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Abstract

In this paper, firstly, we define the k-step generalized Balancing sequences
and study the Binet formula of these sequences. Also, we find families of
super-diagonal matrices such that the permanents of these matrices are the
elements of the k-step generalized Balancing sequences. Finally, we examine
the periods of the k-step Balancing sequences in the semi-direct product pre-

sented by G =
〈
x, y | x2m−1

= y2 = 1, yxy = x−1
〉

for the generating pair

(x, y).
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1 Introduction

The study of number sequences has been a source of attraction to the math-
ematicians since ancient times. Since then many of them are focusing their in-
terest on the study of the fascinating triangular numbers. In 1999, Behera and
Panda [2] introduced the notion of Balancing numbers (Bn)n∈N as solutions to
a certain Diophantine equation. Then, the recurrence relation of this number
is Bn+1 = 6Bn − Bn−1 for n ⩾ 1, where B0 = 0, B1 = 1. A study on the
Lucas-Balancing numbers Cn =

√
8B2

n + 1 was published in 2006 by Panda [18].
The recurrence relation of this number is Cn+1 = 6Cn − Cn−1 for n ⩾ 1, where
C0 = 1, C1 = 3. Also, the authors examined the periodicity of these numbers in
[19, 20].
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Kalman [11] mentioned that these sequences are special cases of a sequence
which is defined recursively as a linear combination of the preceding k-step terms:

an+k = c0an + c1an+1 + c2an+2 + · · ·+ ck−2an+k−2 + ck−1an+k−1,

where c0, c1, c2, · · · , ck−1 are real constants. In [11], Kalman derived a number of
closed-form formulas for the generalized sequence by companion matrix method
as follows:

Ak =



0 1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 0 1
c0 c1 c2 c3 · · · ck−3 ck−2 ck−1


k×k .

(1)

By inductive argument it is obtained

An
k



a0
a1
a2
...

ak−2

ak−1


=



an
an+1

an+2
...

an+k−2

an+k−1


(2)

for n ≥ 0.
In [5], the authors introduced the k-step Balancing sequences as follows:

Bk(n+ k) = 6Bk(n+ k − 1)−Bk(n+ k − 2) +Bk(n+ k − 3) + . . .+Bk(n), (3)

where n ≥ 0, Bk(u) = 0, (0 ≤ u < k − 1) and Bk(k − 1) = 1. Also, the authors
found the following generating matrix for the k-step Balancing sequences:

C = [cij ]k×k =



6 −1 1 1 · · · 1 1 1
1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 0 0
0 0 0 0 · · · 0 1 0


.

(4)

It is well knowledge that a sequence as periodic if, at a given point, it solely
consists of repeated instances of a specified subsequence. The period of the se-
quence is equal to the number of elements in the repeating subsequence. In [21],
the investigation of Fibonacci sequences in cyclic groups served as the founda-
tion for the research of linear recurrence sequences in groups. Many writers have
recently examined various unique in groups of linear recurrence sequences; for
instance, [3, 4, 7, 8, 9, 10, 12, 14, 22].
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On the other hand, the concept of a semi-direct product is a generalization
of a direct product in group theory. There are many studies on this subject in
the different areas in mathematics. The reader is referred to [1, 15] for studies
on semi-direct product of groups. For example, in [6], Deveci investigated the
periods of the k-nacci sequences and the generalized order-k Pell sequences in the
semi-direct product of groups.

Lemma 1. Suppose that ℘A = ⟨X | R⟩ and ℘B = ⟨Y | S⟩ are presentations for the
groups A and B, respectively under the maps φ : A → Aut(B), y 7→ ky ∈ B, and
x 7→ ax ∈ A. Then we have a presentation ⟨X,Y | S,R, T ⟩ for semi-direct product
G = B ⋊φ A, B by A where T = {yxλ−1

yx x
−1r | x ∈ X, y ∈ Y } and λyx is a word

on y representing the element φax(ky) of B where a ∈ A, k ∈ B, x ∈ X, y ∈ Y.

Let A be a cyclic group of order 2m−1(m ≥ 4) with a presentation ⟨x | x2m−1
=

1⟩, and let B be finite cyclic group of order 2 presented by ⟨y | y2 = 1⟩. Then, by
Lemma 1, a presentation for G = B ⋊φ A is given by

G = ⟨x, y | x2m−1
= y2 = 1, yxy = x−1⟩. (5)

In Section 2 of this paper, we find the Binet formula, permanental representa-
tion of the k-step generalized Balancing sequences. In Section 3, we examine the
periods of the k-step Balancing sequences in the semi-direct product given in (5)
for the generating pair (x, y).

