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SPATIAL BEHAVIOUR IN THE COUPLED THEORY FOR
VISCOELASTIC MATERIALS WITH VOIDS

Adina CHIRILĂ1

Abstract

We analyse viscoelastic porous materials in the coupled linear theory. We
consider the coupling between the volume fraction and Darcy’s law for a right
cylinder. The mathematical model is represented by a system of equations
of steady vibrations for the displacement vector, the changes of the volume
fraction and the pressure. The spatial behaviour is characterised in terms of
some cross-sectional functional.
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1 Introduction

The mechanical and hydraulic coupling was introduced for the first time by
Biot in [1]. In this paper, Biot analyses the three-dimensional consolidation theory
of solids with voids in the isotropic case by means of Darcy’s law. Then, in [2],
Biot studies the viscoelastic (time-dependent) effects for elastic solids with voids.

Another important concept in the theory of materials with voids is the volume
fraction. Based on this concept, Cowin and Nunziato studied in [12] and [14] a
linear and a nonlinear approach, respectively, for coupled elasticity in the case of
deformable bodies with voids.

Recently, M. M. Svanadze considered in [18] the coupled linear theory of vis-
coelasticity for bodies with voids. In this paper, we note the coupling between
the concept of volume fraction and Darcy’s law. This type of coupling was also
studied in [16] and [17]. This mathematical model can be employed to predict the
physical properties of some biomaterials (see [13], [15]) and geomaterials, such as
soils which are water saturated, rocks which are impregnated with oil or foams
that are filled with air (see [7])

Viscoelastic materials were studied in many recent articles, see for example [6],
[18], [19], [20], [21], [22]. The spatial behaviour of the solution for some problems
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in thermoelasticity is studied in some recent articles, see for example [3], [4], [5],
[8], [11]. Electrical effects were considered in thermoelasticity in the context of
the Green-Naghdi theory, see for example [9], [10].

In this article, we analyse the mathematical model introduced by M. M.
Svanadze in [18]. More precisely, we study the spatial behaviour of the solu-
tion for vibrating viscoelastic porous materials in the coupled theory following
the approach from [11].

2 Preliminaries

In this study, we analyse a viscoelastic material with voids which lies in the
three-dimensional Euclidean space R3. For this material, the skeletal portion is
represented by a Kelvin-Voigt solid. We consider that û = (û1, û2, û3) is a vector
representing the displacement in the body, φ̂ represents the change of the fraction
of volume for pores and p̂ is the change of the pressure of the fluid in the voids
network.

We consider that x = (x1, x2, x3) is a point in R3. Moreover, t is a variable
representing the time, with t ≥ 0. In the sequel, differentiation with respect to t
is represented by a superposed dot. Furthermore, partial differentiation in terms
of a Cartesian coordinate is represented by the associated subscript preceded by
a comma. Note that all functions that have a hat depend both on the time t and
on the space coordinate x.

The framework is a system of rectangular Cartesian axes Oxk, with k = 1, 2, 3,
which is fixed. Latin subscripts can have the values 1, 2, 3, while Greek subscripts
can have the values 1, 2. We assume that a regular region B contains an isotropic
and homogeneous viscoelastic body with pores.

The mathematical model of the coupled linear theory of viscoelasticity for
solids with voids is represented by the governing system of field equations of
motion introduced by M. M. Svanadze in [18]. The equations of motion are

t̂lj,j = ρ
(
¨̂ul − F̂ ′

l

)
,

σ̂j,j + ξ̂ = ρ1 ¨̂φ− ρŝ1, l = 1, 2, 3,
(1)

with
ξ̂ = −bêrr − ζφ̂+mp̂− γ∗ ˙̂err − ζ∗ ˙̂φ (2)

and

êlj =
1

2
(ûl,j + ûj,l) . (3)

The constitutive equations are [18]

t̂lj = 2µêlj + λêrrδlj + (bφ̂− βp̂)δlj + 2µ∗ ˙̂elj + λ∗ ˙̂errδlj + b∗ ˙̂φδlj ,

σ̂l = αφ̂,l + α∗ ˙̂φ,l, l, j = 1, 2, 3.
(4)

