, y), y]_{\alpha, \alpha} \in C_{\alpha, \alpha} . \tag{6}
\end{equation*}
$$

Using (5) and (6) and since R is a $2-$ torsion free, we get

$$
\begin{equation*}
[d(x), y]_{\alpha, \alpha}+2[D(x, y), x]_{\alpha, \alpha} \in C_{\alpha, \alpha} \text { for all } x, y \in I \tag{7}
\end{equation*}
$$

Replacing y by x^{2} in (7) and using the hypothesis, we find that

$$
\begin{aligned}
& {\left[d(x), x^{2}\right]_{\alpha, \alpha}+2\left[D\left(x, x^{2}\right), x\right]_{\alpha, \alpha}} \\
& =\alpha(x)[d(x), x]_{\alpha, \alpha}+[d(x), x]_{\alpha, \alpha} \alpha(x)+2[d(x), x]_{\alpha, \alpha} \alpha(x)+2 \alpha(x)[d(x), x]_{\alpha, \alpha} \in C_{\alpha, \alpha} .
\end{aligned}
$$

Using (7) and the assumptations that R is a 2,3 -torsion free ring, we get

$$
\alpha(x)[d(x), x]_{\alpha, \alpha} \in C_{\alpha, \alpha} \text { for all } x \in I
$$

Commuting this term with y and using $[d(x), x]_{\alpha, \alpha} \in C_{\alpha, \alpha}$, we have

$$
[\alpha(x), \alpha(y)][d(x), x]_{\alpha, \alpha}=0, \text { for all } x, y \in I .
$$

Writing y by $y z, z \in I$ in this equation, we get

$$
[\alpha(x), \alpha(y)] \alpha(z)[d(x), x]_{\alpha, \alpha}=0, \text { for all } x, y, z \in I .
$$

That is,

$$
[\alpha(x), \alpha(y)] V[d(x), x]_{\alpha, \alpha}=(0), \text { for all } x, y \in I,
$$

where $\alpha(I)=V$ is ideal of R. By Lemma 3, we arrive at

$$
[\alpha(x), V]=(0) \text { or }[d(x), x]_{\alpha, \alpha}=0, \text { for each } x \in I .
$$

By Lemma 2, we have

$$
\alpha(x) \in Z \text { or }[d(x), x]_{\alpha, \alpha}=0, \text { for each } x \in I .
$$

If $\alpha(x) \in Z$, then $[d(x), x]_{\alpha, \alpha}=d(x) \alpha(x)-\alpha(x) d(x)=0$. Thus we obtain that $[d(x), x]_{\alpha, \alpha}=0$, for all $x \in I$, for any cases. By Theorem 1 , we obtain that $D=0$. This completes the proof.

Theorem 3. Let R be a 2 -torsion free prime ring, I a nonzero ideal of R and D, d a symmetric bi-($\alpha, \alpha)$-derivation and the trace of D, respectively. If $(d(x), x)_{\alpha, \alpha}=$ 0 , for all $x \in I$, then $D=0$.

Proof. By the hypothesis, we have

$$
\begin{equation*}
(d(x), x)_{\alpha, \alpha}=0, \text { for all } x \in I . \tag{8}
\end{equation*}
$$

A linearization of this equation yields that
$(d(x), y)_{\alpha, \alpha}+(d(y), x)_{\alpha, \alpha}+2(D(x, y), x)_{\alpha, \alpha}+2(D(x, y), y)_{\alpha, \alpha}=0$, for all $x, y \in I$.
Replacing x by $-x$ in (9), we obtain that
$(d(x), y)_{\alpha, \alpha}-(d(y), x)_{\alpha, \alpha}+2(D(x, y), x)_{\alpha, \alpha}-2(D(x, y), y)_{\alpha, \alpha}=0$, for all $x, y \in I$.