2 The properties of the k-step generalized Balancing
sequences

The object of this section is to investigate the k-step generalized Balancing
sequences and obtain the Binet formula of these sequences. Then, we get families
of super-diagonal matrices such that the permanents of these matrices are the
k-step generalized Balancing sequences.

Definition 1. We defined the k-step generalized Balancing sequences as follows:

Bi
n = 6Bi

n−1 −Bi
n−2 +Bi

n−3 + . . .+Bi
n−k, (6)

where n > 0, 1 ≤ i ≤ k and with initial conditions

Bi
n =

{
1 if i = 1− n
0 otherwise

for 1− k ≤ n ≤ 0 .

These sequences are also referred to be order-k Balancing sequences.

� By taking k = 2, i = 1 in the equation (6), these sequences reduce to the
usual Balancing sequence

{
B1

2

}
in OEIS A001109.

� By taking i = k in the equation (6), these sequences reduce to the k-step
Balancing sequences in [5].
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Let us to define a k-square matrix En = [eij ] to deal with the k sequences of the
k-step generalized Balancing sequences, as following:

En =


B1

n B2
n · · · Bk

n

B1
n−1 B2

n−1 · · · Bk
n−1

B1
n−2 B2

n−2 · · · Bk
n−2

...
...

. . .
...

B1
n−k+1 B2

n−k+1 · · · Bk
n−k+1


.

(7)

Then we get the following matrix relation:

En = C · En−1 (8)

where the matrix C is defined as the equation (4).

Lemma 2. Let C and En be as in (4) and (7), respectively. Then for all integers
n ≥ 0

En = Cn.

Proof. By equation (8), we have En = C ·En−1. Then, by an inductive argument,
we can write

En = Cn−1 · E1.

By definition of the k-step generalized Balancing sequences, E1 = C, hence we
get En = Cn.

Now we concentrate on finding the Binet formula for the k-step generalized
Balancing sequences.

Lemma 3. The characteristic equation of the k-step generalized Balancing se-
quences xk − 6xk−1 + xk−2 − xk−3 − · · · − x− 1 = 0 does not have multiple roots
for k ≥ 3.

Proof. Let f (x) = xk − 6xk−1 + xk−2 − xk−3 − · · · − x − 1. It is clear that
f(0) ̸= 0 and f(1) ̸= 0 for all k ≥ 3. Suppose that h (x) = (x− 1) f (x) =
xk+1−7xk+7xk−1−2xk−2+1. Let α be a multiple root of h (x), then α /∈ {0, 1}.
If possible, α is a multiple root of h (x) in which case h (α) = 0 and h′ (α) = 0.
Now h′ (α) = 0 and α ̸= 0, we give

h′ (α) = (k + 1)αk − 7kαk−1 + 7(k − 1)αk−2 − 2(k − 2)αk−3

= αk−3
(
(k + 1)α3 − 7kα2 + 7(k − 1)α− 2(k − 2)

)
= 0.

Thus we obtain

α1 =
η

1
3

6(k + 1)
+

14(4k2 + 3)

3(k + 1)η
1
3

+
7k

3(k + 1)
,

α2,3 = − η
1
3

12(k + 1)
− 7(4k2 + 3)

3(k + 1)η
1
3

+
7k

3(k + 1)
± 1

2
i
√
3

[
η

1
3

6(k + 1)
− 14(4k2 + 3)

3(k + 1)η
1
3

]
,
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where η = 1196k3 + 1116k − 432 + 12
√
3ξk + 12

√
3ξ and

ξ =
√
59k4 − 118k3 − 961k2 − 352k − 940. It is easy to see that αi are distinct

from each other. Hence

0 = −h(αi) = αk−2
i

[
−α3

i + 7α2
i − 7αi + 2

]
− 1,

= uk,i − 1,

where uk,i = αk−2
i

[
−α3

i + 7α2
i − 7αi + 2

]
. If we take k = 3 and 1 ≤ i ≤ 3, it can

be obtained

0 = −h(α1) = α1

[
−α3

1 + 7α2
1 − 7α1 + 2

]
− 1,

= u3,1 − 1 = 0.