The equation of fluid mass conservation is [18]

v̂j,j + a ˙̂p+ β ˙̂err +m ˙̂φ = 0, (5)
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while Darcy’s law is given by

v̂ = −k′

µ′∇p̂− ρ2ŝ2. (6)

In the equations above, ρ is the mass density in the configuration of reference,

with ρ > 0, F̂
′
=

(
F̂ ′
1, F̂

′
2, F̂

′
3

)
represents the body force per unit mass, t̂lj is

the tensor of total stress, σ̂j , with j = 1, 2, 3 represents the vector of the equi-
librated stress corresponding to a single double force system without moment,
ρ1 is the coefficient of the equilibrated inertia, with ρ1 > 0, ŝ1 is the extrinsic
equilibrated body force, ξ is the intrinsic equilibrated body force and êlj is the
tensor representing the strain.

In the constitutive equations, λ and µ are the Lame constants, δlj is Kro-
necker’s delta, β is the effective stress parameter, m is the coefficient of cross-
correlation, b, α and ζ are material parameters, while λ∗, µ∗, b∗, α∗, ζ∗ and γ∗ are
viscoelastic constants.

In the other equations, v̂ = (v̂1, v̂2, v̂3) is the vector representing the fluid flux,
a describes the compressibility of the voids, with a ̸= 0, µ′ is the viscosity of
the fluid, k′ is the macrosopic intrinsic permeability corresponding to the voids
network, ρ2 is the fluid density, ŝ2 is the external force (such as gravity) for the
voids phase, while ∇ is the gradient operator.

As in [18], from equations (1) and (5), with (2)-(4) and (6), we deduce a system
of equations of motion for the displacement vector û, the changes of the volume
fraction φ̂ and the pressure p̂

µ̃∆û+ (λ̃+ µ̃)∇divû+ b̃∇φ̂− β∇p̂ = ρ
(
¨̂u− F̂

′)
,

α̃∆φ̂− ζ̃φ̂− γ̃divû+mp̂ = ρ1 ¨̂φ− ρŝ1,

k∆p̂− a ˙̂p− βdiv ˙̂u−m ˙̂φ = −ρ2divŝ2,

(7)

with k = k′

µ′ , ∆ the Laplacian operator and

λ̃ = λ+ λ∗ ∂

∂t
, µ̃ = µ+ µ∗ ∂

∂t
, b̃ = b+ b∗

∂

∂t
,

α̃ = α+ α∗ ∂

∂t
, γ̃ = b+ γ∗

∂

∂t
, ζ̃ = ζ + ζ∗

∂

∂t
.

(8)

3 Basic assumptions

Now we consider that B is a right cylinder which has length L > 0. We
assume that the cross section of B is bounded by one or more curves which are
piecewise smooth. The Cartesian coordinates are considered such that the origin
appears in the end of the cylinder which is on the lower base. Moreover, the x3-
axis and the generators are parallel. We consider that D(x3) is the cross section
of B associated with the axial distance x3 and that ∂D(x3) is the cross-sectional
boundary. Moreover, let π be the lateral surface of B, such that π = ∂D × (0, L)
and B = D × (0, L).
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Now we consider that û, φ̂, p̂, F̂, ŝ1 and ŝ2 have a harmonic time variation,
i.e. {

û, φ̂, p̂, F̂
′
, ŝ1, ŝ2

}
(x, t) = Re

[{
u, φ, p,F′, s1, s2

}
(x)e−iωt

]
. (9)

It follows that we have the following differential system of steady vibrations in
the coupled linear theory of viscoelasticity for materials with voids when F′, s1
and s2 are null [18]

µ1us,rr + ρω2us + (λ1 + µ1)ur,rs + b1φ,s − βp,s = 0

α1φ,rr + ζ2φ− γ1um,m +mp = 0

kp,rr + a′p+ β′um,m +m′φ = 0

(10)

where ω is the frequency of oscillation, with ω > 0 and

λ1 = λ− iωλ∗, µ1 = µ− iωµ∗, b1 = b− iωb∗,

α1 = α− iωα∗, γ1 = b− iωγ∗, ζ1 = ζ − iωζ∗,

ζ2 = ρ1ω
2 − ζ1, a′ = iωa, β′ = iωβ, m′ = iωm.

