Bulletin of the Transilvania University of Braşov Series III: Mathematics and Computer Science, Vol. 3(65), No. 1 - 2023, 57-76 https://doi.org/10.31926/but.mif.2023.3.65.1.5

ON THE CIRCULAR NUMERICAL RANGE OF 5-BY-5 PARTIAL ISOMETRIES

Mohammed BENHARRAT^{*,1} and Mehdi NAIMI²

Abstract

We prove, in some cases in term of kippenhahn curve, that if 5-by-5 partial isometry whose numerical range is a circular disc then its center is must be the origin. This gives a partial affirmative answer of the Conjecture 5.1. of [H. l. Gau et al., Linear and Multilinear Algebra, 64 (1) 2016, 14–35.], for the five dimensional case.

2000 Mathematics Subject Classification: 47A12; 47A56. Key words: numerical range, partial isometric, S_n operators.

1 Introduction

Let A be an $n \times n$ complex matrix, its numerical range $W(A)$ is, by definition, the set of complex numbers

$$
W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, \|x\| = 1 \}.
$$

It is well known that $W(A)$ is a nonempty compact convex subset of \mathbb{C} , also contains all the eigenvalues of A and therefore its convex hull, see for instance $[6]$. The matrix A is said to be a partial isometry if it is isometric on the orthogonal complement of the kernel of A, $Ker(A)$. Assume that A is a partial isometry whose numerical range $W(A)$ is a circular disc. The question is whether the center of $W(A)$ must be the origin. Gau et al. $[5]$, gave an affirmative answer if the dimension is at most 4, as follows,

¹[∗] Corresponding author, Ecole Nationale Polytechnique d'Oran-Maurice Audin (Ex. ENSET d'Oran), BP 1523 Oran-El M'naouar, 31000 Oran, Algérie, e-mail: mohammed.benharrat@enporan.dz

²Ecole Nationale Polytechnique d'Oran-Maurice Audin (Ex. ENSET d'Oran), BP 1523 Oran-El M'naouar, 31000 Oran, Algérie, e-mail: mehdi.naimi@univ-mosta.dz

Authors gratefully acknowledge the financial support from the Laboratory of Fundamental and Applicable Mathematics of Oran (LMFAO) and the Algerian research project: PRFU, no. C00L03ES310120220003 (D.G.R.S.D.T).

Theorem 1. [5, Theorem 2.1] If A is an n-by-n $(n \leq 4)$ partial isometry with $W(A) = \{z \in \mathbb{C} : |z - a| \le r\}, (r > 0), \text{ then } a = 0.$

Also have conjectured that theorem remains valid if A is an n -by-n partial isometry, see [5, Conjecture 5.1.]. By the same procedure of [5], we give an affirmative answer for this conjecture for 5-by-5 partial isometry in some cases in terms of kippenhahn curve, to be more specific, our main theorem reads as follows,

Theorem 2. Let A be a 5×5 partial isometry matrix $W(A) = \{z \in \mathbb{C} : |z - a| \leq r\},\$ $(r > 0)$. If the kippenhahn curve $C_R(A)$ has one of the following shapes,

- (i) $C_R(A)$ consists of three point and an ellipse.
- (ii) $C_R(A)$ consists of two ellipses and a point.
- (iii) $C_R(A)$ consists of a curve of degree 4 with double tangent and an ellipse.

Then $a=0$.

Two successful approaches to establishing this result are a canonical decomposition of $n \times n$ partial isometry matrix and the Kippenhahn's result for the numerical range of $n \times n$ matrix.

It well known that the numerical range of an $n \times n$ matrix A is completely determined by its Kippenhahn polynomial $P_A(x, y, z) = \det(x\text{Re}(A) + y\text{Im}(A) + z\text{Im}(A))$ zI_n , where $\text{Re}(A) = (A + A^*)/2$ and $\text{Im}(A) = (A - A^*)/2i$ are the real and the imaginary part of A, respectively. I_n denotes the $n \times n$ identity matrix and **i** is the complex number $\mathbf{i}^2 = -1$. Let $C(A)$ be the dual of the algebraic curve defined to be the zero set of $P_A(x, y, z) = 0$, on the complex projective plane \mathbb{CP}^2 , which consists of all equivalence classes of points in $\mathbb{C}^3 \setminus (0,0,0)$ under the equivalence relation \sim , this relation is defined by $(x, y, z) \sim (x', y', z')$ if and only if there is a nonzero $\lambda \in \mathbb{C}$ such that $(x, y, z) = \lambda(x', y', z')$. Kippenhahn showed that $W(A)$ is the convex hull of the real points of $C(A)$, see [8] and its English translation [9] for a detailed discussion of the connections between the polynomial P_A , and the numerical range of A. This characterization is used by many authors to answer the question when the numerical range of a matrix is an elliptic disc. For 2×2 matrices a complete description of the numerical range is well known, that is $W(A)$ elliptic disk (with possibly degenerate interior), see [6]. In [8] Kippenhahn showed that there are four classes of shapes which the numerical range of matrices of order three. This was improved in [7] by expressing the conditions in terms of the eigenvalues and entries of A , which are easier to apply. By the same procedure, these results are generalized for 4×4 matrices. Let us mention here, that numerous results are known in this direction only for some special classes of matrices, for partial isomertry, nilpotent, doubly stochastic matrices (etc...), see [11], [10]. But no unifying and general theory is not yet available.

In this paper, firstly, with a similar approach used in [2], we will give necessary and sufficient conditions for 5-by-5 matrix A to have an ellipse in the associated real Kippenhahn curve $C_R(A)$. We also express those conditions in terms of eigenvalues and entries of A, the main difficult is the heavy computations. All these conditions will be useful for construct a 5×5 matrix with an elliptic numerical range (Section 2.). Secondly, we establish the result of Theorem 2 in the special case of S_5 -matrices (A is S_n -matrix if A is a contraction, the eigenvalues of A are all in the open unit disc $\mathbb D$ and $rank(I_n - A^*A) = 1$) (Section 3.). Finally, using the results of two preceding sections, we give the proof of Theorem 2 (Section 4.).

