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Abstract

In this paper, firstly, we define the k-step generalized Balancing sequences
and study the Binet formula of these sequences. Also, we find families of
super-diagonal matrices such that the permanents of these matrices are the
elements of the k-step generalized Balancing sequences. Finally, we examine

the periods of the k-step Balancing sequences in the semi-direct product pre-
sented by G = <sc,y | A 1, yry = x_1> for the generating pair

(z,y).
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1 Introduction

The study of number sequences has been a source of attraction to the math-
ematicians since ancient times. Since then many of them are focusing their in-
terest on the study of the fascinating triangular numbers. In 1999, Behera and
Panda [2] introduced the notion of Balancing numbers (B),),en as solutions to
a certain Diophantine equation. Then, the recurrence relation of this number
is Bpy1 = 6B, — By—1 for n > 1, where By = 0, By = 1. A study on the
Lucas-Balancing numbers C,, = /8B2 + 1 was published in 2006 by Panda [18].
The recurrence relation of this number is C, 11 = 6C,, — Cr—1 for n > 1, where
Cyo =1, C1 = 3. Also, the authors examined the periodicity of these numbers in
[19, 20].
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Kalman [11] mentioned that these sequences are special cases of a sequence
which is defined recursively as a linear combination of the preceding k-step terms:

Gn+k = C0Qn + C1An41 + C2Qp42 + -+ - + Ck—20n4k—2 + Ck—10ntk—1,

where ¢g, ¢1,¢a,- -, cx_1 are real constants. In [11], Kalman derived a number of
closed-form formulas for the generalized sequence by companion matrix method
as follows:

0 1 0 0 0 0
0 1 0 0 0 0
o 0o o 1 .- 0 0 0
A = : : : Do, : : : (1)
o o o o0 -- 0 0 1
| ¢0 &1 €2 €3 - Ck—3 Ck—2 Ck—1 ]y}

By inductive argument it is obtained

[ ag ] [ oa, ]
aj Gn+41
a2 An+2
n —_
AT = (2)
Ap—2 An 4 k—2
L Ak—1 | L An+k—1

for n > 0.
In [5], the authors introduced the k-step Balancing sequences as follows:

Bi(n+k)=6Bp(n+k—1)—Bp(n+k—2)+Br(n+k—3)+...+ Br(n), (3)

where n > 0, Bi(u) = 0,(0 <wu <k —1) and Bi(k — 1) = 1. Also, the authors
found the following generating matrix for the k-step Balancing sequences:

I -1 1 1 11 17
1 0 00
o 1 00 --- 00O
C = [eijlpur, = L T (4)
0O 0 00 1 0 0
[0 0 00 01 0]

It is well knowledge that a sequence as periodic if, at a given point, it solely
consists of repeated instances of a specified subsequence. The period of the se-
quence is equal to the number of elements in the repeating subsequence. In [21],
the investigation of Fibonacci sequences in cyclic groups served as the founda-
tion for the research of linear recurrence sequences in groups. Many writers have
recently examined various unique in groups of linear recurrence sequences; for
instance, [3, 4, 7, 8, 9, 10, 12, 14, 22].
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On the other hand, the concept of a semi-direct product is a generalization
of a direct product in group theory. There are many studies on this subject in
the different areas in mathematics. The reader is referred to [1, 15] for studies
on semi-direct product of groups. For example, in [6], Deveci investigated the
periods of the k-nacci sequences and the generalized order-k Pell sequences in the
semi-direct product of groups.

Lemma 1. Suppose that o4 = (X | R) and pp = (Y | S) are presentations for the
groups A and B, respectively under the maps ¢ : A — Aut(B), y — k, € B, and
x> ay € A. Then we have a presentation (X,Y | S, R, T) for semi-direct product
G =Bxy, A, Bby A where T = {yx) Jo7lr |z e X,y €Y} and Ay, is a word
on y representing the element pq, (ky) of B wherea € A, k€ B, x € X, y €Y.