Since u3,1 = 95.06296046 + 0.1348895085 · 10−8i ̸= 1, there is a contradiction.
Similarly for α2 and α3, we obtain u3,2 = 0.1744052781+0.2168473807·10−10i ̸= 1
and u3,3 = 0.05560336719 + 0.5686014344 · 10−10i ̸= 1. Thus k ≥ 3, h (αi) ̸=
0, which is a contraction. So, the equation f (x) = 0 does not have multiple
roots.

Let f (x) be the characteristic polynomial of the matrix C. Then we have
f (x) = xk − 6xk−1 + xk−2 − xk−3 − · · · − x− 1, which is a well-known fact from
the companion matrices. If λ1, λ2, . . . , λk are roots of the equation xk − 6xk−1 +
xk−2 − xk−3 − · · · − x− 1 = 0, then by Lemma 3, it is known that λ1, λ2, . . . , λk

are distinct. Define the k × k Vandermonde matrix V as follows:

V =


λk−1
1 λk−2

1 . . . λ1 1

λk−1
2 λk−2

2 . . . λ2 1
...

...
...

λk−1
k λk−2

k . . . λk 1


.

Assume that V
(i)
j is a k× k matrix obtained from the Vandermonde matrix V by

replacing the jth column of V by W i
k, where, W

i
k is a k × 1 matrix as follows:

W i
k =


λn+k−i
1

λn+k−i
2
...

λn+k−i
k


.

Then we can give the generalized Binet formula for the k-step generalized Bal-
ancing sequences with the following Theorem.

Theorem 1. Let Bi
n be the nth term of the ith sequence for 1 ≤ i ≤ k, n ≥ 1 and

k ≥ 3, then

Bj
n−i+1 =

det(V
(i)
j )

det(V )
.
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Proof. Since the equation xk − 6xk−1 + xk−2 − xk−3 − · · · − x − 1 = 0 does not
have multiple roots for k ≥ 3, the eigenvalues of the k-step generalized Balancing
matrix C are distinct. Then, it is clear that C is diagonalizable. Since D is
invertible, D−1 ·C ·D = diag(λ1, λ1, · · · , λk) = Λ. Thus C is similar to Λ. So we
get Cn ·D = D ·Λn. It is known that En = Cn from Lemma 2. Then we have the
following linear system of equations:


ei1λ

k−1
1 + ei2λ

k−2
1 + · · ·+ eik = λn+k−i

1

ei1λ
k−1
2 + ei2λ

k−2
2 + · · ·+ eik = λn+k−i

2
...

ei1λ
k−1
k + ei2λ

k−2
k + · · ·+ eik = λn+k−i

k ,

where En = [eij ]k×k. Then we conclude that

eij =
det(V

(i)
j )

det(V )

for each j = 1, 2, . . . , k. Note that eij = Bj
n−i+1. So we complete the proof.

We now construct an n-square matrix whose permanents are the k-step gen-
eralized Balancing sequences.

In [16, 17], the permanent of an n× n matrix An = (aij) is defined as

per(An) =
∑
σ∈Sn

n∏
i=1

aiσ(i).

The sum here extends over all elements σ of the symmetric group Sn; i.e. over all
permutations of the numbers 1, 2, . . . , n.

Let An be n×n lower Hessenberg matrix for all n ≥ 1 and per(A0) = 1. Then,

per(A1) = a11 and for n ≥ 2,

per(An) = an,nper(An−1) +
n−1∑
r=1

an,r

n−1∏
j=1

aj,j+1per(Ar−1)

 . (9)

We define an n×n kst super-diagonal (0, 1, 6,−1)-matrix F k
n = fij , k ≤ n+1,

with fi+1,i = 1 for 1 ≤ i ≤ n−1, fii = 6 for 1 ≤ i ≤ n, fi,i+1 = −1 for 1 ≤ i ≤ n−1
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and fij = 1 for i+ 2 ≤ j ≤ i+ k − 2 . That is, we write

F k
n =



6 −1 1 1 · · · 1 0 0 0 · · · 0 0
1 6 −1 1 · · · 1 1 0 0 · · · 0 0
0 1 6 −1 · · · 1 1 1 0 · · · 0 0
0 0 1 6 · · · 1 1 1 1 · · · 0 0

...
...

0 · · · 0 1 6 −1 1 · · · 1 0
0 · · · 0 0 1 6 −1 · · · 1 1

...
...