2 Necessary and sufficient conditions for 5×5 matrix to have an ellipse in its real Kippenhahn curve

Let A be a 5×5 complex matrix. Here we give necessary and sufficient conditions for which the associated curve $C_R(A)$ contains an ellipse or a circle. It is well known that, by Schur's theorem, every square matrix is unitarily equivalent to an upper triangular matrix. So, without loss of generality, we can assume that

$$
A = \begin{bmatrix} \lambda_1 & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & \lambda_2 & a_{23} & a_{24} & a_{25} \\ 0 & 0 & \lambda_3 & a_{34} & a_{35} \\ 0 & 0 & 0 & \lambda_4 & a_{45} \\ 0 & 0 & 0 & 0 & \lambda_5 \end{bmatrix},
$$
(1)

where $\lambda_j = \alpha_j + i\beta_j$, with α_j and β_j are real for $j = 1, 2, 3, 4, 5$.

Then, we have

$$
P_A(x, y, z) = \det(x \operatorname{Re}(A) + y \operatorname{Im}(A) + z I_5)
$$

\n
$$
= \begin{vmatrix}\n\psi_1(x, y) & \frac{a_{12}}{2}(x - iy) & \frac{a_{13}}{2}(x - iy) & \frac{a_{14}}{2}(x - iy) & \frac{a_{15}}{2}(x - iy) \\
(x + iy) & \frac{\overline{a_{12}}}{2} & \psi_2(x, y) & \frac{a_{23}}{2}(x - iy) & \frac{a_{24}}{2}(x - iy) & \frac{a_{25}}{2}(x - iy) \\
(x + iy) & \frac{\overline{a_{13}}}{2} & (x + iy) & \frac{\overline{a_{23}}}{2} & \psi_3(x, y) & \frac{a_{34}}{2}(x - iy) & \frac{a_{35}}{2}(x - iy) \\
(x + iy) & \frac{\overline{a_{14}}}{2} & (x + iy) & \frac{\overline{a_{24}}}{2} & (x + iy) & \frac{\overline{a_{34}}}{2} & \psi_4(x, y) & \frac{a_{45}}{2}(x - iy) \\
(x + iy) & \frac{\overline{a_{15}}}{2} & (x + iy) & \frac{\overline{a_{25}}}{2} & (x + iy) & \frac{\overline{a_{35}}}{2} & (x + iy) & \frac{\overline{a_{35}}}{2} & \psi_5(x, y)\n\end{vmatrix},
$$

where $\psi_j(x, y) = \alpha_j x + \beta_j y + z$, for $j = 1, 2, 3, 4, 5$. By straightforward calculus, we obtain

$$
P_A(x, y, z) = \prod_{i=1}^{5} (\alpha_i x + \beta_i y + z) - \frac{x^2 + y^2}{4} Q(x, y, z),
$$
 (2)

where

$$
Q(x, y, z) = \sum_{S_{ijk}S_{lm}} |a_{lm}|^{2} (\alpha_{i}x + \beta_{i}y + z)(\alpha_{j}x + \beta_{j}y + z)(\alpha_{k}x + \beta_{k}y + z)
$$

\n
$$
- \sum_{S_{ij}S_{klm}} [x \text{Re}(a_{kl}a_{lm}\overline{a_{km}}) + y \text{Im}(a_{kl}a_{lm}\overline{a_{km}})](\alpha_{i}x + \beta_{i}y + z)(\alpha_{j}x + \beta_{j}y + z)
$$

\n
$$
- \frac{x^{2} + y^{2}}{4} \sum_{i=1}^{5} (\alpha_{i}x + \beta_{i}y + z)P_{i} + \sum_{S_{i}S_{jklm}} (\alpha_{i}x + \beta_{i}y + z)[\frac{x^{2} - y^{2}}{2} \text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}})
$$

\n
$$
+ xy \text{Im}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}})] + \frac{x^{2} + y^{2}}{4} \sum_{S_{ij}S_{klm}} [x \text{Re}(a_{kl}a_{lm}\overline{a_{km}}) + y \text{Im}(a_{kl}a_{lm}\overline{a_{km}})]|a_{ij}|^{2}
$$

\n
$$
- \frac{x^{2} + y^{2}}{4} \sum_{S_{ijkl}S_{iml}} [x \text{Re}(a_{ij}a_{jk}a_{kl}\overline{a_{im}a_{ml}}) + y \text{Im}(a_{ij}a_{jk}a_{kl}\overline{a_{im}a_{ml}})]
$$

\n
$$
- \frac{x^{2} + y^{2}}{4} \sum_{S_{ijk}S_{lm}S_{im}S_{lk}} [x \text{Re}(a_{ij}a_{jk}a_{lm}\overline{a_{im}a_{lk}}) + y \text{Im}(a_{ij}a_{jk}a_{lm}\overline{a_{im}a_{lk}})]
$$

\n
$$
- \frac{1}{4} [(x^{3} - 3xy^{2}) \text{Re}(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}) + (-y^{3} + 3yx^{2}) \text{Im}(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}})].
$$

With $S_{i_1 i_2 \dots i_n}$, for some $n \leq 5$, denotes the collection of all n-tuples $(i_1, i_2, ..., i_n)$ of natural numbers such that $1 \leq i_1 < i_2 < ... \leq i_5$ and

$$
P_i = \sum_{S_{jkm}S_{lm}} |a_{jk}|^2 |a_{lm}|^2 - \sum_{S_{jkl}S_{jml}} \text{Re}(a_{jk}a_{kl}\overline{a_{jm}}\overline{a_{ml}}) - \sum_{S_{jk}S_{lkm}} \text{Re}(a_{jk}a_{lm}\overline{a_{jm}}\overline{a_{lk}})
$$

for every $i = 1, \ldots, 5$. The sums are taken with two by two different indexes which means that $i \neq j \neq k \neq l \neq m$.

We begin by the following Lemma.