Comparing (9) and (10) and using 2 -torsion freeness of R, we get

$$
\begin{equation*}
(d(x), y)_{\alpha, \alpha}+2(D(x, y), x)_{\alpha, \alpha}=0, \text { for all } x, y \in I . \tag{11}
\end{equation*}
$$

Replacing y by $y x$ in (11) and using the hypothesis, we see that

$$
\begin{aligned}
0 & =(d(x), y x)_{\alpha, \alpha}+2(D(x, y x), x)_{\alpha, \alpha} \\
& =(d(x), y)_{\alpha, \alpha} \alpha(x)-\alpha(y)[d(x), x]_{\alpha, \alpha}+2(D(x, y) \alpha(x)+\alpha(y) d(x), x)_{\alpha, \alpha} \\
& =(d(x), y)_{\alpha, \alpha} \alpha(x)-\alpha(y)[d(x), x]_{\alpha, \alpha}+2(D(x, y), x)_{\alpha, \alpha} \alpha(x)-2[\alpha(y), \alpha(x)] d(x) .
\end{aligned}
$$

By (11), we get

$$
\begin{equation*}
\alpha(y)[d(x), x]_{\alpha, \alpha}+2[\alpha(y), \alpha(x)] d(x)=0, \text { for all } x, y \in I . \tag{12}
\end{equation*}
$$

Again replacing y by $r y, r \in R$ in the last equation and using this, we have

$$
2[\alpha(r), \alpha(x)] \alpha(y) d(x)=0, \text { for all } x, y \in I, r \in R .
$$

Using 2 -torsion freeness of R, we have

$$
[\alpha(r), \alpha(x)] \alpha(y) d(x)=0, \text { for all } x, y \in I, r \in R
$$

Since α is a automorphism of R, we have

$$
[r, \alpha(x)] V d(x)=(0), \text { for all } x, y \in I, r \in R,
$$

where $\alpha(I)=V$ is a ideal of R. By Lemma 3 and Lemma 2, we obtain that

$$
\alpha(x) \in Z \text { or } d(x)=0, \text { for each } x \in I .
$$

If $\alpha(x) \in Z$, then $(d(x), x)_{\alpha, \alpha}=d(x) \alpha(x)+\alpha(x) d(x)=2 d(x) \alpha(x)=0$, and so, $d(x) \alpha(x)=0$. Again using $\alpha(x) \in Z$, we obtain that

$$
x=0 \text { or } d(x)=0, \text { for each } x \in I .
$$

If $x=0$, then $d(x)=D(x, x)=D(0,0)=0$. Thus we find that $d(x)=0$ for any cases, and so, $D=0$ by Lemma 8 . This completes the proof.

Theorem 4. Let R be a 2-torsion free prime ring, I a nonzero ideal of R and D_{1}, d_{1} a symmetric bi-($\left.\alpha, \alpha\right)$-derivation, D_{2}, d_{2} symmetric bi-derivation and the traces of D_{1}, D_{2} respectively. If $D_{1}\left(d_{2}(x), x\right)=0$, for all $x \in I$, then either $D_{1}=0$ or $D_{2}=0$.

Proof. Linearizing of the hypothesis, we get

$$
\begin{equation*}
D_{1}\left(d_{2}(y), x\right)+2 D_{1}\left(D_{2}(x, y), x\right)+D_{1}\left(d_{2}(x), y\right)+2 D_{1}\left(D_{2}(x, y), y\right)=0 . \tag{13}
\end{equation*}
$$

Substituing in (13) x by $-x$, we have

$$
\begin{equation*}
-D_{1}\left(d_{2}(y), x\right)+2 D_{1}\left(D_{2}(x, y), x\right)+D_{1}\left(d_{2}(x), y\right)-2 D_{1}\left(D_{2}(x, y), y\right)=0 \tag{14}
\end{equation*}
$$

Notes on symmetric bi- (α, α) - derivations in rings

Comparing (13) and (14) and using 2 -torsion free, we obtain that

$$
\begin{equation*}
D_{1}\left(d_{2}(x), y\right)+2 D_{1}\left(D_{2}(x, y), x\right)=0, \text { for all } x, y \in I \tag{15}
\end{equation*}
$$

