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ON THE MERSENNE AND MERSENNE-LUCAS
HYBRINOMIAL QUATERNIONS
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Abstract

In this paper, we introduce Mersenne and Mersenne-Lucas hybrinomial
quaternions and present some of their properties. Some identities are derived
for these polynomials. Furthermore, we give the Binet formulas, Catalan,
Cassini, d’Ocagne identity and generating and exponential generating func-
tion of these hybrinomial quaternions.
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1 Introduction

Hybrid numbers were introduced by Özdemir in [11]. A hybrid number is given
by

K = { a + bi + cε + dh : a, b, c, d ∈ R,
i 2 = −1, ε 2 = 0, h2 = 1, ih = hi = ε + i}

where i, ε, h are hybrid units and their multiplication rules are in Table1.
Recently, many researchers [3, 11, 12, 6, 7, 22, 20, 21, 23] have studied hybrid
numbers. k- Fibonacci, k-Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas
hybrid numbers were studied, and some properties were given. In addition, the
results of these studies were generalized by creating a Horadam hybrid number se-
quence. In addition, Kızılates, Szynal-Liana, Kürüz and Wloch [10, 23, 17] worked
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Table 1: Multiplication Rules
. i ε h

i −1 1 − h ε + i

ε 1 + h 0 −ε

h −ε− i ε 1

on these hybrid number sequences and created their polynomials and named them
as hybrinomial. Later, a study was carried out on their more general conditions
which generalized the special polynomials of these number sequences to form hy-
brinomials. The Fibonacci and Lucas hybrinomials are defined, respectively, as:

FHn(x) = Fn(x) + Fn+1(x)i + Fn+2(x)ε + Fn+3(x)h

and

LHn(x) = Ln(x) + Ln+1(x)i + Ln+2(x)ε + Ln+3(x)h

with FH0(x) = i + xε + (x2 + 1)h, FH1(x) = 1 + xi + (x2 + 1)ε + (x 3 +
2x)h, LH0(x) = 2 + xi + (x2 + 2)ε + (x3 + 3x)h and LH1(x) = x + (x2 +
2)i + (x3 + 3x)ε + (x4 + 4x2 + 2)h.

For n ≥ 2, there are recurrence relations between FHn(x) and LHn(x) as follows:

FHn(x) = xFHn−1(x) + FHn−2(x)

and

LHn(x) = xLHn−1(x) + LHn−2(x).

In [14], the Horadam polynomials, hn(x) = hn(x; a, b; p(x), q(x)), are given by

hn (x) = p (x)hn−1 (x) + q (x)hn−2 (x) , n ≥ 2 (1)

with h1(x) = a and h2(x) = bx.

Let’s consider the characteristic equation t2 − p (x) t− q (x) = 0 where its roots
are

α =
p(x)+

√
p2(x)+4q(x)

2 and β =
p(x)−

√
p2(x)+4q(x)

2 .

If we take p(x) = 3x, q(x) = −2, h1(x) = 2 and h2(x) = 3x, we get Mersenne
polynomials,

Mn (x) = 3xMn−1 (x) − 2Mn−2 (x) , n ≥ 3

with M1(x) = 0 and M2(x) = 1 [9].

Mersenne polynomials were studied by many researchers [1, 5, 9].

Similarly, when p(x) = 3x, q(x) = −2, h1(x) = 0 and h2(x) = 1, we get
Mersenne-Lucas polynomials,

mn (x) = 3xmn−1 (x) − 2mn−2 (x) , n ≥ 2

with m0(x) = 2 and m1(x) = 3 .
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For n ≥ 1, the Horadam hybrinomials are given by

Hn(x) = hn(x) + hn+1(x)i + hn+2(x)ε + hn+3(x)h.

