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NOTES ON SYMMETRIC BI-(α, α)-DERIVATIONS IN RINGS

Öznur GÖLBAŞI1 and Emine Koç SÖGÜTCÜ ∗,2

Abstract

Let R be a prime ring with center Z, I a nonzero ideal of R and D :
R×R → R a symmetric bi–(α, α)-derivation and d be the trace of D. In the
present paper, we have considered the following conditions: i) [d(x), x]α,α =
0, ii)[d(x), x]α,α ⊆ Cα,α , iii)(d(x), x)α,α = 0, iv)D1(d2(x), x) = 0, v)d1(d2(x)) =
f(x), for all x, y ∈ I,whereD1 andD2 are two symmetric bi-(α, α)-derivations,
d1, d2 are the traces of D1, D2 respectively, B : R ×R → R is a symmetric
bi-additive mapping, f is the trace of B.
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1 Introduction

Throughout R will represent an assosiative ring with center Z. A ring R is
said to be prime if xRy = (0) implies that either x = 0 or y = 0 and semiprime
if xRx = (0) implies that x = 0, where x, y ∈ R. A prime ring is obviously
semiprime. For any x, y ∈ R, the symbol [x, y] stands for the commutator xy−yx
and the symbol xoy stands for the commutator xy+ yx. A mapping F from R to
R is called centralizing on S if [F (x), x] ∈ Z, for all x ∈ S and is called commuting
on S if [F (x), x] = 0, for all x ∈ S. An additive mapping d : R → R is called a
derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R.

The study of centralizing and commuting mappings on prime rings was ini-
tiated by the result of Posner [4] which states that the existence of a nonzero
centralizing derivation on a prime ring implies that the ring has to be commuta-
tive. Through the years, a lot work has been done in this subject by a number
of authors. The concept of commuting mappings is closely connected to the no-
tion of bi-derivations. Symmetric bi-derivation has been introduced by Maksa
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in [3] and Vukman [6] investigated symmetric bi-derivations on rings with cen-
tralizing mappings. A mapping D(., .) : R × R → R is said to be symmetric if
D(x, y) = D(y, x) for all x, y ∈ R. A mapping d : R → R is called the trace of
D(., .) if d(x) = D(x, x) for all x ∈ R. It is obvious that if D(., .) is bi-additive
(i.e., additive in both arguments), then the trace d of D(., .) satisfies the identity
d(x + y) = d(x) + d(y) + 2D(x, y), for all x, y ∈ R. If D(., .) is bi-additive and
symmetric mapping satisfies

D(xy, z) = D(x, z)y + xD(y, z)

and

D(x, yz) = D(x, y)z + yD(x, z),

for all x, y, z ∈ R called symmetric bi-derivation. Besides, many mathematicians
showed that symmetric bi-derivations are related to general solutions of some
functional equations.

Inspired by the definition symmetric bi-derivation, we introduce the notion of
symmetric bi-(α, α)-derivation as follow:

Let α be an any automorphism of R. A bi-additive mappingD(., .) : R×R → R
is said to be symmetric bi-(α, α)-derivation if it satisfies the identities

D(xy, z) = D(x, z)α(y) + α(x)D(y, z)

and

D(x, yz) = D(x, y)α(z) + α(y)D(x, z),

for all x, y, z ∈ R. Of course a symmetric bi-(1, 1)-derivation where 1 is the
identity map on R is symmetric bi-derivation. For any x, y ∈ R, we set [x, y]α,α =
xα(y) − α(y)x. We set Cα,α = {c ∈ R | cα(x) = α(x)c, for all x ∈ R} and
call this set the (α, α)−center of R. In particular, C1,1 = Z. It can be given
(α, α)−centralizing (resp. (α, α)−commuting) on R by the similarly definition
centralizing (resp. commuting).

The purpose of this paper can be regarded as a contribution to the theory
of centralizing and commuting symmetric bi-(α, α)-derivation. We obtained Vuk-
man’s result for a nonzero ideal of R with D a symmetric bi-(α, α)-derivation in
[6, Theorem 2].