Replacing y by $x y$ in (15), using this equation and the hypothesis, we see that

$$
\begin{aligned}
0 & =D_{1}\left(d_{2}(x), x y\right)+2 D_{1}\left(D_{2}(x, x y), x\right) \\
& =D_{1}\left(d_{2}(x), x\right) \alpha(y)+\alpha(x) D_{1}\left(d_{2}(x), y\right)+2 D_{1}\left(D_{2}(x, x) y+x D_{2}(x, y), x\right) \\
& =D_{1}\left(d_{2}(x), x\right) \alpha(y)+\alpha(x) D_{1}\left(d_{2}(x), y\right)+2 D_{1}\left(d_{2}(x), x\right) \alpha(y) \\
& +2 \alpha\left(d_{2}(x)\right) D_{1}(x, y)+2 \alpha(x) D_{1}\left(D_{2}(x, y), x\right)+2 d_{1}(x) \alpha\left(D_{2}(x, y)\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
\alpha\left(d_{2}(x)\right) D_{1}(x, y)+d_{1}(x) \alpha\left(D_{2}(x, y)\right)=0, \text { for all } x, y \in I . \tag{16}
\end{equation*}
$$

Taking y by $y x$ in (16), we have

$$
\begin{aligned}
0 & =\alpha\left(d_{2}(x)\right) D_{1}(x, y x)+d_{1}(x) \alpha\left(D_{2}(x, y x)\right) \\
& =\alpha\left(d_{2}(x)\right) D_{1}(x, y) \alpha(x)+\alpha\left(d_{2}(x)\right) \alpha(y) d_{1}(x) \\
& +d_{1}(x) \alpha(y) \alpha\left(d_{2}(x)\right)+d_{1}(x) \alpha\left(D_{2}(x, y)\right) \alpha(x),
\end{aligned}
$$

and so

$$
\alpha\left(d_{2}(x)\right) \alpha(y) d_{1}(x)+d_{1}(x) \alpha(y) \alpha\left(d_{2}(x)\right)=0, \text { for all } x, y \in I .
$$

That is,

$$
\begin{equation*}
\alpha\left(d_{2}(x)\right) y d_{1}(x)+d_{1}(x) y \alpha\left(d_{2}(x)\right)=0, \text { for all } x \in I, y \in V, \tag{17}
\end{equation*}
$$

where $y \in \alpha(I)=V$ is a ideal of R. If $d_{1}(x)=0$ or $d_{2}(x)=0$, for all $x \in I$, then we get the required result by Lemma 8 . Now, we assume that d_{1} and d_{2} are both different from zero. Hence there exist elements $x_{1}, x_{2} \in I$ such that $d_{1}\left(x_{1}\right) \neq 0$ and $d_{2}\left(x_{2}\right) \neq 0$. It follows $d_{1}\left(x_{2}\right)=0$ and $d_{2}\left(x_{1}\right)=0$ from (17) and Lemma 1. Since $d_{1}\left(x_{2}\right)=0$, the equation (16) reduces to $\alpha\left(d_{2}\left(x_{2}\right)\right) D_{1}\left(x_{2}, y\right)=0$. Now, we define that $F: R \rightarrow R, F(y)=D_{1}\left(x_{2}, y\right)$. It is clear that F is a derivation. By Lemma 4 and $d_{2}\left(x_{2}\right) \neq 0$, we find that $D_{1}\left(x_{2}, y\right)=0$. In particular, we get $D_{1}\left(x_{2}, x_{1}\right)=0$. Similarly we see that $D_{2}\left(x_{2}, x_{1}\right)=0$ holds as well.

Let us write y for $x_{1}+x_{2}$. Then

$$
d_{1}(y)=d_{1}\left(x_{1}+x_{2}\right)=d_{1}\left(x_{1}\right)+d_{1}\left(x_{2}\right)+2 D_{1}\left(x_{1}, x_{2}\right)=d_{1}\left(x_{1}\right) \neq 0
$$

and

$$
d_{2}(y)=d_{2}\left(x_{1}+x_{2}\right)=d_{2}\left(x_{1}\right)+d_{2}\left(x_{2}\right)+2 D_{2}\left(x_{1}, x_{2}\right)=d_{2}\left(x_{2}\right) \neq 0 .
$$

That is $d_{1}(y)$ and $d_{2}(y)$ are not from zero. But they cannot be both different from zero according to (17) and Lemma 1. It is a contradiction. Hence we must have $d_{1}(x)=0$ or $d_{2}(x)=0$, for all $x \in I$, and so, $D_{1}=0$ or $D_{2}=0$.