Lemma 1. Let A be a 5×5 matrix. Then the Kippenhahn curve $C_R(A)$ consists of two ellipses, one with foci λ_1 , λ_2 and minor axis of length r, the other with foci λ_3 , λ_4 and minor axis of length s, and λ_5 if and only if

 $P_A(x,y,z) = [(\alpha_1 x + \beta_1 y + z)(\alpha_2 x + \beta_2 y + z) - \frac{r^2}{4}]$ $\frac{x^2}{4}(x^2+y^2)][(\alpha_3x+\beta_3y+\beta_4x)$ $z)(\alpha_4x + \beta_4y + z) - \frac{s^2}{4}$ $\frac{s^2}{4}(x^2+y^2)[(\alpha_5x+\beta_5y+z),$ where $\lambda_j = \alpha_j + i\beta_j$, j = 1, 2, 3, 4, 5 and the $\alpha'_j s$ and $\beta'_j s$ are real.

Proof. Let $B = \begin{bmatrix} \lambda_1 & r \\ 0 & \lambda_2 \end{bmatrix}$ $0 \lambda_2$ $\Big\} \oplus \begin{bmatrix} \lambda_3 & s \\ 0 & \lambda \end{bmatrix}$ $0 \lambda_4$ $\Big] \oplus \lambda_5$. As $C_R(A) = C_R(B)$, by duality the polynomials P_A and P_B are the same, therefore

 $P_A(x,y,z) = [(\alpha_1 x + \beta_1 y + z)(\alpha_2 x + \beta_2 y + z) - \frac{r^2(x^2 + y^2)}{4}]$ $\frac{(-+y^{-})}{4}$][($\alpha_3 x + \beta_3 y + z$)($\alpha_4 x +$ $\beta_4 y + z) - \frac{s^2(x^2+y^2)}{4}$ $\frac{(-y^{-1})}{4}$] $(\alpha_5 x + \beta_5 y + z).$ The converse is clear. \Box

Using the above lemma, we can prove the following theorem.

Theorem 3. Let A be in upper-triangular form (1) . Then the Kippenhahn curve $C_R(A)$ consists of two ellipses, one with foci λ_p , λ_q and minor axis of length r, the other with foci λ_t , λ_v and minor axis of length s, and a point λ_w if and only if

(a)
$$
r^2 + s^2 = \sum_{S_{lm}} |a_{lm}|^2
$$
.
\n(b) $r^2(\lambda_w + \lambda_t + \lambda_v) + s^2(\lambda_w + \lambda_q + \lambda_p) = \sum_{S_{ijk}S_{lm}} |a_{lm}|^2(\lambda_i + \lambda_j + \lambda_k)$
\n $- \sum_{S_{klm}} a_{kl}a_{lm}\overline{a_{km}}$.
\n(c) $r^2(\lambda_w\lambda_v + \lambda_w\lambda_t + \lambda_t\lambda_v) + s^2(\lambda_w\lambda_p + \lambda_w\lambda_q + \lambda_p\lambda_q)$
\n $= \sum_{S_{ijk}S_{lm}} |a_{lm}|^2(\lambda_i\lambda_j + \lambda_i\lambda_k + \lambda_j\lambda_k) - \sum_{S_{ij}S_{klm}} (\lambda_i + \lambda_j)a_{kl}a_{lm}\overline{a_{km}}$
\n $+ \sum_{S_{jklm}} a_{jk}a_{kl}a_{lm}\overline{a_{jm}}$.
\n(d) $r^2\lambda_w\lambda_t\lambda_v + s^2\lambda_w\lambda_p\lambda_q = \sum_{S_{ijk}S_{lm}} |a_{lm}|^2\lambda_i\lambda_j\lambda_k - \sum_{S_{ij}S_{klm}} \lambda_i\lambda_j a_{kl}a_{lm}\overline{a_{km}}$
\n $+ \sum_{S_{ij}S_{jklm}} a_{jk}a_{kl}a_{lm}\overline{a_{jm}}\lambda_i - a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}.$
\n(e) $r^2\alpha_w\alpha_t\alpha_v + s^2\alpha_w\alpha_p\alpha_q - \frac{r^2s^2}{4}\alpha_w = \sum_{S_{ij}S_{klm}} |a_{lm}|^2\alpha_i\alpha_j\alpha_k$
\n $- \sum_{S_{ij}S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}})\alpha_i\alpha_j - \frac{1}{4}\sum_{i=1}^5 P_i\alpha_i + \frac{1}{2} \sum_{S_{ij}S_{klm}} \text{Re}(a_{jk}a_{kl}\overline{a_{im}}\overline{a_{jm}})\alpha_i$
\n $+ \frac{1}{4}\sum_{S_{ij}S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}})\alpha_i\alpha_j - \frac{1}{4}\sum_{S_{ij}S_{ij}S_{lm}} \text{Re}(a_{ij}a_{jk}a_{kl$

 $i=1$

 $rac{1}{2} \sum_{S,ikb}$ S_{jklm} $\text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}),$

where
$$
P_i = \sum_{S_{jkm}S_{lm}} |a_{jk}|^2 |a_{lm}|^2 - \sum_{S_{jkl}S_{jml}} \text{Re}(a_{jk}a_{kl}\overline{a_{jm}}\overline{a_{ml}})
$$

- $\sum_{S_{jk}S_{lkm}} \text{Re}(a_{jk}a_{lm}\overline{a_{jm}}\overline{a_{lk}})$, for every $i = 1, ..., 5$.

