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STATE-SPACE SOLUTION OF SINGULAR LINEAR
CONTINUOUS-TIME SYSTEMS USING THE

CONFORMABLE DERIVATIVE AND SUMUDU
TRANSFORM
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Abstract

The aim of this work is the application of the Sumudu transform for
solving singular continuous-time linear systems based on the conformable
derivative operator. Thanks to the interesting properties of the conformable
Sumudu transform that we have established, a new approach is developed.
Through academic and real examples, our method is compared to the exist-
ing ones, where the applicability and the accuracy of the developed process
are shown.
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1 Introduction

Fractional order systems have generated considerable interests in many fields
of applied sciences, engineering, and control theory [21, 22, 28, 31]. However,
a new derivative operator, called the conformable derivative operator, has been
proposed by Khalil et al. [23] and took part on several areas as engineering,
finances, biology, medicine, physics and applied mathematics [5, 6, 7, 14, 11, 36].
The most advantages of this derivative is that it preserves the properties of the
usual exact derivatives such as: quotient, product, chain rules, Rolle’s theorem,
and mean-value theorem. More than that, conformable derivative does not contain
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any integral terms, that make it much more easier to apply on the fractional
differential equations [1, 23]. In fact, various problems had been solved, certain
methods and resolution had been developed and improved, and other definitions
of the conformable derivative operator had been exploited in [23]. For example,
fractional partial differential equations [36], time-fractional one dimensional cable
differential equation [37, 39], fractional Cauchy problem [38], linear/nonlinear
differential equations [40], and other applications.

In control theory, for instance, the state of fractional continuous-time systems
appeared in [20, 21, 22]. Note that various methods, including integral trans-
formations like Laplace transform, Millen transform, Sumudu transform [2, 3, 4,
33, 12, 15, 18, 24, 25, 34, 35], had been proposed for resolving these systems
[9, 16, 17, 22].

The regular linear continuous-time system with conformable derivative in uni-
dimensional (1D) and two dimensional (2D) models has received much attention
in the last two years [8, 29, 30]. In this paper, we propose to solve singular linear
continuous-time system with conformable derivative using conformable Sumudu
transform which has a relation with Sumudu transform and has many interesting
and attractive advantages over other integral transforms specifically the unity by
providing the convergence when solving differential equations and also the resolv-
ability of problems without resorting to a new frequency domain [1, 35]. The
expression of the state of our system has been obtained thanks to some proper-
ties and formulas of the conformable fractional Sumudu transform that we have
established and proved.

This paper is divided into four Sections. Section 2 gives a brief overview of the
definitions and properties, which are used along this paper. In Section 3, the res-
olution of the singular continuous-time linear systems of order α by conformable
Sumudu transform method is introduced and established, furthermore, the so-
lution of the regular continuous-time linear systems is also discussed. Section 4
focuses on the numerical examples where the advantages and the effectiveness of
our approach are shown by using a Matlab code. Finally, some conclusions are
drawn in the last Section.

2 Preliminaries

In this section, the most important mathematical background used in this work
are presented. First, we will start by recalling some definitions and properties of
the conformable derivative operator [23]. Then, the definition of the conformable
Sumudu transform is presented [1] followed by some of its properties that we have
developed. Finally, results on matrix theory are given.

Definition 1. [23] Given a function x : [0,+∞) → R. Then, the conformable
derivative of the function x of order α, with α ∈ (0, 1] is defined by

Tα(x)(t) = lim
ϵ→0

x
(
t+ ϵt1−α

)
− x(t)

ϵ
, ∀ t > 0.
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If the conformable derivative of the function x of order α for all t > 0 exists,
then, we simply say x is α-differentiable.

Theorem 1. [23] Let α ∈ (0, 1] and x1, x2 : R+ → R be α-differentiable functions.
Then, ∀t > 0

(a) Tα(ax1(t) + bx2(t)) = aTα(x1)(t) + bTα(x2)(t), for all a, b ∈ R;

(b) Tα(tp) = ptp−α, for all p ∈ R;

(c) Tα(λ) = 0, for all constant function x1(t) = λ;

(d) Tα (x1(t)x2(t)) = x1(t)T
α (x2) (t) + x2(t)T

α (x1) (t);

(e) Tα

(
x1(t)

x2(t)

)
=

x2(t)T
α (x1) (t) + x1(t)T

α (x2) (t)

x22(t)
;

(f) If x1 is differentiable, then, Tα(x1)(t) = t1−αdx1(t)

dt
.