Let A be a cyclic group of order 2™~ (m > 4) with a presentation (z | 22" =

1), and let B be finite cyclic group of order 2 presented by (y | y?> = 1). Then, by
Lemma 1, a presentation for G = B x, A is given by

G=(x,y|a®" =y =1, yoy=2a""). (5)

In Section 2 of this paper, we find the Binet formula, permanental representa-
tion of the k-step generalized Balancing sequences. In Section 3, we examine the
periods of the k-step Balancing sequences in the semi-direct product given in (5)
for the generating pair (z,y).

2 The properties of the k-step generalized Balancing
sequences

The object of this section is to investigate the k-step generalized Balancing
sequences and obtain the Binet formula of these sequences. Then, we get families
of super-diagonal matrices such that the permanents of these matrices are the
k-step generalized Balancing sequences.

Definition 1. We defined the k-step generalized Balancing sequences as follows:
B, =6B), 1 — By o+ B, 5+...+ By, (6)

where n >0, 1 <1 < k and with initial conditions

; 1 ifi=1-—n
P = —k<n<0.
By, { 0 otherwise for 1-k<n<0

These sequences are also referred to be order-k Balancing sequences.

e By taking k = 2,7 = 1 in the equation (6), these sequences reduce to the
usual Balancing sequence {B%} in OEIS A001109.

e By taking i = k in the equation (6), these sequences reduce to the k-step
Balancing sequences in [5].
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Let us to define a k-square matrix E,, = [e;;] to deal with the k sequences of the
k-step generalized Balancing sequences, as following:

i B}} B% B,’j 7
B,, B, By,
E,= By s By, - B, (7)
L Balm—k+1 Bq%,—kﬂ Bs—kﬂ 1.

Then we get the following matrix relation:
En=C Eny (8)
where the matrix C is defined as the equation (4).

Lemma 2. Let C and E,, be as in (4) and (7), respectively. Then for all integers
n>0
E,=C".

Proof. By equation (8), we have E,, = C'- E,,_1. Then, by an inductive argument,
we can write

E,=C""1.FE.

By definition of the k-step generalized Balancing sequences, Fy = C, hence we
get B, =C™. O

Now we concentrate on finding the Binet formula for the k-step generalized
Balancing sequences.

Lemma 3. The characteristic equation of the k-step generalized Balancing se-

quences ¥ — 6251 4 k=2 — k=3 _ ... — 4 — 1 =0 does not have multiple roots
for k> 3.
Proof. Let f(x) b gkt 4 gh=2 — k=3 — ... — g — 1. Tt is clear that

=z
f(0) # 0 and f(1) # O for all £ > 3. Suppose that h(zx) = (z—1) f(x) =
oF Tl — 72k 4 72k~ 2082 1 1. Let a be a multiple root of i (z), then a ¢ {0,1}.
If possible, « is a multiple root of h (x) in which case h(«a) = 0 and b’ (a) = 0.
Now A/ (o) = 0 and « # 0, we give
W(a)=(k+1)a* — ka1 +7(k — 1)af2 = 2(k — 2)a*3
o ((k+1)a® = Tha? + 7(k — D)o — 2(k — 2)) = 0.

Thus we obtain

. s 14(4k% 4 3) LTk
1= )
6(k+1)  3(k+1)ys 3(k+1)
1 1
3 7(4k% 43 7k 1 3 14(4k% +3
042’3 = — il — ( * 2 + *Z'\/g n’ — ( * 1)
12(k+1)  3(k+1)ps 3(k+1) 2 6(k+1)  3(k+1)ps
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where 1 = 1196k% + 1116k — 432 + 123k + 12V/3¢  and
€ = V59k? — 118k3 — 961k2 — 352k — 940. It is easy to see that a; are distinct
from each other. Hence

0=—h(e) =ai?[—al +7af — Ta; +2] — 1,

= Uki — 17

where uy ; = af‘2 [—a? + 704? —To; + 2]. If we take k =3 and 1 <14 < 3, it can
be obtained

0=—-h(n) =m [—oz:f + 708 — Tay + 2] -1,
ZIU3J,—-1 =0.