Proof. By lemma 1, we have,

$$
P_A(x, y, z) = (\alpha_w x + \beta_w y + z)(\alpha_p x + \beta_p y + z)(\alpha_q x + \beta_q y + z)
$$

\n
$$
(\alpha_t x + \beta_t y + z)(\alpha_v x + \beta_v y + z)
$$

\n
$$
-\frac{x^2 + y^2}{4} [r^2(\alpha_w x + \beta_w y + z)(\alpha_t x + \beta_t y + z)(\alpha_v x + \beta_v y + z)
$$

\n
$$
+ s^2(\alpha_w x + \beta_w y + z)(\alpha_p x + \beta_p y + z)(\alpha_q x + \beta_q y + z)
$$

\n
$$
-\frac{x^2 + y^2}{4} r^2 s^2 (\alpha_w x + \beta_w y + z)].
$$

Comparing the previous formula of $P_A(x,y,z)$ with (2), we obtain,

$$
Q(x, y, z) = r2(\alpha_w x + \beta_w y + z)(\alpha_t x + \beta_t y + z)(\alpha_v x + \beta_v y + z)
$$

+ $s2(\alpha_w x + \beta_w y + z)(\alpha_p x + \beta_p y + z)(\alpha_q x + \beta_q y + z)$
- $\frac{x2 + y2}{4}r2s2(\alpha_w x + \beta_w y + z).$

Computing the coefficients of $x^3, y^3, z^3, x^2y, xy^2, x^2z, xz^2, y^2z, yz^2, xyz$ by identification, we find, respectively

1.
$$
r^2 \alpha_w \alpha_t \alpha_v + s^2 \alpha_w \alpha_p \alpha_q - \frac{r^2 s^2}{4} \alpha_w = \sum_{S_{ijk}S_{lm}} |a_{lm}|^2 \alpha_i \alpha_j \alpha_k
$$

\n $- \sum_{S_{ij}S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}}) \alpha_i \alpha_j - \frac{1}{4} \sum_{i=1}^5 P_i \alpha_i + \frac{1}{2} \sum_{S_i S_{jklm}} \text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}) \alpha_i$
\n $+ \frac{1}{4} \sum_{S_{ij}S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}}) |a_{ij}|^2 - \frac{1}{4} \sum_{S_{ijkl}S_{iml}} \text{Re}(a_{ij}a_{jk}a_{kl}\overline{a_{im}a_{ml}})$
\n $- \frac{1}{4} \sum_{S_{ijk}S_{lm}S_{im}S_{lk}} \text{Re}(a_{ij}a_{jk}a_{lm}\overline{a_{im}a_{lk}}) - \frac{1}{4} \text{Re}(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}).$

2.
$$
r^2 \beta_w \beta_t \beta_v + s^2 \beta_w \beta_p \beta_q - \frac{r^2 s^2}{4} \beta_w = \sum_{S_{ijk}S_{lm}} |a_{lm}|^2 \beta_i \beta_j \beta_k
$$

\n $- \sum_{S_{ij}S_{klm}} \text{Im}(a_{kl}a_{lm}\overline{a_{km}}) \beta_i \beta_j - \frac{1}{4} \sum_{i=1}^5 P_i \beta_i - \frac{1}{2} \sum_{S_iS_{jklm}} \text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}) \beta_i$
\n $+ \frac{1}{4} \sum_{S_{ij}S_{klm}} \text{Im}(a_{kl}a_{lm}\overline{a_{km}}) |a_{ij}|^2 - \frac{1}{4} \sum_{S_{ijkl}S_{iml}} \text{Im}(a_{ij}a_{jk}a_{kl}\overline{a_{im}a_{ml}})$
\n $- \frac{1}{4} \sum_{S_{ijk}S_{lm}S_{im}S_{lk}} \text{Im}(a_{ij}a_{jk}a_{lm}\overline{a_{im}a_{lk}}) + \frac{1}{4} \text{Im}(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}).$
\n3. $r^2 + s^2 = \sum_{S_{lm}} |a_{lm}|^2$.

On the circular numerical range of 5-by-5 partial isometries 63

4.
$$
r^2(\beta_w\alpha_t\alpha_v + \beta_t\alpha_w\alpha_v + \beta_v\alpha_w\alpha_t) + s^2(\beta_w\alpha_p\alpha_q + \beta_p\alpha_w\alpha_q + \beta_q\alpha_w\alpha_p) - \frac{r^2s^2}{4}\beta_w
$$

\n $= \sum_{S_{ijk}S_{lm}} |a_{lm}|^2(\alpha_i\alpha_j\beta_k + \alpha_i\alpha_k\beta_j + \alpha_j\alpha_k\beta_i) - \sum_{S_{ij}S_{klm}} Im(a_{kl}a_{lm}\overline{a_{km}})\alpha_i\alpha_j$
\n $- \sum_{S_{ij}S_{klm}} Re(a_{kl}a_{lm}\overline{a_{km}})(\alpha_i\beta_j + \alpha_j\beta_i) + \frac{1}{2} \sum_{S_{i}S_{jklm}} Re(a_{jk}a_{kl}a_{lm}\overline{a_{jm}})\beta_i$
\n $+ \sum_{S_{i}S_{jklm}} Im(a_{jk}a_{kl}a_{lm}\overline{a_{jm}})\alpha_i + \frac{1}{4} \sum_{S_{ij}S_{klm}} Im(a_{kl}a_{lm}\overline{a_{km}})|a_{ij}|^2 - \frac{1}{4} \sum_{i=1}^{5} P_i\beta_i$
\n $- \frac{1}{4} \sum_{S_{ijkl}S_{iml}} Im(a_{ij}a_{jk}a_{kl}\overline{a_{im}}\overline{a_{ml}}) - \frac{1}{4} \sum_{S_{ijk}S_{lm}S_{im}S_{lk}} Im(a_{ij}a_{jk}a_{lm}\overline{a_{im}}\overline{a_{lk}})$
\n $- \frac{3}{4} Im(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}).$
\n5. $r^2(\alpha_w\beta_t\beta_v + \alpha_t\beta_w\beta_v + \alpha_v\beta_w\beta_t) + s^2(\alpha_w\beta_p\beta_q + \alpha_p\beta_w\beta_q + \alpha_q\beta_w\beta_p) - \frac{r^2s^2}{4}\alpha_w$
\n $= \sum_{S_{ijk}S_{lm}} |a_{lm}|^2(\alpha_i\beta_j\beta_k + \alpha_j\beta_i\beta_k) + \alpha_k\beta_i\beta_j) - \sum_{S_{ij}S_{klm}} Re(a_{kl}a_{lm}\overline{a_{km}})\beta_i\beta_j$
\n $- \sum_{S_{ij}S_{klm}} Im(a_{kl}a_{lm}\overline{a_{km}})($