Definition 2. [1] Over the following set of function

Aα =

{
x(t) : ∃M, τ1, τ2 > 0, |x(t)| < Me

∣∣∣∣ tα

ατj

∣∣∣∣
, if tα ∈ (−1)j × [0,∞), j = 1, 2

}
,

then, the conformable Sumudu transform of the function x is defined by

Sα[x(t)](v) = Xα(v)

=
1

v

∫ ∞

0
e

−tα

αv x(t)dtα, v ∈ (−τ1, τ2).
(1)

Where dtα = tα−1dt and α ∈ (0, 1].

Theorem 2. [1] Let x, x1, x2 : [0,+∞) → R be a given functions, 0 < α ≤ 1, λ,
µ ∈ R and v > 0. Then, we have the following properties

1. Sα[T
αx(t)](v) =

1

v
[Sα[x(t)](v)− x(0)], ∀t > 0,

2. Sα

[
tαn

αn

]
(v) = Γ(n+ 1)vn, ∀n ∈ N,

3. Sα[λx1(t) + µx2(t)](v) = λSα[x1(t)](v) + µSα[x2(t)](v).

Lemma 1. Let x1, x2 : [0,+∞) → R be a given functions. Then, the conformable
Sumudu transform of the convolution product of x1 and x2 is defined by

Sα [(x1 ⋆ x2) (t)] (v) = vSα[x1(t
α)](v)Sα[x2(t)](v), v > 0,

where

(x1 ⋆ x2)(t) =

∫ t

0
x1 (t

α − τα)x2(τ)dτ
α.
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Proof. Using the relationship between conformable Sumudu transform and con-
formable Laplace transform [1], we get

Sα [(x1 ⋆ x2) (t)] (v) =
Lα[(x1 ⋆ x2)(t)](s)

v
, s → 1

v
,

=
(Lα[x1(t

α)]Lα[x2(t)]) (s)

v
, s → 1

v
,

= vSα[x1(t
α)](v)Sα[x2(t)](v),

(2)

where, Lα is the conformable Laplace transform [14].

Theorem 3. [1] Let x : [0,+∞) → R be an n-differentiable function and α such
that, 0 < α ≤ 1. Then,

Sα [T
nαx(t)] (v) =

Sα [x(t)] (v)− x(0)

vn
, ∀n ∈ N and ∀v > 0, (3)

and as in [32],Tnα is known as the conformable derivative operator of order n.

Proposition 1. Let α ∈ (0, 1] and for all v > 0, the conformable Sumudu trans-
form of the conformable derivative of order (n − 1) of the function t1−αδ(t) is
given by

Sα

[
T(n−1)αt1−αδ(t)

]
(v) =

1

vn−1
Sα

[
t1−αδ(t)

]
(v) =

1

vn
, ∀n ∈ N∗. (4)

Proof. To proof formula (4), we will proceed by induction and we will use the
properties of the function δ given in [13].

1. First step: for n = 1, we get

Sα

[
t1−αδ(t)

]
(v) =

1

v

∫ ∞

0
t1−αδ(t)e−

tα

vα tα−1dt

=
1

v

∫ ∞

0
δ(t)e−

tα

vαdt,

using the property of δ function, yields

Sα

[
t1−αδ(t)

]
(v) =

1

v
e0,

finally,

Sα

[
t1−αδ(t)

]
(v) =

1

v
.

2. Second step: we assume that the expression (4) is true up to the order n−2
and we proof that it stays true at the order n− 1.

For α ∈ (0, 1] and all v > 0, we have

Sα

[
T(n−1)αt1−αδ(t)

]
(v) =

1

v

∫ ∞

0
T(n−1)α

[
t1−αδ(t)

]
e−

tα

vα tα−1dt,
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applying the definition of Tnα, we get

Sα

[
T(n−1)αt1−αδ(t)

]
(v) =

1

v

∫ ∞

0
T(n−2)α

[
Tα(t1−αδ(t))

]
e−

tα

vα tα−1dt,

as the formula (4) is true for n− 2, we obtain

Sα

[
T(n−1)αt1−αδ(t)

]
(v) =

1

vn−1

∫ ∞

0
Tα
[
t1−αδ(t)

]
e−

tα

vα tα−1dt,

by the use of the definition of Tα, we find

Sα

[
T(n−1)αt1−αδ(t)