Throughout the paper, we denote a symmetric bi-(α, α)-derivation D : R ×
R → R and d be the trace od D. For x, y ∈ R, (x, y)α,α will denote the Jordan
commutator xα(y)+α(y)x and make some extensive use of the basic commutator
identities:

[x, yz] = y[x, z] + [x, y]z

[xy, z] = [x, z]y + x[y, z]

[xy, z]α,α = x[y, z]α,α + [x, α(z)]y = x[y, α(z)] + [x, z]α,αy

[x, yz]α,α = α(y)[x, z]α,α + [x, y]α,αα(z)

(xy, z)α,α = x(y, z)α,α − [x, α(z)]y = x[y, α(z)] + (x, z)α,αy

(x, yz)α,α = α(y)(x, z)α,α + [x, y]α,αα(z) = (x, y)α,αα(z)− α(y)[x, z]α,α.
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2 Results

Lemma 1. [1, Lemma 3.1]Let R be a 2−torsion free semiprime ring and I a
nonzero ideal of R. If a, b ∈ R such that axb + bxa = 0 for all x ∈ I, then
axb = 0 = bxa for all x ∈ I.

Lemma 2. [2, Lemma 2 (b)]If R be a semiprime ring, then the center of a nonzero
ideal of R is contained the center of R.

Lemma 3. Let R be a prime ring, I a nonzero ideal of R and a, b ∈ R. If
aIb = (0), then a = 0 or b = 0.

Proof. We get
axb = 0, for all x ∈ I.

Replacing x by xr, r ∈ R in this equation, we have

axrb = 0, for all x ∈ I, r ∈ R.

That is axRb = (0). Since R is a prime ring, we have ax = 0 or b = 0. In the
former case, we get ax = 0, for all x ∈ I. Replacing x by rx, r ∈ R in last equation,
we have aRx = (0) . Since I a nonzero ideal of R and R is a prime ring, we have
a = 0. We conclude that a = 0 or b = 0.

Lemma 4. Let R be a prime ring, I a nonzero ideal of R and d a nonzero
derivation of R. If a ∈ R such that ad(x) = 0 for all x ∈ I, then a = 0.

Proof. Replacing x by xs, s ∈ R in the hypothesis, we have

axd(s) = 0, for all x ∈ I, s ∈ R.

By Lemma 3 and d ̸= 0, we obtain that a = 0.

Lemma 5. Let R be a prime ring. If a nonzero ideal of R is in the center of R,
then R is a commutative ring.

Proof. By the hypothesis, we get

[x, r] = 0, for all x ∈ I, r ∈ R.

Replacing x by sx, s ∈ R in this equation and using this, we obtain that

[s, r]x = for all x ∈ I, r ∈ R.

Thus, [R,R]I = (0). Multiplying this equation on the right by [R,R], we have
[R,R]I[R,R] = (0). By Lemma 3, we conclude that R is a commutative ring.
The proof is completed.

Lemma 6. Let R be a prime ring and I a nonzero ideal of R. If a ∈ R such that
aD(x, y) = 0 (D(x, y)a = 0) for all x, y ∈ I, then a = 0 or D = 0.
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Proof. Replacing x by xr, r ∈ R in the hypothesis, we have

aα(x)D(r, y) = 0, for all x, y ∈ I, r ∈ R.

That is,

aV D(r, y) = (0), for all y ∈ I, r ∈ R,

where α(I) = V is ideal of R. By Lemma 3, we see that

a = 0 or D(r, y) = 0, for all x ∈ I, r ∈ R.

Let D(r, y) = 0, for all y ∈ I, r ∈ R. Taking y by ys, s ∈ R in this equation and
using this, we get

α(y)D(r, s) = 0, for all y ∈ I, r, s ∈ R

and so, V D(r, s) = (0), for all r, s ∈ R. Again by Lemma 3, we conclude that
D(r, s) = (0), for all r, s ∈ R. This completes the proof.

Using the similar arguments, we prove that D(x, y)a = 0 for all x, y ∈ I, then
a = 0 or D = 0.

Lemma 7. Let R be a prime ring and I a nonzero ideal of R. If D(x, y) = 0 for
all x, y ∈ I, then D = 0.

Proof. Replacing x by xr, r ∈ R in the hypothesis, we see that

α(x)D(r, y) = 0, for all x, y ∈ I, r ∈ R.

This implies that

V D(r, y) = 0, for all y ∈ I, r ∈ R,

where α(I) = V is ideal of R. By Lemma 3, we have

D(r, y) = 0, for all x ∈ I, r ∈ R.

Writting y by ys, s ∈ R in this equation and using this, we arrive at D = 0.

Lemma 8. Let R be a 2−torsion free prime ring and I a nonzero ideal of R. If
d(x) = 0 for all x ∈ I, then D = 0.