6.
$$
r^{2}(\alpha_{w}\alpha_{t} + \alpha_{w}\alpha_{v} + \alpha_{v}\alpha_{t}) + s^{2}(\alpha_{w}\alpha_{p} + \alpha_{w}\alpha_{q} + \alpha_{p}\alpha_{q}) - \frac{r^{2}s^{2}}{4}
$$

\n
$$
= \sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}(\alpha_{i}\alpha_{j} + \alpha_{i}\alpha_{k} + \alpha_{j}\alpha_{k}) - \sum_{S_{ij}S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}})(\alpha_{i} + \alpha_{j})
$$

\n
$$
- \frac{1}{4} \sum_{i=1}^{5} P_{i} + \frac{1}{2} \sum_{S_{jklm}} \text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}).
$$

7.
$$
r^{2}(\alpha_{w} + \alpha_{t} + \alpha_{v}) + s^{2}(\alpha_{w} + \alpha_{p} + \alpha_{q})
$$

=
$$
\sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}(\alpha_{i} + \alpha_{j} + \alpha_{k}) - \sum_{S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}}).
$$

8.
$$
r^{2}(\beta_{w}\beta_{t} + \beta_{w}\beta_{v} + \beta_{v}\beta_{t}) + s^{2}(\beta_{w}\beta_{p} + \beta_{w}\beta_{q} + \beta_{p}\beta_{q}) - \frac{r^{2}s^{2}}{4}
$$

\n
$$
= \sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}(\beta_{i}\beta_{j} + \beta_{i}\beta_{k} + \beta_{j}\beta_{k}) - \sum_{S_{ij}S_{klm}} Im(a_{kl}a_{lm}\overline{a_{km}})(\beta_{i} + \beta_{j})
$$

\n
$$
- \frac{1}{4} \sum_{i=1}^{5} P_{i} - \frac{1}{2} \sum_{S_{jklm}} Re(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}).
$$

\n9.
$$
r^{2}(\beta_{w} + \beta_{t} + \beta_{v}) + s^{2}(\beta_{w} + \beta_{p} + \beta_{q}) = \sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}(\beta_{i} + \beta_{j} + \beta_{k})
$$

\n
$$
- \sum_{S_{klm}} Im(a_{kl}a_{lm}\overline{a_{km}}).
$$

 \Box

10.
$$
r^{2}(\alpha_{w}\beta_{t} + \alpha_{w}\beta_{v} + \alpha_{t}\beta_{w} + \alpha_{t}\beta_{v} + \alpha_{v}\beta_{w} + \alpha_{v}\beta_{t}) + s^{2}(\alpha_{w}\beta_{p} + \alpha_{w}\beta_{q} + \alpha_{p}\beta_{w} + \alpha_{p}\beta_{w} + \alpha_{p}\beta_{w} + \alpha_{p}\beta_{w} + \alpha_{p}\beta_{w} + \alpha_{q}\beta_{p}) = \sum_{\substack{S_{ijk}S_{lm} \\ S_{ijk}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}})(\beta_{i} + \beta_{j}) - \sum_{\substack{S_{ij}S_{klm} \\ S_{ij}S_{klm}}} \text{Im}(a_{kl}a_{lm}\overline{a_{km}})(\alpha_{i} + \alpha_{j}) + \sum_{\substack{S_{ij}S_{klm} \\ S_{jklm}}} \text{Im}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}).
$$

Note that the combination of $(1), (2), (4)$ and (5) is equivalent to $(d), (e)$ and (f) , since $(1) - (5) - i(2) + i(4)$ yields (d) .

(6), (8) and (10) is equivalent to (c) and (g) as $(6) - (8) + i(10)$ yields (c). (7) and (9) is equivalent to (b), it follows from $(7) + i(9)$. This completes the proof.

- **Remark 1.** The last theorem was obtained in $(1,$ Theorem 2.2, but, there exists a gap in this Theorem, we shall point out that in its proof the errors is exactly on the left side of equation $(4')$ and $(5')$ and we should also add the condition (e) , (f) , and (g) to ensure the converse implication.
	- If we take $s = 0$ in the previous theorem, then $C_R(A)$ consists of ellipse and three points.

In the following, we can see that $C_R(A)$ contains an ellipse and a curve of degree 4 with a double tangent. Using the same conditions derived in [13], to determine whether the numerical range boundary has a flatness for a 3×3 irreducible matrix A, these conditions are given in term of geometrical properties of flatness.

Let L be the supporting line of the convex set $W(A)$ containing the flatness and perpendicular to the line which pass through the origin and forms angle θ from the positive x–axis, and let μ be the (signed) distance from the origin to L. It is seen that μ is the largest eigenvalue of Re($e^{-i\theta}$ A) (cf.[13], [8]).

Lemma 2. Let A be a 5×5 matrix. Then the Kippenhahn curve $C_R(A)$ consists of one ellipse with foci λ_1, λ_2 and minor axis of length r, and a curve of degree 4 with a double tangent and foci at λ_3 , λ_4 and λ_5 if and only if the following conditions hold

(i) there exist $\theta \in [0, 2\pi]$ and a real μ such that

$$
P_A(x, y, z) = \left[(\alpha_1 x + \beta_1 y + z)(\alpha_2 x + \beta_2 y + z) - \frac{r^2}{4} (x^2 + y^2) \right]
$$