0 · · · 0 · · · 0 1 6 −1
0 · · · 0 · · · 0 0 1 6


.

Theorem 2. We have

(i). per(F 3
n) = B1

n, for n ≥ 2,

(ii). per(F k
n ) = Bk−1

n+1, for k − 1 ≤ n and k ≥ 4,

where Bk
n is the nth term of the k-step generalized Balancing sequences.

Proof. (i). Firstly, we will prove it with induction on n. For n = 2,

per(F 3
2 ) = 35 = B1

2 .

Now assume that it is true for n. That is, per(F 3
n) = B1

n. Then, by consid-
ering (9) and the our assumption, we have

per(F 3
n+1) = 6per(F 3

n)− per(F 3
n−1)

= 6B1
n −B1

n−1.

From the Definition 1, we obtain

per(F 3
n+1) = B1

n+1,

which ends up the proof.

(ii). We consider two cases as k − 1 = n and k − 1 < n.
1. Case: Let k − 1 = n. We will prove it with induction method on t. For
3 ≤ t ≤ k − 1, we will show that per(F k

t ) = Bk−1
t+1 . For t = 3, we have

per(F 4
3 ) = 205 = B3

4 .

Now assume that it is true per(F k
t−1) = Bk−1

t . Then, by considering (9), the
our assumption and Definition 1, we have

per(F k
t ) = 6per(F k

t−1)− per(F k
t−2) + per(F k

t−3) + · · ·+ per(F k
t−k+1)

= 6Bk−1
t −Bk−1

t−1 +Bk−1
t−2 + · · ·+Bk−1

t−k+2

= Bk−1
t+1 .
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which ends up the case.
2. Case: Let k − 1 < n. Again, we will prove it with induction method on
t. For k ≤ t ≤ n, we will show that per(F k

t ) = Bk−1
t+1 . If t = k, then we have

per(F k
k ) = 6per(F k

k−1)− per(F k
k−2) + per(F k

k−3) + · · ·+ per(F k
1 )

= 6Bk−1
k −Bk−1

k−1 +Bk−1
k−2 + · · ·+Bk−1

2 .

From Definition 1, we obtain per(F k
k ) = Bk−1

k+1 . We assume that the equation

holds for t and k ≤ t ≤ n, then we have per(F k
t ) = Bk−1

t+1 .

Now we show that the equation holds for t + 1. Computing per(F k
t+1) by

the Laplace expansion of the permanent with respect to the first row, we
obtain for k ≤ t ≤ n

per(F k
t+1) = 6per(F k

t )− per(F k
t−1) + per(F k

t−2) + · · ·+ per(F k
t−k+2)

= 6Bk−1
t+1 −Bk−1

t +Bk−1
t−1 + · · ·+Bk−1

t−k+3.

From Definition 1, we obtain per(F k
t+1) = Bk−1

t+2 . So the proof is complete.

3 The lengths of the periods of the k-step Balancing
sequences in the semi-direct of finite cyclic groups

In this section, for the generating pair (x, y), we calculate the periods of the
k-step Balancing sequences in the semi-direct product of finite cyclic groups with
the presentation G = ⟨x, y | x2m−1

= y2 = 1, yxy = x−1⟩.

Definition 2. [5] Let G be finite group and let (x, y) be a generating pair for G.
For a generating pair (x, y) ∈ G, the Balancing orbit

{a0 = x, a1 = y, ai+2 = a−1
i a6i+1, i ≥ 0},

denoted by Bx,y(G) = {ai}.

Definition 3. [5] A k-step Balancing sequence in a finite group is a sequence of
group elements a0, a1, · · · , an, · · · , for which, given an initial set a0 = x0, a1 =
x1, a2 = x2, · · · , aj−1 = xj−1, aj = xj, each element is defined by

an =

{
a0a1a2 · · · an−3a

−1
n−2a

6
n−3 j < n < k

an−kan−k+1 · · · an−3a
−1
n−2a

6
n−3 n ≥ k

.

It is require that the initial elements of the sequence x0, x1, x2, · · · , xj−1

generate the group, thus, forcing the k-step Balancing sequences to reflect the
structure of the group. We denoted by B(G, x0, x1, · · · , xj−1) the k-step Balancing
sequences in a group G generated by x0, x1, x2, · · · , xj−1.