Proof. Taking x by x+ y in the hypothesis and using this, we get

0 = d(x+ y) = d(x) + d(y) + 2D(x, y)

and so, 2D(x, y) = 0, for all x, y ∈ I. By Lemma 7, we get D = 0.

Lemma 9. Let R be a 2−torsion free prime ring and I a nonzero ideal of R. If
D(x, y) ⊆ Cα,α for all x, y ∈ I, then D = 0 or R is commutative ring.
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Proof. By the hypothesis, we have

[D(x, y), r]α,α = 0, for all x, y ∈ I, r ∈ R.

Taking xt, t ∈ I instead of x in this equation and using this, we find that

D(x, y)[α(t), α(r)] + [α(x), α(r)]D(x, y) = 0, for all x, y, t ∈ I, r ∈ R.

Replacing r by x in this equation, we get

D(x, y)[α(t), α(x)] = 0, for all x, y, t ∈ I.

Taking st, s ∈ I instead of t and using this, we have

D(x, y)α(s)[α(t), α(x)] = 0, for all x, y, t, s ∈ I.

We obtain that

D(x, y)V [α(t), α(x)] = (0), for all x, y, t ∈ I,

where α(I) = V is ideal of R. By Lemma 3, we obtain that

D(x, y) = 0 or [α(t), α(x)] = 0, for all x, y, t, s ∈ I.

Let K = {x ∈ I | D(x, y) = 0, for all y ∈ I} and L = {x ∈ I | [α(t), α(x)] = 0, for
all t ∈ I} of additive subgroups of I. Morever, I is the set-theoretic union of K
and L. But a group can not be the set-theoretic union of two proper subgroups,
hence K = I or L = I. In the former case, we get D = 0 by Lemma 7. In the
latter case, [α (I) , α(I)] = (0) . We have [V, V ] = (0). That is V ⊆ Z by Lemma
2, and so R is a commutative ring by Lemma 5. This completes the proof.

The following theorem gives a generalization of Posner’s well known result [4,
Lemma 3] and a extension of [6, Theorem 1].

Theorem 1. Let R be a 2−torsion free prime ring, I a nonzero ideal of R and D, d
a symmetric bi-(α, α)-derivation and the trace of D, respectively. If [d(x), x]α,α =
0, for all x ∈ I, then D = 0.

Proof. By the hypothesis, we have

[d(x), x]α,α = 0, for all x ∈ I. (1)

A linearization of (1) yields that

[d(x), y]α,α + [d(y), x]α,α + 2[D(x, y), x]α,α + 2[D(x, y), y]α,α = 0, for all x, y ∈ I.
(2)

Replacing x by −x in (2), we obtain that

[d(x), y]α,α − [d(y), x]α,α + 2[D(x, y), x]α,α − 2[D(x, y), y]α,α = 0, for all x, y ∈ I.
(3)
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Comparing (2) and (3), using 2−torsion freeness of R, we get

[d(x), y]α,α + 2[D(x, y), x]α,α = 0, for all x, y ∈ I. (4)

Replacing y by xy in (4) and using the hypothesis, we see that

0 = [d(x), xy]α,α + 2[D(x, xy), x]α,α

= α(x)[d(x), y]α,α + [d(x), x]α,αα(y) + 2[d(x)α(y) + α(x)D(x, y), x]α,α

= α(x)[d(x), y]α,α + 2d(x)[α(y), α(x)] + 2[d(x), x]α,αα(y) + 2α(x)[D(x, y), x]α,α.

By (4) and using 2−torsion freeness of R, we get

d(x)[α(y), α(x)] = 0, for all x, y ∈ I.

Again replacing y by yz, z ∈ I in the last equation and using this, we have

d(x)α(y)[α(z), α(x)] = 0, for all x, y, z ∈ I,

and so
d(x)V [α(z), α(x)] = (0), for all x, z ∈ I,

where α(I) = V is ideal of R.By Lemma 3, we get either d(x) = 0 or [V, α(x)] = (0)
for each x ∈ I. By Lemma 2, we have d(x) = 0 or α(x) ∈ Z for each x ∈ I. Since
α is automorphism of R, we obtain that d(x) = 0 or x ∈ Z for each x ∈ I.

Let x ∈ Z, y /∈ Z. Then x + y /∈ Z and −y /∈ Z. Also, d(x + y) = 0. Then we
get

0 = d(x+ y) = d(x) + 2D(x, y).

Taking x by −x in this equation, we have

0 = d(x)− 2D(x, y).