]
(v) =

1

vn−1

∫ ∞

0
t1−α d

dt

[
t1−αδ(t)

]
e−

tα

vα tα−1dt

=
1

vn−1

[∫ ∞

0
(1− α)t−αδ(t)e−

tα

vαdt

+

∫ ∞

0
t1−α d

dt
[δ(t)] e−

tα

vαdt

]
,

using the property of the function δ, it follows

Sα

[
T(n−1)αt1−αδ(t)

]
(v) =

1

vn−1

[∫ ∞

0
(1− α)t−αδ(t)e−

tα

vαdt

+
1

v

∫ ∞

0
δ(t)e−

tα

vαdt−
∫ ∞

0
(1− α)t−αδ(t)e−

tα

vαdt

]
,

finally, we obtain

Sα

[
T(n−1)αt1−αδ(t)

]
(v) =

1

vn−1
Sα

[
t1−αδ(t)

]
(v) =

1

vn
, ∀n ∈ N∗.

Inspired by [26, 27] and based on [9, 16] we obtain the following results.

Proposition 2. Let A,E ∈ Rn1×n1 be a real matrices with detE = 0, then, we
have (

1

v
E −A

)−1

=

∞∑
i=−µ

ϕiv
i+1, v > 0, (5)

with µ = rg(E) − deg
(
det
(
1
vE −A

))
+ 1 represents the index of nilpotency of(

1
vE −A

)
and ϕi are the fundamental matrices, which depend on the regularity of

E and satisfy

ϕi = (ϕ0A)i ϕ0, ∀i ∈ N, (6)

and

ϕiE − ϕi−1A = δi0I = Eϕi −Aϕi−1, (7)

where δi0 is the Kronecker delta.
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However, when detE ̸= 0, the Laurent series are described by the following
proposition

Proposition 3. Let A,E ∈ Rn1×n1 be a real matrices with detE ̸= 0, then, we
have (

1

v
E −A

)−1

=
∞∑
i=0

ϕiv
i+1, v > 0, (8)

with ϕi are the fundamental matrices, which depend on the regularity of E and
satisfy

ϕi =
(
E−1A

)i
E−1. (9)

3 Main Results

This section is devoted to present our main results. For this purpose, we will
consider the following continuous-times linear systems

ETαx(t) = Ax(t) +Bu(t), (10)

y(t) = Cx(t) +Du(t), (11)

where Tα presents the conformable derivative operator of order α with 0 < α ≤ 1
, x ∈ Rn1 , u ∈ Rm1 and y ∈ Rp1 are, respectively, the state, the control, and the
output of the system. E,A ∈ Rn1×n1 , B ∈ Rn1×m1 , C ∈ Rp1×n1 and D ∈ Rp1×m1

with detE = 0. The boundary condition of the system is given by x(0) = x0.
We take into account the following hypotheses which implies that the solution

is impulse free:

(i) Ex(0) and v−iEx(0) exist for i = 1, µ and v ∈ (−τ1, τ2),

(ii) u(t) is specified for t ≥ 0,

(iii) The pencil
(
1
vE −A

)
is regular for all v ∈ C.

In the following, we denote Xα and Uα the conformable Sumudu transform of x
and u respectively.

Applying the conformable Sumudu transform to the equation (10), we obtain

Sα [ETαx(t)] (v) = Sα [Ax(t) +Bu(t)] (v), v > 0.

The use of the linearity property of conformable Sumudu transform together
with the first property of the theorem 2, yields

E

(
Xα(v)− x(0)

v

)
= AXα(v) +BUα(v),

which is equivalent to[
1

v
E −A

]
Xα(v) =

1

v
Ex(0) +BUα(v).
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As the pencil (E, A) is regular, so

Xα(v) =

[
1

v
E −A

]−1 [1
v
Ex(0) +BUα(v)

]
. (12)

Thanks to the formula (5), the relation (12) becomes

Xα(v) =
∞∑

i=−µ

ϕiv
iEx(0) +

∞∑
i=−µ

ϕiv
i+1BUα(v),

by dividing the sum we get

Xα(v) =
∞∑
i=0

ϕiv
iEx(0) +

∞∑
i=0

ϕiv
i+1BUα(v)

+

µ∑
i=1

ϕ−iv
−iEx(0) +

µ∑
i=1

ϕ−iv
−i+1BUα(v).