If we substitute Mn (x) for hn(x), we get Mersenne hybrinomials. Similarly, if we
substitute mn (x) for hn(x), we get Mersenne-Lucas hybrinomials. So that

M̌n (x) = Mn(x) + Mn+1(x)i + Mn+2(x)ε + Mn+3(x)h (2)

m̌n (x) = mn(x) + mn+1(x)i + mn+2(x)ε + mn+3(x)h. (3)

In 1866, Hamilton introduced the quaternions. And many researchers had studied
them as extension of complex numbers [13, 14, 4, 15, 16, 8, 18, 24, 25].

Quaternions are used in different fields such as quantum physics and analysis.
Quaternions, also called real quaternions, are defined as follows:

Q = z0 + z1i + z2j + z3k

where z0, z1, z2 and z3 are real numbers. Also i, j and k are the units of real
quaternions which satisfy the following equalities

i 2 = j 2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j (4)

2 Mersenne Hybrinomial Quaternions

Now, we define Mersenne hybrinomial quaternions by using Mersenne polynomials
and give some of their properties.

Definition 1. The Mersenne hybrinomial quaternions denoted by M̂n (x) are de-
fined as follows

M̂n (x) = M̌n (x) + iM̌n+1 (x) + jM̌n+2 (x) + kM̌n+3 (x) .

Furthermore, every Mersenne hybrinomial quaternions can be written as

M̂n (x) = Mn(x) + iMn+1(x) + εMn+2(x) + hMn+3(x)

+i(Mn+1(x) + iMn+2(x) + εMn+3(x) + hMn+4(x))

+j(Mn+2(x) + iMn+3(x) + εMn+4(x) + hMn+5(x))

+k(Mn+3(x) + iMn+4(x) + εMn+5(x) + hMn+6(x))

= M̃n (x) + iM̃n+1 (x) + εM̃n+2 (x) + hM̃n+3(x)

where M̃n (x) = Mn(x)+ iMn+1(x)+ jMn+2(x)+kMn+3(x) is the n th Mersenne
quaternion polynomials.
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Definition 2. Let Ŝn (x) and K̂n(x) be the Mersenne hybrinomial quaternion
such that

Ŝn (x) = Šn (x) + iŠn+1 (x) + jŠn+2 (x) + kŠn+3 (x)

= S̃n (x) + iS̃n+1 (x) + εS̃n+2 (x) + hS̃n+3(x)

and

K̂n (x) = Ǩn (x) + iǨn+1 (x) + jǨn+2 (x) + kǨn+3 (x)

= K̃n (x) + iK̃n+1 (x) + εK̃n+2 (x) + hK̃n+3(x).

Then, their addition and subtraction are defined, respectively, by

Ŝn (x) ∓ K̂n (x) = (Šn (x) ∓ Ǩn (x)) + i(Šn+1 (x) ∓ Ǩn+1 (x)) + j(Šn+2 (x)

∓Ǩn+2 (x)) + k(Šn+3 (x) ∓ Ǩn+3 (x)),

Ŝn (x) ∓ K̂n (x) = (S̃n (x) ∓ K̃n (x)) + i(S̃n+1 (x) ∓ K̃n+1 (x))

+ε(S̃n+2 (x) ∓ K̃n+2) + h(S̃n+3 (x) ∓ K̃n+3(x)).

Definition 3. Multiplication of the Mersenne hybrinomial quaternions is defined
in terms of Mersenne hybrinomial as follows:

Ŝn (x) K̂n (x)

=
(
Šn (x) Ǩn (x) − Šn+1 (x) Ǩn+1 (x) − Šn+2 (x) Ǩn+2 (x) − Šn+3 (x) Ǩn+3 (x)

)
+ i

(
Šn (x) Ǩn+1 (x) +Šn+1 (x) Ǩn (x) + Šn+2 (x) Ǩn+3 (x) − Šn+3 (x) Ǩn+2 (x)

)
+ j

(
Šn (x) Ǩn+2 (x) − Šn+1 (x) Ǩn+3 (x) + Šn+2 (x) Ǩn (x) + Šn+3 (x) Ǩn+1 (x)