The following theorem gives a generalization of Posner's result [4, Theorem 1] and a extension of [6, Theorem 5].

Theorem 5. Let R be a 2,3-torsion free prime ring, I a nonzero ideal of R and D_{1}, d_{1} a symmetric bi- (α, α)-derivation, D_{2}, d_{2} symmetric bi-derivation and the traces of D_{1}, D_{2} respectively. If $B: R \times R \rightarrow R$ a symmetric bi-additive mapping such that $d_{1}\left(d_{2}(x)\right)=f(x)$, for all $x \in I$, where f is the trace of B, then either $D_{1}=0$ or $D_{2}=0$.

Proof. The linearization of the the hypothesis, we have
$2 d_{1}\left(D_{2}(x, y)\right)+D_{1}\left(d_{2}(x), d_{2}(y)\right)+2 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)+2 D_{1}\left(d_{2}(y), D_{2}(x, y)\right)=B(x, y)$.
Taking x by $-x$ in (18), we get
$2 d_{1}\left(D_{2}(x, y)\right)+D_{1}\left(d_{2}(x), d_{2}(y)\right)-2 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)-2 D_{1}\left(d_{2}(y), D_{2}(x, y)\right)=-B(x, y)$.
Comparing (18) and (19) and using 2 -torsion free, we obtain that

$$
\begin{equation*}
2 d_{1}\left(D_{2}(x, y)\right)+D_{1}\left(d_{2}(x), d_{2}(y)\right)=0, \text { for all } x, y \in I \tag{20}
\end{equation*}
$$

Using (20) in (18), we arrive at

$$
2 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)+2 D_{1}\left(d_{2}(y), D_{2}(x, y)\right)=B(x, y), \text { for all } x, y \in I
$$

Taking x by y in this equation and using $d_{1}\left(d_{2}(x)\right)=f(x)$, we have

$$
\begin{aligned}
2 D_{1}\left(d_{2}(x), D_{2}(x, x)\right)+2 D_{1}\left(d_{2}(x), D_{2}(x, x)\right) & =B(x, x) \\
4 d_{1}\left(d_{2}(x)\right) & =f(x)=d_{1}\left(d_{2}(x)\right) \\
3 d_{1}\left(d_{2}(x)\right) & =0 .
\end{aligned}
$$

Since R is 3 -torsion free, we get

$$
d_{1}\left(d_{2}(x)\right)=0, \text { for all } x \in I
$$

On the other hand, again comparing (18) and (19) and using $d_{1}\left(d_{2}(x)\right)=0$, for all $x \in I$, we find that

$$
\begin{equation*}
2 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)+2 D_{1}\left(d_{2}(y), D_{2}(x, y)\right)=B(x, y), \text { for all } x, y \in I \tag{21}
\end{equation*}
$$

Replacing x by $2 x$ in (21), we see that

$$
\begin{equation*}
8 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)+2 D_{1}\left(d_{2}(y), D_{2}(x, y)\right)=B(x, y), \text { for all } x, y \in I \tag{22}
\end{equation*}
$$

By (21) and (22), we get

$$
6 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)=0
$$

and so

$$
\begin{equation*}
D_{1}\left(d_{2}(x), D_{2}(x, y)\right)=0, \text { for all } x, y \in I \tag{23}
\end{equation*}
$$

Notes on symmetric bi- (α, α) - derivations in rings

Replacing y by $y x$ in (23) and using this, $d_{1}\left(d_{2}(x)\right)=0$, we see that

$$
\begin{aligned}
0 & =D_{1}\left(d_{2}(x), D_{2}(x, y x)\right)=D_{1}\left(d_{2}(x), D_{2}(x, y) x+y d_{2}(x)\right) \\
& =D_{1}\left(d_{2}(x), D_{2}(x, y)\right) \alpha(x)+\alpha\left(D_{2}(x, y)\right) D_{1}\left(d_{2}(x), x\right) \\
& +D_{1}\left(d_{2}(x), y\right) \alpha\left(d_{2}(x)\right)+\alpha(y) D_{1}\left(d_{2}(x), d_{2}(x)\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
\alpha\left(D_{2}(x, y)\right) D_{1}\left(d_{2}(x), x\right)+D_{1}\left(d_{2}(x), y\right) \alpha\left(d_{2}(x)\right)=0, \text { for all } x, y \in I \tag{24}
\end{equation*}
$$