Since uz;1 = 95.06296046 + 0.1348895085 - 10784 = 1, there is a contradiction.
Similarly for iy and a3, we obtain ug s = 0.1744052781+-0.2168473807-1071% £ 1
and ug3 = 0.05560336719 + 0.5686014344 - 1071% # 1. Thus k > 3, h(ay) #
0, which is a contraction. So, the equation f(x) = 0 does not have multiple
roots. O

Let f(z) be the characteristic polynomial of the matrix C. Then we have

f(x)=aF —62F 1 +2F2 —2F3 — ... — 2 — 1, which is a well-known fact from
the companion matrices. If i, Aa, ..., A\, are roots of the equation z¥ — 6251 +
xF=2 —gk=3 — ... —x —1 =0, then by Lemma 3, it is known that Aj, Xa,..., Ay
are distinct. Define the k x & Vandermonde matrix V' as follows:

MLoE=2

D Y D U |

v=|" |
DD e D YA |

Assume that Vj(i) is a k X k matrix obtained from the Vandermonde matrix V by

replacing the j* column of V' by W,i, where, W}Z} is a k x 1 matrix as follows:
+k—i

)\?-Hc l

Ay TR

n+k—i
/\k

Then we can give the generalized Binet formula for the k-step generalized Bal-
ancing sequences with the following Theorem.

Theorem 1. Let BZ be the nt" term of the ith sequence for 1 <i<k,n>1 and
k > 3, then
. det(V"
B]f#l = ( ’ )-
nt det (V)
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Proof. Since the equation ¥ — 6251 + 2#=2 — 2F=3 — ... — 2 — 1 = 0 does not
have multiple roots for k > 3, the eigenvalues of the k-step generalized Balancing
matrix C' are distinct. Then, it is clear that C is diagonalizable. Since D is
invertible, D=! - C'- D = diag(\1, M1, -+ , \x) = A. Thus C is similar to A. So we
get C"-D = D-A". It is known that E,, = C" from Lemma 2. Then we have the
following linear system of equations:

k—1 k—2 +k—i
62'1)\1 + 61'2)\1 + st e = )\? v
k—1 k—2 +k—i
62'1/\2 + 61'2)\2 + st e = )\g ’

k—1 k—2 k—i
eil)\k + €i2)‘k + ot e = )\Z+ Z,

where E,, = [€j;]kxk. Then we conclude that

det(v")
“U = T3et(V)
for each j =1,2,...,k. Note that e;; = Bi_H_I. So we complete the proof. 0

We now construct an n-square matrix whose permanents are the k-step gen-
eralized Balancing sequences.

In [16, 17], the permanent of an n x n matrix A, = (a;;) is defined as

per(Ay) = Z Haicr(i)'

oc€Sy i=1
The sum here extends over all elements o of the symmetric group Sy; i.e. over all

permutations of the numbers 1,2,..., n.

Let A,, be n xn lower Hessenberg matrix for all n > 1 and per(Ap) = 1. Then,

per(Ai) = ai; and for n > 2,

n—1 n—1
per(Ay) = appper(Ap—1) + Z A, H ajjyiper(Ar—1) | - (9)
r=1 j=1

We define an n x n k! super-diagonal (0, 1,6, —1)-matrix F¥ = fijs kK <n+1,
with fi+1,i =1forl <1< TL*l, fu =6 for 1 <1< n, fi,i+1 = —1forl <i1<n—1
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and f;; =1fori+2<j<i+k—2. That is, we write

6 -1 1 1 1 0 0 O 0 0 ]
1 6 -1 1 1 0 0 0 0
0 1 6 -1 11 1 0 0 0
0 0 1 6 11 1 1 0 O
k _
Fo = 0 0 1 -1 1 1
0 0 01 6 -1 1 1
0 0 0 1 6 -1
0 0 0 0 1 6 |

Theorem 2. We have

i). per(F3) = Bl forn>2,
(). per(Fy n

(i1). per(FF) = Bﬁj&, fork—1<n and k >4,

where Bﬁ is the n'" term of the k-step generalized Balancing sequences.