)
+ k(Šn (x) Ǩn+3 (x) + Šn+1 (x) Ǩn+2 (x) − Šn+2 (x) Ǩn+1 (x) + Šn+3 (x) Ǩn (x))

or it can be defined in terms of Mersenne quaternions as follows:

Ŝn (x) K̂n (x)

= (S̃n (x) K̃n (x)−S̃n+1 (x) K̃n+1 (x) + S̃n+3 (x) K̃n+3 (x) + S̃n+1 (x) K̃n+2 (x)

+ S̃n+2 (x) K̃n+1 (x))

+ i
(
S̃n (x) K̃n+1 (x) +S̃n+1 (x) K̃n (x) + S̃n+1 (x) K̃n+3 (x) − S̃n+3 (x) K̃n+1 (x)

)
+ ε

(
S̃n (x) K̃n+2 (x) + S̃n+1 (x) K̃n+3 (x) + S̃n+2 (x) K̃n (x) + S̃n+2 (x) K̃n+3 (x)

)
+ ε

(
−S̃n+3 (x) K̃n+1 (x) + S̃n+3 (x) K̃n+2 (x)

)
+ h

(
S̃n (x) K̃n+3 (x) − S̃n+1 (x) K̃n+2 (x) + S̃n+2 (x) K̃n+1 (x) + S̃n+3 (x) K̃n (x)

)
.

The scalar and vector parts of Ŝn (x) are denoted, respectively, by

SŜn(x)
= Šn(x) and VŜn(x)

= iŠn+1 (x) + jŠn+2 (x) + kŠn+3(x).
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So, Ŝn (x) can be given as Ŝn (x) = SŜn(x)
+ VŜn(x)

. Now, we also can define
addition and subtraction of two the Mersenne hybrinomial quaternion sequences,
respectively, as

Ŝn (x) ∓ K̂n (x) =
(
SŜn(x)

∓ SK̂n(x)

)
∓ (VŜn(x)

∓ VK̂n(x)
)

and multiplication

Ŝn (x) K̂n (x)

= SŜn(x)
SK̂n(x)

− VŜn(x)
VK̂n(x)

+SŜn(x)
VK̂n(x)

+ SK̂n(x)
VŜn(x)

+V Ŝn(x)
VK̂n(x)

.

Definition 4. The conjugate of Mersenne hybrinomial quaternion can be defined
in three different types

i. Quaternion conjugate, M̂n (x) : M̂n (x) = M̂n (x) + i M̂n+1 (x)

+ ε M̂n+2 (x) + h M̂n+3 (x)

ii. Hybrid conjugate, M̂n (x)
C

: M̂n (x)
C

= M̃n (x)− iM̃n+1 (x)− εM̃n+2 (x)−
hM̃n+3(x)

iii. Total conjugate, M̂n (x)
t

: M̂n (x)
t

= M̂n (x)
C

= M̃n (x) − iM̃n+1 (x) −
εM̃n+2 (x) − hM̃n+3 (x) .

Theorem 1. For n ≥ 1 we have the following relations:

i. 3xM̂n (x) − 2M̂n−1 (x) = M̂n+1 (x)

ii.

−2M̂n (x)−iM̂n+1 (x) + 2jM̂n+2 (x) − kM̂n+3 (x)

= m̌n+1 (x) (1 − 3i) + m̌n+5 (x) (1 + 3i) − 6kM̌n+3 (x)

Proof. i.