Let in y by $x y$ in (24) and using this, we have

$$
\begin{aligned}
0 & =\alpha\left(D_{2}(x, x y)\right) D_{1}\left(d_{2}(x), x\right)+D_{1}\left(d_{2}(x), x y\right) \alpha\left(d_{2}(x)\right) \\
& =\alpha(x) \alpha\left(D_{2}(x, y)\right) D_{1}\left(d_{2}(x), x\right)+\alpha\left(d_{2}(x)\right) \alpha(y) D_{1}\left(d_{2}(x), x\right) \\
& +D_{1}\left(d_{2}(x), x\right) \alpha(y) \alpha\left(d_{2}(x)\right)+\alpha(x) D_{1}\left(d_{2}(x), y\right) \alpha\left(d_{2}(x)\right)
\end{aligned}
$$

and so

$$
\alpha\left(d_{2}(x)\right) \alpha(y) D_{1}\left(d_{2}(x), x\right)+D_{1}\left(d_{2}(x), x\right) \alpha(y) \alpha\left(d_{2}(x)\right)=0, \text { for all } x, y \in I
$$

That is,

$$
\begin{equation*}
\alpha\left(d_{2}(x)\right) y D_{1}\left(d_{2}(x), x\right)+D_{1}\left(d_{2}(x), x\right) y \alpha\left(d_{2}(x)\right)=0, \text { for all } x \in I, y \in V \tag{25}
\end{equation*}
$$

where $y \in \alpha(I)=V$ is ideal of R. If $D_{1}\left(d_{2}(x), x\right) \neq 0$, for some $x \in I$, then $d_{2}(x)=0$ by Lemma 1 , and so $D_{1}\left(d_{2}(x), x\right)=0$, a contrary to the assumption $D_{1}\left(d_{2}(x), x\right) \neq 0$. Hence, $D_{1}\left(d_{2}(x), x\right)=0$, for all $x \in I$, and so $D_{1}=0$ or $D_{2}=0$ by Theorem 4 . We get the required result.

3 Conclusion

The present study has shown some essential properties of a nonzero ideals of a prime rings with symmetric bi- (α, α)-derivations. In future research, some well-known results in symmetric bi-derivations can be applied to symmetric bi(α, β)-derivations. Besides, the findings herein could help to uncover properties of symmetric bi- (α, α)-derivations in Lie ideals or square-closed Lie ideals.

4 Acknowledgement

The authors wishes to thank the referee for his valuable comments and suggestion.

References

[1] Bell, H.E., Some commutativity results involving derivations, Trends in Theory of Rings and Modules, S. T. Rivzi, S. M. A. Zaidi (Eds), Anayama Publisher, New Delhi, India, (2005).
[2] Daif, M.N. and Bell, H.E.: Remarks on derivations on semiprime rings, INternational Journal of Mathematics and Mathematical Sciences 15 (1992), Article ID 863506.
[3] Maksa, G., A remark on symmetric biadditive functions having nonnegative diagolization, Glasnik Math. 15(35), (1980), 279-282.
[4] Posner, E.C., Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[5] Samman, M.S. and Thaheem, A.B., Derivations on semiprime rings, International Journal of Pure and Apllied Mathematics, 5), (2003), no. 4, 465-472.
[6] Vukman, J., On symmetric bi-derivations in prime and semiprime rings, Aequationes Math. 38, (1989), 245-254.

[^0]: ${ }^{1}$ Sivas Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas Türkiye, e-mail: ogolbasi@cumhuriyet.edu.tr
 ${ }^{2 *}$ Corresponding author, Sivas Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas - Türkiye, e-mail: eminekoc@cumhuriyet.edu.tr