Comparing the last two equations, we arrive at d(x) = 0, for all x ∈ Z. Hence we
obtain that d(x) = 0, for all x ∈ I, and so, D = 0 by Lemma 8. This completes
the proof.

The following theorem is a generalization of [6, Theorem 2] and [4, Theorem
2].

Theorem 2. Let R be a 2 and 3−torsion free prime ring, I a nonzero ideal of
R and D, d a symmetric bi-(α, α)-derivation and the trace of D, respectively. If
[d(x), x]α,α ⊆ Cα,α for all x ∈ I, then D = 0.

Proof. Linearizing [d(x), x]α,α ∈ Cα,α, we get

[d(x), y]α,α + [d(y), x]α,α + 2[D(x, y), x]α,α + 2[D(x, y), y]α,α ∈ Cα,α. (5)

Taking x by −x in (5), we have

[d(x), y]α,α − [d(y), x]α,α + 2[D(x, y), x]α,α − 2[D(x, y), y]α,α ∈ Cα,α. (6)
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Using (5) and (6) and since R is a 2−torsion free, we get

[d(x), y]α,α + 2[D(x, y), x]α,α ∈ Cα,α for all x, y ∈ I. (7)

Replacing y by x2 in (7) and using the hypothesis, we find that

[d(x), x2]α,α + 2[D(x, x2), x]α,α

= α(x)[d(x), x]α,α + [d(x), x]α,αα(x) + 2[d(x), x]α,αα(x) + 2α(x)[d(x), x]α,α ∈ Cα,α.

Using (7) and the assumptations that R is a 2, 3−torsion free ring, we get

α(x)[d(x), x]α,α ∈ Cα,α for all x ∈ I.

Commuting this term with y and using [d(x), x]α,α ∈ Cα,α, we have

[α(x), α(y)][d(x), x]α,α = 0, for all x, y ∈ I.

Writing y by yz, z ∈ I in this equation, we get

[α(x), α(y)]α(z)[d(x), x]α,α = 0, for all x, y, z ∈ I.

That is,
[α(x), α(y)]V [d(x), x]α,α = (0), for all x, y ∈ I,

where α(I) = V is ideal of R. By Lemma 3, we arrive at

[α(x), V ] = (0) or [d(x), x]α,α = 0, for each x ∈ I.

By Lemma 2, we have

α(x) ∈ Z or [d(x), x]α,α = 0, for each x ∈ I.

If α(x) ∈ Z, then [d(x), x]α,α = d(x)α(x) − α(x)d(x) = 0. Thus we obtain that
[d(x), x]α,α = 0, for all x ∈ I, for any cases. By Theorem 1, we obtain that D = 0.
This completes the proof.

Theorem 3. Let R be a 2−torsion free prime ring, I a nonzero ideal of R and D, d
a symmetric bi-(α, α)-derivation and the trace of D, respectively. If (d(x), x)α,α =
0, for all x ∈ I, then D = 0.

Proof. By the hypothesis, we have

(d(x), x)α,α = 0, for all x ∈ I. (8)

A linearization of this equation yields that

(d(x), y)α,α+(d(y), x)α,α+2(D(x, y), x)α,α+2(D(x, y), y)α,α = 0, for all x, y ∈ I.
(9)

Replacing x by −x in (9), we obtain that

(d(x), y)α,α− (d(y), x)α,α+2(D(x, y), x)α,α−2(D(x, y), y)α,α = 0, for all x, y ∈ I.
(10)
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Comparing (9) and (10) and using 2−torsion freeness of R, we get

(d(x), y)α,α + 2(D(x, y), x)α,α = 0, for all x, y ∈ I. (11)

Replacing y by yx in (11) and using the hypothesis, we see that

0 = (d(x), yx)α,α + 2(D(x, yx), x)α,α

= (d(x), y)α,αα(x)− α(y)[d(x), x]α,α + 2(D(x, y)α(x) + α(y)d(x), x)α,α

= (d(x), y)α,αα(x)− α(y)[d(x), x]α,α + 2(D(x, y), x)α,αα(x)− 2[α(y), α(x)]d(x).

By (11), we get

α(y)[d(x), x]α,α + 2[α(y), α(x)]d(x) = 0, for all x, y ∈ I. (12)

Again replacing y by ry, r ∈ R in the last equation and using this, we have

2[α(r), α(x)]α(y)d(x) = 0, for all x, y ∈ I, r ∈ R.

Using 2−torsion freeness of R, we have

[α(r), α(x)]α(y)d(x) = 0, for all x, y ∈ I, r ∈ R.