(11)

To this system describing the amplitude of the oscillation we add the lateral
boundary conditions

ur(x) = 0, φ(x) = 0, p(x) = 0 on π (12)

and the following boundary conditions for the ends of the cylinder

ur(x1, x2, 0) = ũr(x1, x2), φ(x1, x2, 0) = φ̃(x1, x2),

p(x1, x2, 0) = p̃(x1, x2) for all (x1, x2) ∈ D(0)
(13)

and
ur(x1, x2, L) = 0, φ(x1, x2, L) = 0,

p(x1, x2, L) = 0 for all (x1, x2) ∈ D(L),
(14)

where ũr(x1, x2), φ̃(x1, x2) and p̃(x1, x2) are given functions on D(0).
In the sequel, we will analyse the boundary value problem P which is charac-

terized by the governing system of equations (10), the boundary conditions (12)
on the lateral of the cylinder, the boundary conditions (13) and (14) on the ends
of the cylinder. The solution of this boundary value problem P is the amplitude
of oscillation (9).

The quadratic form

U1(χij , ξ) = λ∗χmmχnn + 2µ∗χrsχrs + (b∗ + γ∗)χmmξ + ζ∗ξ2, χrs = χsr (15)

is positive definite if

µ∗ > 0, ζ∗ > 0,
1

4
(b∗ + γ∗)2 < ζ∗(λ∗ +

2

3
µ∗). (16)

The quadratic form
U2(ηp, ζq) = α∗ω2ηrηr + kζrζr (17)
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is positive definite if

α∗ > 0, k > 0. (18)

Let us denote by π2 and π1 the greatest and the lowest eigenvalues of the
quadratic form U1. Moreover, let ν2 and ν1 be the greatest and the lowest eigen-
values of the quadratic form U2. This implies that [11]

π1(χrsχrs + ξ2) ≤ U1(χij , ξ) ≤ π2(χrsχrs + ξ2), (19)

ν1(ηpηp + ζqζq) ≤ U2(ηp, ζq) ≤ ν2(ηpηp + ζqζq). (20)

4 Spatial behaviour

In the sequel, our aim is to characterize the spatial growth and decay properties
of the amplitude for finite cylinders first and then for semi-infinite cylinders filled
with a viscoelastic material with pores.

Let us denote by a superposed bar the complex conjugate. Let us consider the
following cross-sectional functional

J(x3) = −
∫
D(x3)

{iω [µ1ur,3ūr − µ̄1urūr,3 + (λ1 + µ1)ū3ur,r−

− (λ̄1 + µ̄1)u3ūr,r
]
+ iω(b1ū3φ− b̄1u3φ̄) + iω(βu3p̄− βū3p)+

+ iω(α1φ,3φ̄− ᾱ1φ̄,3φ) + (kp,3p̄+ kp̄,3p)} da.

(21)

Theorem 1. Let B be a finite cylinder filled with a viscoelastic material with
voids and characterized by the boundary value problem P. Then

− dJ

dx3
(x3) =

∫
D(x3)

{
ω2 [2µ∗us,rūs,r + 2(λ∗ + µ∗)us,sūr,r] +

+ ω2 [2α∗φ,rφ̄,r + 2ζ∗φφ̄] + 2kp,rp̄,r+

+ω2(b∗ + γ∗) (ūs,sφ+ us,sφ̄)
}
da.

(22)

Proof. We consider the complex conjugate of equation (10)1 and we multiply
it with us. Then we multiply the equation (10)1 by the complex conjugate ūs.
Therefore, we obtain

0 = us
(
ρω2ūs

)
− ūs

(
ρω2us

)
= (µ1ūsus,rr − µ̄1usūs,rr)+

+
[
(λ1 + µ1)ūsur,rs − (λ̄1 + µ̄1)usūr,rs

]
+

+ (b1ūsφ,s − b̄1usφ̄,s) + (βusp̄,s − βūsp,s) .