\n
$$
\times \left[(\alpha_3 x + \beta_3 y + z)(\alpha_4 x + \beta_4 y + z)(\alpha_5 x + \beta_5 y + z) - (\alpha_3 x + \beta_3 y + z)(x^2 + y^2)(\text{Re}(e^{-i\theta}\lambda_4) + \mu)(\text{Re}(e^{-i\theta}\lambda_5) + \mu) - (\alpha_4 x + \beta_4 y + z)(x^2 + y^2)(\text{Re}(e^{-i\theta}\lambda_3) + \mu)(\text{Re}(e^{-i\theta}\lambda_5) + \mu) - (\alpha_5 x + \beta_5 y + z)(x^2 + y^2)(\text{Re}(e^{-i\theta}\lambda_3) + \mu)(\text{Re}(e^{-i\theta}\lambda_4) + \mu) + (x - iy)(x^2 + y^2)(\text{Re}(e^{-i\theta}\lambda_3) + \mu)(\text{Re}(e^{-i\theta}\lambda_4) + \mu)(\text{Re}(e^{-i\theta}\lambda_5) + \mu)e^{i\theta} + (x + iy)(x^2 + y^2)(\text{Re}(e^{-i\theta}\lambda_3) + \mu)(\text{Re}(e^{-i\theta}\lambda_4) + \mu)(\text{Re}(e^{-i\theta}\lambda_5) + \mu)e^{-i\theta}].
$$

On the circular numerical range of 5-by-5 partial isometries 65

$$
(ii) \ (\text{Re}(e^{-\mathbf{i}\theta}\lambda_3) + \mu)(\text{Re}(e^{-\mathbf{i}\theta}\lambda_4) + \mu)(\text{Re}(e^{-\mathbf{i}\theta}\lambda_5) + \mu) \neq 0.
$$

$$
\begin{aligned} (iii) \ \ \lambda_j(\text{Re}(e^{-\mathbf{i}\theta}\lambda_k) + \mu) + \lambda_k(\text{Re}(e^{-\mathbf{i}\theta}\lambda_j) + \mu) - 2(\text{Re}(e^{-\mathbf{i}\theta}\lambda_j) + \mu)(\text{Re}(e^{-\mathbf{i}\theta}\lambda_k) + \mu)e^{\mathbf{i}\theta} &\neq \lambda_i((\text{Re}(e^{-\mathbf{i}\theta}\lambda_k) + \mu) + (\text{Re}(e^{-\mathbf{i}\theta}\lambda_j) + \mu)), \text{ for every } 3 \le i \neq j \neq k \le 5. \end{aligned}
$$

Proof. Let $B = \begin{bmatrix} \lambda_1 & r \\ 0 & \lambda \end{bmatrix}$ $0 \lambda_2$ $\Big] \oplus C$ where C is 3-by-3 irreducible matrix whose Kippenhahn curve is of degree 4 with a double tangent, and eigenvalues at λ_3 , λ_4 and λ_5 .

Since $C_R(A) = C_R(B)$, the polynomials P_A and P_B are the same.

$$
P_B(x, y, z) = \left[(\alpha_1 x + \beta_1 y + z)(\alpha_2 x + \beta_2 y + z) - \frac{r^2}{4} (x^2 + y^2) \right] P_C(x, y, z)
$$

Put C in an upper triangular form

$$
\begin{bmatrix}\n\lambda_3 & a & b \\
0 & \lambda_4 & c \\
0 & 0 & \lambda_5\n\end{bmatrix}.
$$

By assumption $\partial W(C)$ has a flat of portion (containing in the supporting line L), let $\theta \in [0, 2\pi]$ be the angular between x-axis and the line which pass through the origin and perpendicular to L, so $e^{-i\theta}C$ has a vertical flatness. According to Kippenhahn's classification, $\text{Re}(e^{-i\theta}C)$ must have a multiple eigenvalue, so there exist a real μ such that

$$
Re(e^{-i\theta}C) + I\mu = \begin{bmatrix} Re(e^{-i\theta}\lambda_3) + \mu & e^{-i\theta}a/2 & e^{-i\theta}b/2 \\ e^{i\theta}\overline{a}/2 & Re(e^{-i\theta}\lambda_4) + \mu & e^{-i\theta}c/2 \\ e^{i\theta}\overline{b}/2 & e^{i\theta}\overline{c}/2 & Re(e^{-i\theta}\lambda_5) + \mu \end{bmatrix}
$$

has rank one, because if otherwise $\text{Re}(e^{-i\theta}C) + I\mu$ has zero rank, then $\text{Re}(e^{-i\theta}C)$ and Im($e^{-i\theta}$ C) commutes, and C is therefore reducible, while due to the latter all 2×2 minors of Re($e^{-i\theta}C$) + $I\mu$ are equal to zero. Consequently,

$$
|a|^2 = 4(\text{Re}(e^{-i\theta}\lambda_3) + \mu)(\text{Re}(e^{-i\theta}\lambda_4) + \mu).
$$

\n
$$
|b|^2 = 4(\text{Re}(e^{-i\theta}\lambda_3) + \mu)(\text{Re}(e^{-i\theta}\lambda_5) + \mu).
$$

\n
$$
|c|^2 = 4(\text{Re}(e^{-i\theta}\lambda_4) + \mu)(\text{Re}(e^{-i\theta}\lambda_5) + \mu).
$$

\n
$$
a\overline{b} = 2(\text{Re}(e^{-i\theta}\lambda_3) + \mu)\overline{c}e^{i\theta}.
$$

\n(3)

It is easy to see from equations above that if one of off-diagonal a, b or c is zero, then at least two of them are equal to zero, this contradict the irreducibility of C , so $abc \neq 0$.