Since α is a automorphism of R, we have

[r, α(x)]V d(x) = (0), for all x, y ∈ I, r ∈ R,

where α(I) = V is a ideal of R. By Lemma 3 and Lemma 2, we obtain that

α(x) ∈ Z or d(x) = 0, for each x ∈ I.

If α(x) ∈ Z, then (d(x), x)α,α = d(x)α(x) + α(x)d(x) = 2d(x)α(x) = 0, and so,
d(x)α(x) = 0. Again using α(x) ∈ Z, we obtain that

x = 0 or d(x) = 0, for each x ∈ I.

If x = 0, then d(x) = D(x, x) = D(0, 0) = 0. Thus we find that d(x) = 0 for any
cases, and so, D = 0 by Lemma 8. This completes the proof.

Theorem 4. Let R be a 2−torsion free prime ring, I a nonzero ideal of R and
D1, d1 a symmetric bi-(α, α)-derivation, D2, d2 symmetric bi-derivation and the
traces of D1, D2 respectively. If D1(d2(x), x) = 0, for all x ∈ I, then either D1 = 0
or D2 = 0.

Proof. Linearizing of the hypothesis, we get

D1(d2(y), x) + 2D1(D2(x, y), x) +D1(d2(x), y) + 2D1(D2(x, y), y) = 0. (13)

Substituing in (13) x by −x, we have

−D1(d2(y), x) + 2D1(D2(x, y), x) +D1(d2(x), y)− 2D1(D2(x, y), y) = 0. (14)
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Comparing (13) and (14) and using 2−torsion free, we obtain that

D1(d2(x), y) + 2D1(D2(x, y), x) = 0, for all x, y ∈ I. (15)

Replacing y by xy in (15), using this equation and the hypothesis, we see that

0 = D1(d2(x), xy) + 2D1(D2(x, xy), x)

= D1(d2(x), x)α(y) + α(x)D1(d2(x), y) + 2D1(D2(x, x)y + xD2(x, y), x)

= D1(d2(x), x)α(y) + α(x)D1(d2(x), y) + 2D1(d2(x), x)α(y)

+ 2α(d2(x))D1(x, y) + 2α(x)D1(D2(x, y), x) + 2d1(x)α(D2(x, y))

and so

α(d2(x))D1(x, y) + d1(x)α(D2(x, y)) = 0, for all x, y ∈ I. (16)

Taking y by yx in (16), we have

0 = α(d2(x))D1(x, yx) + d1(x)α(D2(x, yx))

= α(d2(x))D1(x, y)α(x) + α(d2(x))α(y)d1(x)

+ d1(x)α(y)α(d2(x)) + d1(x)α(D2(x, y))α(x),

and so

α(d2(x))α(y)d1(x) + d1(x)α(y)α(d2(x)) = 0, for all x, y ∈ I.

That is,

α(d2(x))yd1(x) + d1(x)yα(d2(x)) = 0, for all x ∈ I, y ∈ V, (17)

where y ∈ α(I) = V is a ideal of R. If d1(x) = 0 or d2(x) = 0, for all x ∈ I, then
we get the required result by Lemma 8. Now, we assume that d1 and d2 are both
different from zero. Hence there exist elements x1, x2 ∈ I such that d1(x1) ̸= 0
and d2(x2) ̸= 0. It follows d1(x2) = 0 and d2(x1) = 0 from (17) and Lemma
1. Since d1(x2) = 0, the equation (16) reduces to α(d2(x2))D1(x2, y) = 0. Now,
we define that F : R → R,F (y) = D1(x2, y). It is clear that F is a derivation.
By Lemma 4 and d2(x2) ̸= 0, we find that D1(x2, y) = 0. In particular, we get
D1(x2, x1) = 0. Similarly we see that D2(x2, x1) = 0 holds as well.

Let us write y for x1 + x2. Then

d1(y) = d1(x1 + x2) = d1(x1) + d1(x2) + 2D1(x1, x2) = d1(x1) ̸= 0

and

d2(y) = d2(x1 + x2) = d2(x1) + d2(x2) + 2D2(x1, x2) = d2(x2) ̸= 0.

That is d1(y) and d2(y) are not from zero. But they cannot be both different from
zero according to (17) and Lemma 1. It is a contradiction. Hence we must have
d1(x) = 0 or d2(x) = 0,for all x ∈ I, and so, D1 = 0 or D2 = 0.
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The following theorem gives a generalization of Posner’s result [4, Theorem 1]
and a extension of [6, Theorem 5].