Now we give the following result for the periodic of k-step Balancing sequences
in a finite group.
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Theorem 3. [5] A k-step Balancing sequence in a finite group is periodic.

We note that by the definition it is clear that the period of the k-step Balancing
sequences in a finite group depend on the chosen generating set and the order in
which the assignments of x0, x1, x2, · · · , xj−1. We shall address the lengths of
the periods of the k-step Balancing sequences in the semi-direct product G by
LBk(G, x, y) for the generating pair (x, y). We have the following main result of
this section.

Theorem 4. For m ≥ 4, lengths of the periods of the k-step Balancing sequences
in the semi-direct product G are as follows:

(i). LB2(G, x, y) = 4,

(ii). LBk(G, x, y) = 7.2k−3(m− 1) for k ≥ 3.

Proof. (i). We prove this by direct calculation. First, we note that group by
⟨x, y | x2m−1

= y2 = 1, yxy = x−1⟩ , xy = yx−1 and yx = x−1y. We have
the sequence

a0 = x, a1 = y, a2 = x−1, a3 = x6y, a4 = x, a5 = y, a6 = x−1, . . . ,

which has period 4.

(ii). If k = 3, we have the sequence

x, y, x−1, x7y, x−1y, x6y, x8, x41, x−232y, x−33, x7y, x−265y, x−26y,

x272, x1393, x−8112y, x−1121, x7y, x−9233y, x−1114y, x9240, · · · .

Using the above, the sequence becomes:

a0 = x, a1 = y, a2 = x−1, a3 = x7y, a4 = x−1y, a5 = x6y, a6 = x8,

a7 = x41, a8 = x−232y, a9 = x−33, a10 = x7y, a11 = x−265y,

a12 = x−26y, a13 = x272, a14 = x1393, a15 = x−8112y, a16 = x−1121,

a17 = x7y, a18 = x−9233y, a19 = x−1114y, a20 = x9240,

· · · ,
a7i = x2

iλ1i
+1, a7i+1 = x−2iλ2iy, a7i+2 = x−2iλ3i

−1, a7i+3 = x7y,

a7i+4 = x−2iλ5i
−1y, a7i+5 = x−2iλ6i

−2y, a7i+6 = x2
iλ7i ,

where i is an nonnegative integer, λj0 = 0 (1 ≤ j ≤ 7) and linebreak
gcd(λ1i , λ2i , · · · , λ7i) = 1 (i > 0). So we need the smallest integer i such
that 2i | 2m−1 for m ≥ 4. If we choose i = m−1, then we obtain a7(m−1) = x
and a7m−6 = y. Since the elements succeding a7(m−1) and a7m−6, depend

on x and y for their values, the cycle begins again with the (7(m − 1))nd.
So we have LB3(G, x, y) = 7(m− 1).
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Let k ≥ 4. We have the sequence

a0 = x, a1 = y, a2 = x−1, a3 = x7y, a4 = y, a5 = x−5, a6 = x25y,

a7 = x−10y, · · · , a7.2k−3−k+2 = 1, a7.2k−3−k+1 = 1, · · · , a7.2k−3−1 = 1,

a7.2k−3 = x2
nβ1+1, a7.2k−3+1 = x−2nβ2y, a7.2k−3+2 = x−2nβ3 , · · · ,

a(7.2k−3)i−k+2 = 1, a(7.2k−3)i−k+1 = 1, · · · , a7.2k−3i−1 = 1,

a(7.2k−3)i=x2
iλ1i

+1, a(7.2k−3)i+1=x−2iλ2iy, a(7.2k−3)i+2=x−2iλ3i
−1, · · · ,

where i, n and βv (1 ≤ v ≤ 7.2k−3) are an nonnegative integer, λj0 =
0 (1 ≤ j ≤ 7.2k−3) and gcd(λ1i , λ2i , · · · , λ(7.2k−3)i) = 1 (i > 0). So we

need the smallest integer i such that 2i | 2m−1 for m ≥ 4. If we choose
i = m − 1, then we obtain a7.2k−3(m−1)−k+2 = 1, a7.2k−3(m−1)−k+1 = 1, · · · ,
a7.2k−3(m−1)−1 = 1, a7.2k−3(m−1) = x and a7.2k−3(m−1)+1 = y. Thus, the cycle

begins again with the (a7.2k−3(m−1))
nd element. So we obtain LBk(G, x, y) =

7.2k−3(m− 1) for k ≥ 3.
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