(23)

This leads further to[
(µ1ur,sūr − µ̄1urūr,s) + (λ1 + µ1)ūsur,r − (λ̄1 + µ̄1)usūr,r

]
,s
+

+ (µ̄1 − µ1)ur,sūr,s + (λ̄1 + µ̄1 − λ1 − µ1)ur,rūs,s+

+ (b1ūsφ,s − b̄1usφ̄,s) + (βusp̄,s − βūsp,s) = 0.

(24)
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In the sequel, we integrate the identity (24) over D(x3). We employ the boundary
conditions (12) on the lateral of the cylinder and then derive the identity

d

dx3

∫
D(x3)

[µ1ur,3ūr − µ̄1urūr,3 + (λ1 + µ1)ū3ur,r−

−(λ̄1 + µ̄1)u3ūr,r
]
da =

∫
D(x3)

[(µ1 − µ̄1)us,rūs,r+

+ (λ1 + µ1 − λ̄1 − µ̄1)ur,rūs,s + (b̄1usφ̄,s − b1ūsφ,s)+

+ (βūsp,s − βusp̄,s)] da.

(25)

In a similar way, the equation (10)2 leads to

0 = (ρ1ω
2φ̄)φ− (ρ1ω

2φ)φ̄ = α1φ̄φ,rr − ᾱ1φφ̄,rr − ζ1φφ̄+ ζ̄1φφ̄−
− γ1um,mφ̄+ γ̄1φūm,m +mpφ̄−mφp̄.

(26)

This implies that

(α1φ,rφ̄− ᾱ1φ̄,rφ),r = α1φ,rφ̄,r − ᾱ1φ̄,rφ,r + (ζ1 − ζ̄1)φφ̄+

+ γ1um,mφ̄− γ̄1ūm,mφ+mφp̄−mpφ̄.
(27)

We integrate the identity (27) over D(x3). Then we use the boundary conditions
(12) on the lateral of the cylinder, which leads us to the identity

d

dx3

∫
D(x3)

(α1φ,3φ̄− ᾱ1φ̄,3φ) da =

=

∫
D(x3)

[
α1φ,rφ̄,r − ᾱ1φ̄,rφ,r + (ζ1 − ζ̄1)φφ̄+

+ γ1um,mφ̄− γ̄1ūm,mφ+mφp̄−mpφ̄] da.

(28)

Finally, the equation (10)3 leads to

0 = (iωap̄)p− (iωap)p̄ = kp,rrp̄+ kp̄,rrp+

+ iω(βum,mp̄− βūm,mp+mφp̄−mφ̄p).
(29)

This implies that

(kp,rp̄+ kp̄,rp),r = 2kp,rp̄,r − iω(βum,mp̄− βūm,mp+mφp̄−mφ̄p). (30)

In a similar way, this leads to the following identity

d

dx3

∫
D(x3)

(kp,3p̄+ kp̄,3p) da =

∫
D(x3)

[2kp,rp̄,r−

− iω(βum,mp̄− βūm,mp+mφp̄−mφ̄p)] da.

(31)
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In the sequel, we compute (25)·iω+(28)·iω+(31). Then we rewrite the terms
(βusp̄− βūsp),s and (b1ūsφ− b̄1usφ̄),s in order to obtain

d

dx3

∫
D(x3)

{iω [µ1ur,3ūr − µ̄1urūr,3 + (λ1 + µ1)ū3ur,r−

− (λ̄1 + µ̄1)u3ūr,r
]
+ iω(b1ū3φ− b̄1u3φ̄)+

+ iω(βu3p̄− βū3p) + iω(α1φ,3φ̄− ᾱ1φ̄,3φ)+

+(kp,3p̄+ kp̄,3p)} da =

∫
D(x3)

{iω [(µ1 − µ̄1)us,rūs,r+

+ (λ1 + µ1 − λ̄1 − µ̄1)us,sūr,r
]
+

+ iω
[
(α1 − ᾱ1)φ,rφ̄,r + (ζ1 − ζ̄1)φφ̄

]
+ 2kp,rp̄,r+

+iω
[
(b1 − γ̄1)ūs,sφ− (b̄1 − γ1)us,sφ̄

]}
da.