(13)

Finally, by the use of the inverse conformable Sumudu transform and convo-
lution product, we obtain the following theorem which represents the first result
of this paper.

Theorem 4. The solution of the singular dynamical system of order α described
by the equation (10) is given by

x(t) =

∞∑
i=0

ϕi

(
tαi

αii!
Ex(0) +

∫ t

0

(tα − τα)i

αii!
Bu(τ)dτα

)

+

µ∑
i=1

ϕ−i

(
BTα(i−1)u(t) + ETα(i−1)t1−αδ(t)x(0)

)
, (14)

where µ = rg(E) − deg
(
det
(
1
vE −A

))
+ 1 represents the index of nilpotency of(

1
vE −A

)
, ϕi are the fundamental matrices defined in proposition 2, and δ is the

Dirac delta function.

Theorem 4 can be expressed using the exponential expression and the formula
(6) as follow

Corollary 1. The state of the singular dynamical system of order α described by
the equation (10) is given by

x(t) =eϕ0A
tα

α ϕ0Ex(0) +

∫ t

0
eϕ0A

tα−τα

α ϕ0Bu(τ)dτα

+

µ∑
i=1

ϕ−i

(
BTα(i−1)u(t) + ETα(i−1)t1−αδ(t)x(0)

)
,

(15)

where µ = rg(E) − deg
(
det
(
1
vE −A

))
+ 1 represents the index of nilpotency of(

1
vE −A

)
, and ϕi are the fundamental matrices defined in proposition 2, and δ is

the Dirac delta function.
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Remark 1. If α = 1, we find the state response of the singular dynamical system
defined in [10]

x(t) =eϕ0Atϕ0Ex(0) +

∫ t

0
eϕ0A(t−τ)ϕ0Bu(τ)dτ

+

µ∑
i=1

ϕ−i

(
Bu(i−1)(t) + Eδ(i−1)(t)x(0)

)
.

(16)

where µ = rg(E) − deg
(
det
(
1
vE −A

))
+ 1 represents the index of nilpotency of(

1
vE −A

)
, and ϕi are the fundamental matrices defined in proposition 2, and δ is

the Dirac delta function.

Let us, now, discuss the case where E is a regular matrix, i.e., detE ̸= 0.
For this case, we assume that [E−1A]ivix(0) exist for all i ∈ N and v ∈ (−τ1, τ2).
Hence

Theorem 5. The solution of the implicit dynamical system of order α given by
the equation (10) is

x(t) =
∞∑
i=0

[
E−1A

]i tαi

αii!
x(0) +

∫ t

0

∞∑
i=0

[
E−1A

]i
E−1 (t

α − τα)i

αii!
Bu(τ)dτα. (17)

Therefore, by using the exponential expression, we obtain

x(t) = e[E
−1A] t

α

α x(0) +

∫ t

0
e[E

−1A] t
α−τα

α E−1Bu(τ)dτα.

Proof. Thanks to the formula (8), the relation (12) becomes

X(v) =

∞∑
i=0

ϕiv
iEx(0) +

∞∑
i=0

ϕiv
i+1BUα(v),

it follows that

Xα(v) =

∞∑
i=0

[
E−1A

]i
vix(0) +

∞∑
i=0

[
E−1A

]i
E−1Bvi+1Uα(v).

Finally by applying the inverse of conformable Sumudu transform and the
convolution product, we obtain the solution.

Remark 2. If E = I, we obtain the standard dynamical system of order α and
the state is

x(t) = eA
tα

α x(0) +

∫ t

0
eA

tα−τα

α Bu(τ)dτα.

Furthermore, if α = 1, the state of the standard dynamical system is

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ .
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4 Experimental results

In this section, we present some illustrative academic and real examples in
order to show the efficiency and the accuracy of our approach. It must be empha-
sized that all examples were already discussed in [16] and [22].

Example 1. Let us consider, for α ∈ (0, 1], the following system of electrical
circuit

Figure 1: Electrical circuit [22].