Proof.  (1). Firstly, we will prove it with induction on n. For n = 2,

per(F3) = 35 = Bj.

Now assume that it is true for n. That is, per(F?>) = B. Then, by consid-
ering (9) and the our assumption, we have

peT(FSH) = 6P€7’(F3) - P€7’(F371)
=6B, - B ;.

From the Definition 1, we obtain
peT(FSH) = B71L+17

which ends up the proof.

. We consider two cases as k—1=nand k—1 < n.

1. Case: Let £k — 1 = n. We will prove it with induction method on ¢. For
3 <t <k—1, we will show that per(F}) = Bf;ll. For t = 3, we have
per(Fy) = 205 = B3.

Now assume that it is true per(F} ;) = BF~'. Then, by considering (9), the
our assumption and Definition 1, we have
peT(Ftk) = 6P€T(Ftk—1) - PeT(Ftk—z) +p€T<Ft]i3) +-- +p€7'(Ft’ik+1>
= 6B = B + Bf ) -+ B,
_ gk-1.
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which ends up the case.
2. Case: Let kK — 1 < n. Again, we will prove it with induction method on
t. For k <t < n, we will show that per(Ftk) = Bf_;ll. If ¢ = k, then we have
k _ k k k k
per(Fy) = 6per(Fy_y) — per(Fy_o) + per(Fy_g) + - - + per(FY)

k=1 ph—1 | pk-1 k-1
= 6B, - B+ B+ + By

From Definition 1, we obtain per(Ff) = B]k:% We assume that the equation

holds for ¢ and k < ¢ < n, then we have per(FF) = Bf_:ll.

Now we show that the equation holds for ¢ + 1. Computing per(Ftlirl) by
the Laplace expansion of the permanent with respect to the first row, we
obtain for £ <t <n

PGT(Ftﬁl) = 61767”(Ftk) - peT(Ftlil) +p€7“(Ft122) 4 +p€7“(Ftk—k+2)
k—1 k—1 k—1 k—1
- 6Bt+1 - Bt + Bt—l +oot Bt—k+3'

From Definition 1, we obtain per(FtkH) = Bfgzl. So the proof is complete.
O

3 The lengths of the periods of the k-step Balancing
sequences in the semi-direct of finite cyclic groups

In this section, for the generating pair (z,y), we calculate the periods of the
k-step Balancing sequences in the semi-direct product of finite cyclic groups with
the presentation G = (x,y | 22" = yP=1, yry = a7 1).

Definition 2. [5] Let G be finite group and let (x,y) be a generating pair for G.
For a generating pair (z,y) € G, the Balancing orbit

{fao =2, a1 =y, aiy2= a'i_la’?-i-l’ i >0},
denoted by By 4(G) = {a;}.

Definition 3. [5] A k-step Balancing sequence in a finite group is a sequence of

group elements ag, ai, - ,an, -+, for which, given an initial set ag = xg, a1 =
x1, Qg = T2, ,Gj—1 = Tj_1, a; = Tj, each element is defined by
-1 6 .
@ — { apa1a -+ Ap—30, 90, _3 j<n<k
n — —1 6
Ap—fAp—k+1 " On—-3Q,_o0,_3 n=>k
It is require that the initial elements of the sequence xo, x1, 2, - ,7;-1

generate the group, thus, forcing the k-step Balancing sequences to reflect the
structure of the group. We denoted by B(G, xg, 1, - - - ,xj—1) the k-step Balancing
sequences in a group G generated by xg, x1, 2, -+ , ;1.

Now we give the following result for the periodic of k-step Balancing sequences
in a finite group.
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Theorem 3. [5] A k-step Balancing sequence in a finite group is periodic.