(32)

Theorem 2. Let B be a finite cylinder filled with a viscoelastic material with voids
characterized by the boundary value problem P. In our setting, the conditions (16),
(18), (19) and (20) hold true. Then

i) J(x3) is a non-increasing function with respect to x3 on (0,L) and

J(x3) ≥ 0 for all x3 ∈ (0, L). (33)

ii)There exists a computable positive constant ν, which depends on the profile
of the coupled theory for viscoelastic materials with voids, which allows us to derive
the following differential inequality of first-order

|J(x3)|+
1

ν

dJ

dx3
(x3) ≤ 0 for all x3 ∈ (0, L). (34)

iii) With the same positive constant ν as above, the following exponential decay
estimate holds true

0 ≤ J(x3) ≤ J(0)e−νx3 for all x3 ∈ [0, L]. (35)

Proof. i) We denote by

εrs =
1

2
(ur,s + us,r). (36)

By using the conditions (12) on the lateral boundary of the cylinder and integra-
tion by parts, we obtain∫

D(x3)
εrsε̄rsda =

1

4

∫
D(x3)

(ur,s + us,r)(ūr,s + ūs,r)da =

=
1

2

∫
D(x3)

(ur,sūr,s + ur,sūs,r)da =

=
1

2

∫
D(x3)

(ur,sūr,s + ur,rūs,s)da.

(37)
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Then equation (22) can be rewritten as

− dJ

dx3
(x3) =

∫
D(x3)

{ω2[2λ∗εmmε̄nn + 4µ∗εrsε̄rs + 2ζ∗φφ̄+

+ (b∗ + γ∗)(ε̄ssφ+ εssφ̄)] + 2ω2α∗φ,rφ̄,r + 2kp,rp̄,r}da.
(38)

By considering the assumptions (16) and (18), we can replace the formulas (19)
and (20) into (38). This implies that

− dJ

dx3
(x3) ≥

∫
D(x3)

2ω2π1(εrsε̄rs + φφ̄)da+

+

∫
D(x3)

2ν1(φ,rφ̄,r + p,rp̄,r)da.

(39)

Then the identity

εrsε̄rs +
1

4
(ur,s − us,r)(ūr,s − ūs,r) = ur,sūr,s (40)

leads to

− dJ

dx3
(x3) ≥

∫
D(x3)

2ω2π1(ur,sūr,s + φφ̄)da+

+

∫
D(x3)

2ν1(φ,rφ̄,r + p,rp̄,r)da.

(41)

It follows that J(x3) is non-increasing with regards to x3 on (0,L). By the condition
on the end boundary, we have J(L) = 0. These two relations imply that

J(x3) ≥ 0 for all x3 ∈ (0, L). (42)

ii) In relation (41), we integrate with regards to the variable x3 upon (x3, L)
and use the formula J(L) = 0. This implies that

J(x3) ≥
∫
B(x3)

2ω2π1(ur,sūr,s + φφ̄)dv+

+

∫
B(x3)

2ν1(φ,rφ̄,r + p,rp̄,r)dv.

(43)

In the formula above, we denote by

B(x3) = D × (x3, L). (44)

The lateral boundary conditions (12) imply that∫
D(x3)

ur,αūr,αda ≥ m0

∫
D(x3)

urūrda, (45)

∫
D(x3)

φ,αφ̄,αda ≥ m0

∫
D(x3)

φφ̄da, (46)
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∫
D(x3)

p,αp̄,αda ≥ m0

∫
D(x3)

pp̄da. (47)

In the relations above, m0 is the lowest eigenvalue which is obtained if we consider
clamped membrane problem in the two-dimensional case for the cross section D.

We first apply the arithmetic-geometric mean inequality and then use the
inequality of Cauchy-Schwarz. These two imply that we can compute the positive
constants n1, n2, n3 and n4 so that

|J(x3)| ≤ n1

∫
D(x3)

ur,sūr,sda+ n2

∫
D(x3)

φφ̄da+

+ n3

∫
D(x3)

φ,rφ̄,rda+ n4

∫
D(x3)

p,rp̄,rda.

(48)

Based on the relations (41) and (48) we can derive the differential inequality
of first-order from below

|J(x3)|+
1

ν

dJ

dx3
(x3) ≤ 0 for all x3 ∈ (0, L). (49)

In the inequality above, we denote by

1

ν
= max

{
n1

2ω2π1
,

n2

2ω2π1
,
n3

2ν1
,
n4

2ν1

}
. (50)

iii) The estimate can be obtained by integrating (49).
In the sequel, the aim is to analyse what happens in a semi-infinite cylinder.