3xM̂n (x) − 2M̂n−1 (x) = 3xM̌n (x) − 2M̌n−1 (x) + i
(
3xM̌n+1 (x) − 2M̌n (x)

)
+ j

(
3xM̌n+2 (x) − 2M̌n+1 (x)

)
+ k

(
3xM̌n+3 (x) − 2M̌n+2 (x)

)
= M̂n+1 (x) .

ii. −2M̂n (x)−iM̂n+1 (x)+2jM̂n+2 (x)−kM̂n+3 (x) = −2M̌n (x)+M̌n+2 (x)−
2M̌n+4 (x) + M̌n+6 (x) − 6kM̌n+3 (x) + 3i(M̌n+5 (x) − M̌n+1 (x))

= m̌n+1 (x) + m̌n+5 (x) + 3i (m̌n+5 (x) − m̌n+1 (x)) − 6kM̌n+3 (x)

= (1 − 3i) m̌n+1 (x) + (1 + 3i) m̌n+5 (x) − 6kM̌n+3 (x)
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Theorem 2. For M̂n (x) and m̂n (x), we have

i. −2M̂n−1 (x) +M̂n+1 (x) = m̂n (x)

ii. M̂n+2 (x)−4M̂n−2 (x) = 3m̂n (x)

Proof. i.

−2M̂n−1 (x) +M̂n+1 (x) =
(
−2M̌n−1 (x) + M̌n+1 (x)

)
+ i

(
−2M̌n (x) + M̌n+2 (x)

)
+ j

(
−2M̌n+1 (x) + M̌n+3 (x)

)
+ k(−2M̌n+2 (x) + M̌n+4 (x))

= m̌n (x) + im̌n+1 (x) + jm̌n+2 (x) + km̌n+3 (x)

= m̂n (x) .

ii.

M̂n+2 (x)−4M̂n−2 (x) =
(
M̌n+2 (x) − 4M̌n−2 (x)

)
+ i

(
M̌n+3 (x) − 4M̌n−1 (x)

)
+ j

(
M̌n+4 (x) − 4M̌n (x)

)
+ k

(
M̌n+5 (x) − 4M̌n+1 (x)

)
= 3m̌n (x) + 3im̌n+1 (x) + 3jm̌n+2 (x) + 3km̌n+3 (x)

= 3̂mn (x) .

Theorem 3. The following relations are satisfied:

i. M̂n (x) + M̂n (x) = 2M̌n (x)

ii. M̂n (x) + M̂n (x)
C

= 2M̃n (x)

iii. M̂n (x)+M̂n (x)
t

= −2Mn (x) − 8Mn+1 (x) + 2(M̌n+1 (x) + M̌n+2 (x) + M̌n+3 (x)).

Proof. i.

M̂n (x) + M̂n (x) =
(
M̌n (x) + iM̌n+1 (x) + jM̌n+2 (x) + kM̌n+3 (x)

)
+
(
M̌n (x) − iM̌n+1 (x) − jM̌n+2 (x) − kM̌n+3 (x)

)
= 2M̌n (x)

ii.

M̂n (x) + M̂n (x)
C

=
(
M̌n (x) + M̌C

n (x)
)

+ i
(
M̌n+1 (x) + M̌C

n+1 (x)
)

+ j
(
M̌n+2 (x) + M̌C

n+2 (x)
)

+ k
(
M̌n+3 (x) + M̌C

n+3 (x)
)

= 2 (Mn (x) + iMn+1 (x) + jMn+2 (x) + kMn+3 (x))

= 2M̃n(x)
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iii.

M̂n (x)+M̂n (x)
t

=
(
M̌n (x) + M̌C

n (x)
)

+ i
(
M̌n+1 (x) − M̌C

n+1 (x)
)

+ j
(
M̌n+2 (x) − M̌C

n+2 (x)
)

+ k
(
M̌n+3 (x) − M̌C

n+3 (x)
)

= −2Mn (x) − 8Mn+1 (x)

+ 2(M̌n+1 (x) + M̌n+2 (x) + M̌n+3 (x))

Theorem 4. The Binet’s formulas for M̂n (x) is given by

M̂n (x) =
α∗ (x)α∗∗ (x)αn (x) − β∗ (x)β∗∗ (x)βn (x)

α (x) − β(x)

where α∗ (x) = 1 + iα (x) + jα2 (x) + kα3 (x) , β∗ (x) = 1 + iβ (x) + jβ2 (x) +
kβ3 (x) ,

α∗∗ (x) = 1+iα (x)+εα2 (x)+hα3 (x) and β∗∗ (x) = 1+iβ (x)+εβ2 (x)+hβ3 (x) .