Theorem 5. Let R be a 2, 3−torsion free prime ring, I a nonzero ideal of R and
D1, d1 a symmetric bi-(α, α)-derivation, D2, d2 symmetric bi-derivation and the
traces of D1, D2 respectively. If B : R×R → R a symmetric bi-additive mapping
such that d1(d2(x)) = f(x), for all x ∈ I, where f is the trace of B, then either
D1 = 0 or D2 = 0.

Proof. The linearization of the the hypothesis, we have

2d1(D2(x, y))+D1(d2(x), d2(y))+2D1(d2(x), D2(x, y))+2D1(d2(y), D2(x, y)) = B(x, y).
(18)

Taking x by −x in (18), we get

2d1(D2(x, y))+D1(d2(x), d2(y))−2D1(d2(x), D2(x, y))−2D1(d2(y), D2(x, y)) = −B(x, y).
(19)

Comparing (18) and (19) and using 2−torsion free, we obtain that

2d1(D2(x, y)) +D1(d2(x), d2(y)) = 0, for all x, y ∈ I. (20)

Using (20) in (18), we arrive at

2D1(d2(x), D2(x, y)) + 2D1(d2(y), D2(x, y)) = B(x, y), for all x, y ∈ I.

Taking x by y in this equation and using d1(d2(x)) = f(x), we have

2D1(d2(x), D2(x, x)) + 2D1(d2(x), D2(x, x)) = B(x, x)

4d1(d2(x)) = f(x) = d1(d2(x))

3d1(d2(x)) = 0.

Since R is 3−torsion free, we get

d1(d2(x)) = 0, for all x ∈ I.

On the other hand, again comparing (18) and (19) and using d1(d2(x)) = 0, for
all x ∈ I, we find that

2D1(d2(x), D2(x, y)) + 2D1(d2(y), D2(x, y)) = B(x, y), for all x, y ∈ I. (21)

Replacing x by 2x in (21), we see that

8D1(d2(x), D2(x, y)) + 2D1(d2(y), D2(x, y)) = B(x, y), for all x, y ∈ I. (22)

By (21) and (22), we get

6D1(d2(x), D2(x, y)) = 0

and so
D1(d2(x), D2(x, y)) = 0, for all x, y ∈ I. (23)



Notes on symmetric bi-(α, α)- derivations in rings 155

Replacing y by yx in (23) and using this, d1(d2(x)) = 0, we see that

0 = D1(d2(x), D2(x, yx)) = D1(d2(x), D2(x, y)x+ yd2(x))

= D1(d2(x), D2(x, y))α(x) + α(D2(x, y))D1(d2(x), x)

+D1(d2(x), y)α(d2(x)) + α(y)D1(d2(x), d2(x))

and so

α(D2(x, y))D1(d2(x), x) +D1(d2(x), y)α(d2(x)) = 0, for all x, y ∈ I. (24)

Let in y by xy in (24) and using this, we have

0 = α(D2(x, xy))D1(d2(x), x) +D1(d2(x), xy)α(d2(x))

= α(x)α(D2(x, y))D1(d2(x), x) + α(d2(x))α(y)D1(d2(x), x)

+D1(d2(x), x)α(y)α(d2(x)) + α(x)D1(d2(x), y)α(d2(x))

and so

α(d2(x))α(y)D1(d2(x), x) +D1(d2(x), x)α(y)α(d2(x)) = 0, for all x, y ∈ I.

That is,

α(d2(x))yD1(d2(x), x) +D1(d2(x), x)yα(d2(x)) = 0, for all x ∈ I, y ∈ V, (25)

where y ∈ α(I) = V is ideal of R. If D1(d2(x), x) ̸= 0, for some x ∈ I, then
d2(x) = 0 by Lemma 1, and so D1(d2(x), x) = 0, a contrary to the assumption
D1(d2(x), x) ̸= 0. Hence, D1(d2(x), x) = 0, for all x ∈ I, and so D1 = 0 or D2 = 0
by Theorem 4. We get the required result.

3 Conclusion

The present study has shown some essential properties of a nonzero ideals
of a prime rings with symmetric bi-(α, α)-derivations. In future research, some
well-known results in symmetric bi-derivations can be applied to symmetric bi-
(α, β)-derivations. Besides, the findings herein could help to uncover properties
of symmetric bi-(α, α)-derivations in Lie ideals or square-closed Lie ideals.
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