To this end, we define the volume energetic function

E(x3) =

∫
B(x3)

{ω2[2λ∗εmmε̄nn + 4µ∗εrsε̄rs + 2ζ∗φφ̄+

+ (b∗ + γ∗)(ε̄ssφ+ εssφ̄)] + 2ω2α∗φ,rφ̄,r + 2kp,rp̄,r}dv.
(51)

Theorem 3. Let B be a semi-infinite cylinder filled with a viscoelastic material
with voids characterized by the boundary value problem P. In our setting the
conditions (16), (18), (19) and (20) hold true. Then we have an alternative result
of Phragmen-Lindelöf type

i) either we have a a finite volume energetic function E(x3) for the amplitude
of the steady-state vibration if the cross-sectional measure J(x3) is equal to E(x3)
and it has a faster spatial decay than the function e−νx3, or

ii) we have an infinite volume energetic function E(x3) for the amplitude of
the steady-state vibration and then the spatial growth of −J(x3) is faster than the
function eνx3.

Proof. Note that the formula (41) holds true for a semi-infinite cylinder. We
deduce that J(x3) is still non-increasing with regards to x3 on (0,∞).

As a consequence, there are two possibilities
i) J(x3) ≥ 0 for all x3 ∈ (0,∞);
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ii) we have the value x∗3 ∈ (0,∞) such that J(x3) < 0.

First, we analyse the case (i). In this case, the differential inequality (34) has
the form

νJ(x3) +
dJ

dx3
(x3) ≤ 0 for all x3 ∈ (0, L). (52)

This implies that

0 ≤ J(x3) ≤ J(0)e−νx3 for all x3 ∈ [0,∞). (53)

Therefore, we obtain

J(∞) = lim
x3→∞

J(x3) = 0. (54)

If we integrate (22) over (x3,∞), we deduce that

J(x3) = E(x3). (55)

It follows that E(x3) is finite and

0 ≤ E(x3) ≤ J(0)e−νx3 for all x3 ∈ [0,∞). (56)

For the case (ii), it follows that

J(x3) < 0 for all x3 ∈ (x∗3,∞). (57)

In this case, the differential inequality (34) has the form

dJ

dx3
(x3)− νJ(x3) ≤ 0, for all x3 ∈ (x∗3,∞). (58)

If we integrate (58), then we get the spatial estimate from below

−J(x3) ≥ −J(x∗3)e
ν(x3−x∗

3) > 0 for all x3 ∈ (x∗3,∞). (59)

Based on the formulas (22) and (51) we can deduce that the volume energetic
function E(x3) is infinite.

5 Conclusions

Although the computations in our study and in S. Chiriţă’s paper [11] are
quite similar, they refer to different phenomena. While S. Chiriţă analyses the
effect of the temperature in a viscoelastic material with voids, we consider that
the pores are filled with fluid and describe the effect of the pressure in the voids.
Moreover, we neglect the thermal effects.
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[8] Chirilă, A. and Marin, M., Spatial behaviour of thermoelasticity with mi-
crotemperatures and microconcentrations, ITM Web of Conferences, 34,
02001, 2020
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[11] Chiriţă, S., Spatial behavior in the vibrating thermoviscoelastic porous mate-
rials, Discrete Contin. Dyn. Syst. Series B, 19 (2014), no. 7, 2027-2038.

[12] Cowin, S.C. and Nunziato, J.W., Linear elastic materials with voids, J. Elas-
ticity, 13 (1983), 125-147.

[13] Lakes, R.S., Viscoelastic materials, Cambridge University Press, New York,
2009.

[14] Nunziato, J. W. and Cowin, S.C., A nonlinear theory of elastic materials with
voids, Archives of Rational Mechanics and Analysis, 72 (1979), 175-201.

[15] Park, J. and Lakes, R.S., Biomaterials. An introduction, 3rd edition,
Springer, Berlin, 2007.



116 Adina Chirilă
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