On the other hand,

$$
P_C(x, y, z) = \det \begin{bmatrix} (\alpha_3 x + \beta_3 y + z) & a/2(x - iy) & b/2(x - iy) \\ \overline{a}/2(x + iy) & (\alpha_4 x + \beta_4 y + z) & c/2(x - iy) \\ \overline{b}/2(x + iy) & \overline{c}/2(x + iy) & (\alpha_5 x + \beta_5 y + z) \end{bmatrix}
$$

= $(\alpha_3 x + \beta_3 y + z)(\alpha_4 x + \beta_4 y + z)(\alpha_5 x + \beta_5 y + z)$

$$
-\frac{1}{4}(x^2 + y^2)[(\alpha_3 x + \beta_3 y + z)|c|^2 + (\alpha_4 x + \beta_4 y + z)|b|^2 + (\alpha_5 x + \beta_5 y + z)|a|^2]
$$

+ $\frac{1}{8}(x^2 + y^2)(x - iy)a\overline{b}c + \frac{1}{8}(x^2 + y^2)(x + iy)\overline{a}c\overline{b}.$

Combining this relation with (3) and $a\overline{b}c \neq 0$ we get successively (i) and (ii). Moreover the polynomial P_C (and therefore the matrix C) is irreducible. Thus, P_C cannot be factored into three linear factors, or into a quadratic factor and a linear one. We note that linear factors in the left-hand side of the equation $P_C(x, y, z) = 0$ are corresponding always to eigenvalues of the matrix C (see [9], [8] and [13]).

Assume that $P_C(x, y, z)$ has a linear factor $(\alpha_i x + \beta_i y + z)$ which corresponds to $\lambda_i, i = 3, 4, 5$. Also,

$$
P_C(x, y, z) = (\alpha_3 x + \beta_3 y + z)(\alpha_4 x + \beta_4 y + z)(\alpha_5 x + \beta_5 y + z)
$$

\n
$$
- (\alpha_3 x + \beta_3 y + z)(x^2 + y^2)\mu_4 \mu_5
$$

\n
$$
- (\alpha_4 x + \beta_4 y + z)(x^2 + y^2)\mu_3 \mu_5
$$

\n
$$
- (\alpha_5 x + \beta_5 y + z)(x^2 + y^2)\mu_3 \mu_4
$$

\n
$$
+ (x - iy)(x^2 + y^2)\mu_3 \mu_4 \mu_5 e^{i\theta}
$$

\n
$$
+ (x + iy)(x^2 + y^2)\mu_3 \mu_4 \mu_5 e^{-i\theta},
$$

where $\mu_i = \text{Re}(e^{-i\theta}\lambda_i) + \mu$, we can see that for two by two equal index $i, j, k \in$ $\{1, 2, 3\}, \, (\alpha_i x + \beta_i y + z)$ gives,

$$
(\alpha_j x + \beta_j y + z)(x^2 + y^2)\mu_i \mu_k
$$

+
$$
(\alpha_k x + \beta_k y + z)(x^2 + y^2)\mu_i \mu_j
$$

-
$$
(x - iy)(x^2 + y^2)\mu_i \mu_j \mu_k e^{i\theta}
$$

-
$$
(x + iy)(x^2 + y^2)\mu_i \mu_j \mu_k e^{-i\theta}.
$$

This means that the coefficients of $z, \alpha_i x, \beta_i y$ in the last polynomial are equals, which gives

$$
\beta_i[\alpha_j \mu_i \mu_k + \alpha_k \mu_i \mu_j - 2\mu_i \mu_j \mu_k \cos(\theta)] = \alpha_i[\beta_j \mu_i \mu_k + \beta_k \mu_i \mu_j - 2\mu_i \mu_j \mu_k \sin(\theta)] \tag{4}
$$

$$
\alpha_j \mu_i \mu_k + \alpha_k \mu_i \mu_j - 2\mu_i \mu_j \mu_k \cos(\theta) = \alpha_i [\mu_i \mu_k + \mu_i \mu_j]
$$
(5)

and

$$
\beta_j \mu_i \mu_k + \beta_k \mu_i \mu_j - 2\mu_i \mu_j \mu_k \sin(\theta) = \beta_i [\mu_i \mu_k + \mu_i \mu_j]. \tag{6}
$$

One can see that (4), (5) and (6) are equivalent to $\lambda_j \mu_k + \lambda_k \mu_j - 2\mu_j \mu_k e^{i\theta} =$ $\lambda_i(\mu_k + \mu_j)$ and hence *(iii)*.

The converse is obvious.

On the circular numerical range of 5-by-5 partial isometries 67

In what follows, set $\mu_j = \text{Re}(e^{-i\theta}\lambda_j) + \mu$ for every $j = 1, ..., 5$.

Theorem 4. Let A be in upper-triangular form (1). Then $C_R(A)$ consists of one ellipse with foci λ_q, λ_p and minor axis of length r, and a curve of degree 4 with a double tangent and foci at λ_w , λ_t and λ_v if and only if there exist $\theta \in [0, 2\pi]$ and $a \text{ real } \mu \text{ such that}$

(a)
$$
r^2 + 4(\mu_t \mu_v + \mu_w \mu_v + \mu_w \mu_t) = \sum_{S_{lm}} |a_{lm}|^2
$$
.
\n(b) $r^2(\lambda_w + \lambda_t + \lambda_v) + 4[(\lambda_w \mu_t \mu_v + \lambda_t \mu_w \mu_v + \lambda_v \mu_t \mu_w) - 2\mu_w \mu_t \mu_v e^{i\theta}$
\n $+ (\lambda_p + \lambda_q)(\mu_t \mu_v + \mu_w \mu_v + \mu_w \mu_t)]$
\n $= \sum_{S_{ijk}S_{lm}} |a_{lm}|^2(\lambda_i + \lambda_j + \lambda_k) - \sum_{S_{klm}} a_{kl} a_{lm} \overline{a_{km}}$.
\n(c) $r^2(\lambda_w \lambda_t + \lambda_t \lambda_v + \lambda_w \lambda_v) + 4[\lambda_p \lambda_q(\mu_t \mu_v + \mu_w \mu_v + \mu_t \mu_w) + (\lambda_p + \lambda_q)(\lambda_w \mu_t \mu_v + \lambda_t \mu_w \mu_v + \lambda_v \mu_t \mu_w) - (\lambda_p + \lambda_q)(2\mu_w \mu_t \mu_v e^{i\theta})]$

+
$$
(\lambda_p + \lambda_q)(\lambda_w \mu_t \mu_v + \lambda_t \mu_w \mu_v + \lambda_v \mu_t \mu_w) - (\lambda_p + \lambda_q)(2\mu_w \mu_t \mu_v e^{i\theta})
$$

\n= $\sum_{S_{ijk}S_{lm}} |a_{lm}|^2 (\lambda_i \lambda_j + \lambda_i \lambda_k + \lambda_j \lambda_k) - \sum_{S_{ij}S_{klm}} (\lambda_i + \lambda_j) a_{kl} a_{lm} \overline{a_{km}}$
\n+ $\sum_{S_{jklm}} a_{jk} a_{kl} a_{lm} \overline{a_{jm}}$.