Proof. Özkoç [15] gave the Binet’s formula for (p, q)−Fibonacci quaternion poly-
nomials. If p = 3x and q = −2 are taken, Binet formula is found for Mersenne
quaternion polynomials.

M̃n (x) =
α∗ (x)αn (x) − β∗ (x)βn (x)

α (x) − β(x)
.

From M̂n (x) = M̃n (x) + iM̃n+1 (x) + εM̃n+2 (x) + hM̃n+3(x), we obtain

M̂n (x) =

(
α∗ (x)αn (x) + iα∗ (x)αn+1 (x) + εα∗ (x)αn+2 (x) + hα∗ (x)αn+3 (x)

)
α (x) − β (x)

−
(
β∗ (x)βn (x) + iβ∗ (x)βn+1 (x) + εβ∗ (x)βn+2 (x) + hβ∗ (x)βn+3 (x)

)
α (x) − β (x)

=
α∗ (x)αn (x)

(
1 + iα (x) + εα2 (x) + hα3 (x)

)
α (x) − β (x)

−β∗ (x)βn (x) (1 + iβ (x) + εβ2 (x) + hβ3 (x) )

α (x) − β (x)

=
α∗ (x)α∗∗ (x)αn (x) − β∗ (x)β∗∗ (x)βn (x)

α (x) − β(x)

Theorem 5. The generating function for M̂n (x) is

gM̂n (x) =
M̂0 (x) +t(M̂1 (x) − 3xM̂0 (x))

1 − 3tx + 2t2
.
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Proof. The generating function gM̂n (x) for M̂n (x) is given

gM̂n (x) =
∞∑
n=0

M̂n (x) tn = M̂0 (x) + M̂1 (x) t + M̂2 (x) t2 + · · · + M̂n (x) tn + . . .

−3txgM̂n (x) = −3txM̂0 (x)−3xM̂1 (x) t2−3xM̂2 (x) t3−· · ·−3xM̂n (x) tn+1+. . .

2t2gM̂n (x) = 2t̂2M0 (x) + 2M̂1 (x) t3 + 2M̂2 (x) t4 + · · · + 2M̂n (x) tn+2 + . . .

gM̂n (x) − 3txgM̂n (x) + 2t2gM̂n (x) = gM̂n (x)
[
1 − 3tx + 2t2

]
= M̂0 (x) + t

[
M̂1 (x) − 3xM̂0 (x)

]
+ t2

[
M̂2 (x) − 3xM̂1 (x) + 2M̂0 (x)

]
+ t3

[
M̂3 (x) − 3xM̂2 (x) + 2M̂1 (x)

]
+ . . .

From Theorem 1 (i), we get

gM̂n (x)
[
1 − 3tx + 2t2

]
= M̂0 (x) +t(M̂1 (x) − 3xM̂0 (x))

gM̂n (x) =
M̂0 (x) +t(M̂1 (x) − 3xM̂0 (x))

1 − 3tx + 2t2
.

Theorem 6. For n ≥ 0 and M̂n (x), we have the following binomial sum formula
for odd and even terms, respectively,

M̂2n (x) =

n∑
m=0

( n

m

)
(−2)n−m(3x)mM̂m (x)

M̂2n+1 (x) =

n∑
m=0

( n

m

)
(−2)n−m(3x)mM̂m+1 (x)

Proof. From the Binet’s formula, we get

n∑
m=0

( n

m

)
(−2)n−m(3x)m

α∗ (x)α∗∗ (x)αm (x) − β∗ (x)β∗∗ (x)βm (x)

α (x) − β(x)

=
α∗ (x)α∗∗ (x)