We note that by the definition it is clear that the period of the k-step Balancing
sequences in a finite group depend on the chosen generating set and the order in
which the assignments of zg, 1, @2, -+ ,xj_1. We shall address the lengths of
the periods of the k-step Balancing sequences in the semi-direct product G by
LBy (G, x,y) for the generating pair (z,y). We have the following main result of
this section.

Theorem 4. For m > 4, lengths of the periods of the k-step Balancing sequences
in the semi-direct product G are as follows:

(Z) LB?(GJ%?J) =4,
(ii). LBr(G,z,y) = 7.2""3(m — 1) for k > 3.
Proof. (i). We prove this by direct calculation. Flrst we note that group by

(,y | 2?2 =92 =1, yry =27 '), 2y = yo~ ! and yz = 2~ 'y. We have
the sequence

—1 6 —1
ag =2, a1 =Y, a2= , a3 =Y, G4 =T, a5 =Y, Ag =T ...,
which has period 4.

(13). If k = 3, we have the sequence

-1 7 -1 6 8 41 —232 —33 7 —265 —26
rvy,xr ,xrYyx Yy ry Tr,r ,T Yy, x y LY, T Yy, T Y,

272 1393 —8112 —1121 7 —9233 —1114 9240
z 7$ 7x y7x 7xy7$ y7x y7x Y

Using the above, the sequence becomes:

apg =, a1 =Y, ay = mfl, az = x7y, as = J:fly, as = x6y, ag = xS,

a7 = 2' ag =27y, ag =27, ayg = 2"y, an = 7%y,

aro = 220y, aiz = 2272, a1y = 2% ays = 2512y, agg = o121,

arr = 27y, arg = 2 0%y, a10 = 2~ MMy, age = 29240,

T . . .

ar; = 2 Mt g = 27T iy, aripe =27 g = 2y,

@rips = 072Ny a5 = a7y agi g = 2?0
where ¢ is an nonnegative integer, A\j, = 0 (1 < j < 7) and linebreak
ged(A1,, Aoy, -+ yA7,) = 1 (i > 0). So we need the smallest integer i such

that 2¢ | 2™~ for m > 4. If we choose i = m—1, then we obtain A7(m—1) = T
and arpm—¢ = y. Since the elements succeding ar(;,—1) and arm—¢, depend
on x and y for their values, the cycle begins again with the (7(m — 1))
So we have LB3(G,x,y) = 7(m — 1).
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Let k£ > 4. We have the sequence

1

— 7 -5
ap =2, a1 =%, a2= ,a3=TY, a4 =Y, 5 =T

25
, A6 = XY,
—10
a7 =2 Y, - 7a7.2k—3_k+2 = 1, a7.2k—3_k+1 = 1, e ,a7.2k—3_1 = 1,

n _9on —_9n
Q7 ok—-3 = 22 ’81“, Q7 ok—341 =T 2 ﬂQy, Q7 ok—349 =T 2 53,~--

)

a(7.2k-3)i—kt2 = L, Qrok-3)_py1 = 1, s agon-3,1 = 1,

20A1,+1 —21

_ A2, _ =203 —1
» Q(7.2k=3)j41 =T %Y, Q(7.k-3)i40=1T R

A(7.2k=3); =T 5
where i, n and B, (1 < v < 7.2¥73) are an nonnegative integer, )\, =
0 (1 <j <723 and ged(\r,, o, - - s A(r.28-3),) = 1 (i > 0). So we
need the smallest integer i such that 2! | 21 for m > 4. If we choose
@ =m — 1, then we obtain a7 gr-3(m_1)—k+2 = 1, a720-30n-1)—p41 = 1, -,
A7.9k-3(m—1)—1 = Ls @7.96-3(p—1) = @ and ay ok—3(y,_1)41 = Y. Thus, the cycle
begins again with the (a7.2k73(m,1))”d element. So we obtain LBy(G,z,y) =
7.28=3(m — 1) for k > 3.

0
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