R1, R2, R3 represent resistances, C1, C2 the capacitances, and e the source
voltage (the control u(t) = e). Using Kirchhoff’s laws, we can write the equations

e = R1C1
dαx1
dtα

+ x1 +R3

(
C1

dαx1
dtα

+ C2
dαx2
dtα

)
, (18)

e = R3

(
C1

dαx1
dtα

+ C2
dαx2
dtα

)
+R2C2

dαx2
dtα

+ x2, (19)

which are equivalent to[
(R1 +R3)C1 R3C2

R3C1 (R2 +R3)C2

]
dα

dtα

[
x1
x2

]
=

[
−1 0
0 −1

] [
x1
x2

]
+

[
1
1

]
e. (20)

The general expression of the system (20) is

TαEx(t) = Ax(t) +Bu(t), (21)

with boundary condition x0 = 0R2 and

E =

(
(R1 +R3)C1 R3C2

R3C1 (R2 +R3)C2

)
,

A =

(
−1 0
0 −1

)
, B =

(
1
1

)
,

as detE = [R1(R2 +R3) +R2R3]C1C2 ̸= 0, then,

E−1 =
1

detE

(
(R2 +R3)C2 −R3C2

−R3C1 (R1 +R3)C1

)
,
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E−1A =
1

detE

(
−(R2 +R3)C2 R3C2

R3C1 −(R1 +R3)C1

)
andE−1B =

1

detE

(
R2C2

R1C1

)
.

For e = 1V , the solution of the electrical circuit is

x(t) =

∫ t

0
eE

−1A
(tα−τα)

α E−1Bdτα, (22)

which is the same one as in [19].

The solution with Caputo derivative is

x̃(t) =

∞∑
k=0

(
Ak

∫ t

0

(t− τ)(k+1)α−1

Γ[(k + 1)α]
dτ

)
B, (23)

To show the efficiency of our method we will plot, in the following figures, both
solutions together with the exact solution for different values of α. We assume
that R1 = R2 = 10Ω, R3 = 20Ω, C1 = C2 = 100mF ant the input u(t) = e = 1V ,

Figure 2: Comparison of the solutions x1 and x̃1 for α = 0.4.

Figure 3: Comparison of the solutions x1 and x̃1 for α = 0.5.
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Figure 4: Comparison of the solutions x1 and x̃1 for α = 0.7.

Figure 5: Comparison of the solutions x1 and x̃1 for α = 0.9.

Example 2. Let 0 < α ≤ 1 and the following singular system

TαEx(t) = Ax(t) +Bu(t), (24)

with

E =

(
1 0
0 0

)
, A =

(
−1 0
0 −2

)
, B =

(
1
2

)
,

and the initial condition

x0 =

(
x0,1
x0,2

)
.

Since

det

(
1

v
E −A

)
=

2 + 2v

v
̸= 0, ∀v > 0,

and µ = 1, it follows

ϕ−1 =

(
0 0
0 1

2

)
, ϕ2m =

(
1 0
0 0

)
, ϕ2m+1 =

(
−1 0
0 0

)
, ∀m ∈ N.

The state of the system (24) is given by

x(t) =

(
e

−tα

α x0,1 +
∫ t
0 e

− tα−τα

α u(τ)dτα

u(t)

)
. (25)
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However, with the Caputo derivative, we find

x̃(t) =


∞∑
i=0

(−1)i
[

tiα

Γ(iα+ 1)
x0,1 +

1

Γ((i+ 1)α)

∫ t

0
(t− τ)(i+1)α−1u(τ)dτ

]
u(t)

 .

(26)

For different values of α, u(t) = 1, x0,1 = 3, and x0,2 = 0, the comparison of
the states between conformable derivative x(t) = [x1(t), x2(t)]

T , Caputo derivative
|̃x̃(t) = [x̃1(t), x̃2(t)]

T is plotted in figures 6, 7, and 8.

Figure 6: Comparison of the solutions x1 and x̃1 for α = 0.5.

Figure 7: Comparison of the solutions x1 and x̃1 for α = 0.6.

Figure 8: Comparison of the solutions x1 and x̃1 for α = 0.8.
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5 Concluding Remarks

In this paper, the continuous-time linear systems based on the conformable
derivatives operator are introduced where another approach to compute there
solutions are presented. The main idea behind this approach consists on using the
conformable Sumudu transform which is recognized by its important properties.
The singular and regular cases are discussed and the method can be used for
several practical applications as for instance the electrical circuit. Through the
numerical examples presented the final section, it easy to see that the solution
of dynamical systems with conformable derivative is consistent to the classical
derivative. More then that, it has been shown in [19] that for the conformable
derivative, the electrical circuit could be reach its steady state in a shorter time.
For our future work, the researches should be undertaken in the conformable
Sumudu for other models with conformable derivatives such as; financial models.
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