α (x) − β(x)

n∑
m=0

( n

m

)
(−2)n−m(3xα(x))m

− β∗ (x)β∗∗ (x)

α (x) − β(x)

n∑
m=0

( n

m

)
(−2)n−m(3xβ(x))m

=
α∗ (x)α∗∗ (x)

α (x) − β (x)
(−2 + 3xα(x))n − β∗ (x)β∗∗ (x)

α (x) − β(x)
(−2 + 3xβ(x))n

=
α∗ (x)α∗∗ (x)α2n (x) − β∗ (x)β∗∗ (x)β2n (x)

α (x) − β (x)
= M̂2n (x) .

The other case can be done similarly.
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Theorem 7. The sum of the first m terms of the sequence
{
M̂m (x)

}∞

m=0
is given

by

m∑
k=0

M̂k (x)

=
M̂0 (x) + 2M̂m (x) − M̂m+1 (x) − α∗ (x)α∗∗ (x)β (x) − β∗ (x)β∗∗ (x)α(x)

(1 − α(x))(1 − β (x))
.

Proof. From the Binet’s formula of Mersenne hybrinomial quaternion, we have

m∑
k=0

M̂k (x)

=
m∑
k=0

α∗ (x)α∗∗ (x)αk (x) − β∗ (x)β∗∗ (x)βk (x)

α (x) − β (x)

=
α∗ (x)α∗∗ (x)

α (x) − β(x)

n∑
m=0

αk (x) − β∗ (x)β∗∗ (x)

α (x) − β(x)

n∑
m=0

βk (x)

=
α∗ (x)α∗∗ (x)

α (x) − β(x)

1 − αm+1(x)

1 − α(x)
− β∗ (x)β∗∗ (x)

α (x) − β(x)

1 − βm+1(x)

1 − β(x)

=
α∗ (x)α∗∗ (x) − α∗ (x)α∗∗ (x)β (x) − α∗ (x)α∗∗ (x)αm+1 (x)

(1 − α(x))(1 − β(x))(α (x) − β(x))

+
α∗ (x)α∗∗ (x)αm (x)α (x)β(x)

(1 − α(x))(1 − β(x))(α (x) − β(x))

− β∗ (x)β∗∗ (x) − β∗ (x)β∗∗ (x)α (x) − β∗ (x)β∗∗ (x)βm+1 (x)

(1 − α(x))(1 − β(x))(α (x) − β(x))

+
+β∗ (x)β∗∗ (x)βm (x)β (x)α(x)

(1 − α(x))(1 − β(x))(α (x) − β(x))

=
M̂0 (x) + 2M̂m (x) − M̂m+1 (x) − α∗ (x)α∗∗ (x)β (x) − β∗ (x)β∗∗ (x)α(x)

(1 − α(x))(1 − β (x))
.

Theorem 8. The exponential generating function for the M̂m (x) is

∞∑
k=0

M̂k (x)

k!
ℓk =

α∗ (x)α∗∗ (x) eα(x)ℓ − β∗ (x)β∗∗ (x) eβ(x)ℓ

α (x) − β(x)
.

Proof. From the Binet’s formula for Mersenne hybrinomial quaternion, we have

∞∑
k=0

M̂k (x)

k!
ℓk =

∞∑
k=0

(
α∗ (x)α∗∗ (x)αk (x) − β∗ (x)β∗∗ (x)βk (x)

α (x) − β(x)

)
ℓk

k!

=
α∗ (x)α∗∗ (x)

α (x) − β(x)

∞∑
k=0

(α(x)ℓ)

k!

k

− β∗ (x)β∗∗ (x)

α (x) − β(x)

∞∑
k=0

(β(x)ℓ)

k!

k
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=
α∗ (x)α∗∗ (x) eα(x)ℓ − β∗ (x)β∗∗ (x) eβ(x)ℓ

α (x) − β(x)
.

Theorem 9. For r ≥ s ≥ 1, Catalan identity for the Mersenne hybrinomial
quaternion is

M̂r+s (x) M̂r−s (x) −
(
M̂r (x)

)2

= (−2)r−sα
∗

(x)α∗∗ (x)β∗ (x)β∗∗ (x)

(
αs (x) − βs (x)

α (x) − β (x)

)2

.

Proof. From the Binet’s formula for Mersenne hybrinomial quaternion, we have

M̂r+s (x) M̂r−s (x) −
(
M̂r (x)

)2

=
−α∗ (x)α∗∗ (x)β∗ (x)β∗∗ (x)

(α (x) − β(x))2

[
αr+s (x)βr−s (x) + αr−s (x)βr+s (x)

− 2αr (x)βr (x))
]

=
−α∗ (x)α∗∗ (x)β∗ (x)β∗∗ (x)

(α (x) − β(x))2
×

×
((α (x)β (x))r

(
α(x)
β(x)

)s
+ (α (x)β (x))r

(
β(x)
α(x)

)s
− 2(α (x)β (x))r)

(α (x) − β(x))2

= α∗ (x)α∗∗ (x)β∗ (x)β∗∗ (x) (−2)r−s

(
αs (x) − βs(x)

α (x) − β(x)

)2

.

Theorem 10. For r ∈ N, Cassini’s identity for the Mersenne hybrinomial quater-
nion is

M̂r+1 (x) M̂r−1 (x) −
(
M̂r (x)

)2
= (−2)r−1α

∗
(x)α∗∗ (x)β∗ (x)β∗∗ (x) .

Proof. Taking s = 1 in Catalan identity, the proof is completed.

Theorem 11. For s > r, d’Ocagne’s identity for the Mersenne hybrinomial
quaternion is

M̂s (x) M̂r+1 (x) − M̂s+1 (x) M̂r (x)

= α∗ (x)α∗∗ (x)β∗ (x)β∗∗ (x) 2r
(
αs−r (x) − βs−r (x)

α (x) − β (x)

)
.
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Proof. From the Binet’s formula for Mersenne hybrinomial quaternion, we have

M̂s (x) M̂r+1 (x) − M̂s+1 (x) M̂r (x)

=
−α∗ (x)α∗∗ (x)β∗ (x)β∗∗ (x)

(α (x) − β(x))2

((αs (x)βr (x) (β (x) − α (x)) − αr (x)βs (x) (β (x) − α (x)))

(α (x) − β(x))2

= α∗ (x)α∗∗ (x)β∗ (x)β∗∗ (x) 2r
(
αs−r (x) − βs−r (x)

α (x) − β (x)

)

3 Mersenne-Lucas hybrinomial quaternions

Now, we define Mersenne-Lucas hybrinomial quaternions by using Mersenne-
Lucas polynomials and give some of their properties.

Definition 5. We denote the Mersenne-Lucas hybrinomial quaternions by m̂n (x)
as follows

m̂n (x) = m̌n (x) + im̌n+1 (x) + jm̌n+2 (x) + km̌n+3 (x) .

Furthermore, every Mersenne-Lucas hybrinomial quaternions can be written
as

m̂n (x) = (mn(x) + imn+1(x) + εmn+2(x) + hmn+3(x))+

i(mn+1(x) + imn+2(x) + εmn+3(x) + hmn+4(x))+

j(mn+2(x) + imn+3(x) + εmn+4(x) + hmn+5(x))+

k(mn+3(x) + imn+4(x) + εmn+5(x) + hmn+6(x))

= m̃n (x) + im̃n+1 (x) + εm̃n+2 (x) + hm̃n+3(x).

Theorem 12. The Binet’s formulas for these sequences are given as follows:

m̂n (x) = α∗∗ (x)α∗ (x)αn (x) + β∗∗ (x)β∗ (x)βn (x)
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Proof.

m̂n (x) = m̃n (x) + im̃n+1 (x) + εm̃n+2 (x) + hm̃n+3 (x)

= α∗∗ (x)αn (x) + β∗∗ (x)βn (x) + i
(
α∗∗ (x)αn+1 (x) + β∗∗ (x)βn+1(x)

)
+ ε

(
α∗∗ (x)αn+2 (x) + β∗∗ (x)βn+2 (x)

)
+ h

(
α∗∗ (x)αn+3 (x) + β∗∗ (x)βn+3 (x)

)
= α∗∗ (x)αn (x) + iα∗∗ (x)αn+1 (x) + εα∗∗ (x)αn+2 (x)

+ hα∗∗ (x)αn+3 (x) + β∗∗ (x)βn (x)

+ iβ∗∗ (x)βn+1 (x) + εβ∗∗ (x)βn+2 (x) + hβ∗∗ (x)βn+3 (x)

= α∗∗ (x)αn (x)
(
(1 + iα(x) + εα2 (x) + hα3 (x)

)
+ β∗∗ (x)βn (x)

(
(1 + iβ(x) + εβ2 (x) + hβ3 (x)

)
= α∗∗ (x)α∗ (x)αn (x) + β∗∗ (x)β∗ (x)βn (x)

Theorem 13. For n ≥ 0, m̂n (x) have the following binomial sum formula for
odd and even terms,

m̂2n (x) =

n∑
m=0

( n

m

)
(−2)n−m(3x)mm̂m (x),

m̂2n+1 (x) =

n∑
m=0

( n

m

)
(−2)n−m(3x)mm̂m+1 (x).

Proof. The proof is done similarly to Theorem 6.

Theorem 14. The sum of the first m terms of the sequence {m̂m (x)}∞m=0 is given
by

m∑
k=0

m̂k (x) =

m̂0 (x) + 2m̂m (x) − m̂m+1 (x) − α∗∗ (x)α∗ (x)β (x) − β∗∗ (x)β∗ (x)α (x)

(1 − α (x)) (1 − β (x))
.

Proof. The proof is done similarly to Theorem 2.

Theorem 15. The exponential generating function for the m̂m (x) is

∞∑
k=0

m̂k(x)

k!
lk= α∗∗ (x)α∗ (x) eα(x)l+β∗∗ (x)β∗ (x) eβ(x)l.

Proof. The proof is done similarly to Theorem 7.
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Theorem 16. For r ≥ s ≥ 1, Catalan identity for the Mersenne-Lucas hybrino-
mial quaternion is

m̂r+s (x) m̂r−s (x) − m̂2
r (x) = 2r−sα∗∗ (x)α∗ (x)β∗∗ (x)β∗ (x) (αs − βs)2.

Proof. The proof is done similarly to Theorem 8.

Theorem 17. For r ∈ N, Cassini’s identity for the Mersenne-Lucas hybrinomial
quaternion is

m̂r−1 (x) m̂r+1 (x) − (m̂r (x))2= 2r−1α∗∗ (x)α∗ (x)β∗∗ (x)β∗ (x) (α (x) − β (x))2.

Proof. Taking s = 1 in Catalan identity, the proof is completed.

Theorem 18. For s > r, d’Ocagne’s identity for the Mersenne-Lucas hybrinomial
quaternion is

m̂s (x) m̂r+1 (x) − m̂s+1 (x) m̂r (x)

= α∗ (x)α∗∗ (x)β∗ (x)β∗∗ (x) (2s − 2r)
(
αr−s+1 + βr−s+1

)
Proof. The proof is done similarly to Theorem 10.

4 Conclusions

In this work, we gave Mersenne and Mersenne-Lucas hybrinomial quaternions
with their properties. Furthermore, we obtained some important identities such
as the Binet formulas, Catalan, Cassini, d’Ocagne identity and generating and
exponential generating function of these hybrinomial quaternions.
This work can be moved to other number sequences and the relationships between
them can be examined.
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