(d)
$$
r^{2}(\lambda_{w}\lambda_{t}\lambda_{v}) + 4[\lambda_{p}\lambda_{q}((\lambda_{w}\mu_{t}\mu_{v} + \lambda_{t}\mu_{w}\mu_{v} + \lambda_{v}\mu_{t}\mu_{w}) - 2\mu_{w}\mu_{t}\mu_{v}e^{\mathbf{i}\theta})] = \sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}\lambda_{i}\lambda_{j}\lambda_{k} - \sum_{S_{ij}S_{klm}} \lambda_{i}\lambda_{j}a_{kl}a_{lm}\overline{a_{km}} + \sum_{S_{i}S_{jklm}} a_{jk}a_{kl}a_{lm}\overline{a_{jm}}\lambda_{i} - a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}.
$$

$$
(e) r2[\alpha_w \alpha_t \alpha_v - (\alpha_w \mu_t \mu_v + \alpha_t \mu_w \mu_v + \alpha_v \mu_w \mu_t) + 2\mu_w \mu_t \mu_v \cos(\theta)]
$$

+ $4\alpha_p \alpha_q [(\alpha_w \mu_t \mu_v + \alpha_t \mu_w \mu_v + \alpha_v \mu_w \mu_t) - 2\mu_w \mu_t \mu_v \cos(\theta)]$
=
$$
\sum_{S_{ijk}S_{lm}} |a_{lm}|^2 \alpha_i \alpha_j \alpha_k - \sum_{S_{ij}S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}}) \alpha_i \alpha_j - \frac{1}{4} \sum_{i=1}^5 P_i \alpha_i
$$

+
$$
\frac{1}{2} \sum_{S_i S_{jklm}} \text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}) \alpha_i
$$

+
$$
\frac{1}{4} \sum_{S_{ij}S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}}) |a_{ij}|^2 - \frac{1}{4} \sum_{S_{ijkl}S_{iml}} \text{Re}(a_{ij}a_{jk}a_{kl}\overline{a_{im}a_{ml}})
$$

-
$$
\frac{1}{4} \sum_{S_{ijk}S_{lm}S_{im}S_{lk}} \text{Re}(a_{ij}a_{jk}a_{lm}\overline{a_{im}a_{lk}}) - \frac{1}{4} \text{Re}(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}).
$$

$$
(f) \ r^{2}[\beta_{w}\beta_{t}\beta_{v} - (\beta_{w}\mu_{t}\mu_{v} + \beta_{t}\mu_{w}\mu_{v} + \beta_{v}\mu_{w}\mu_{t}) + 2\mu_{w}\mu_{t}\mu_{v}\sin(\theta)]
$$

+ $4\beta_{p}\beta_{q}[(\beta_{w}\mu_{t}\mu_{v} + \beta_{t}\mu_{w}\mu_{v} + \beta_{v}\mu_{w}\mu_{t}) - 2\mu_{w}\mu_{t}\mu_{v}\sin(\theta)]$
=
$$
\sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}\beta_{i}\beta_{j}\beta_{k} - \sum_{S_{ij}S_{klm}} \text{Im}(a_{kl}a_{lm}\overline{a_{km}})\beta_{i}\beta_{j} - \frac{1}{4}\sum_{i=1}^{5} P_{i}\beta_{i}
$$

-
$$
\frac{1}{2} \sum_{S_{i}S_{jklm}} \text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}})\beta_{i}
$$

+
$$
\frac{1}{4} \sum_{S_{ij}S_{klm}} \text{Im}(a_{kl}a_{lm}\overline{a_{km}})|a_{ij}|^{2} - \frac{1}{4} \sum_{S_{ijkl}S_{iml}} \text{Im}(a_{ij}a_{jk}a_{kl}\overline{a_{im}a_{ml}})
$$

-
$$
\frac{1}{4} \sum_{S_{ijk}S_{lm}S_{im}S_{lk}} \text{Im}(a_{ij}a_{jk}a_{lm}\overline{a_{im}a_{lk}}) + \frac{1}{4} \text{Im}(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}).
$$

(g)
$$
r^2[(\alpha_t \alpha_v + \alpha_w \alpha_v + \alpha_w \alpha_t) - (\mu_t \mu_v + \mu_w \mu_v + \mu_w \mu_t)]
$$

\t $+ 4\alpha_p \alpha_q (\mu_t \mu_v + \mu_w \mu_v + \mu_w \mu_t)$
\t $+ 4(\alpha_p + \alpha_q)[(\alpha_w \mu_t \mu_v + \alpha_t \mu_w \mu_v + \alpha_v \mu_w \mu_t) - 2\mu_w \mu_t \mu_v \cos(\theta)]$
\t $= \sum_{S_{ijk}S_{lm}} |a_{lm}|^2 (\alpha_i \alpha_j + \alpha_i \alpha_k + \alpha_j \alpha_k) - \sum_{S_{ij}S_{klm}} \text{Re}(a_{kl} a_{lm} \overline{a_{km}})(\alpha_i + \alpha_j)$
\t $- \frac{1}{4} \sum_{i=1}^5 P_i + \frac{1}{2} \sum_{S_{jklm}} \text{Re}(a_{jk} a_{kl} a_{lm} \overline{a_{jm}}).$

(h) $\mu_w \mu_t \mu_v \neq 0$.

(i)
$$
\lambda_j \mu_k + \lambda_k \mu_j - 2\mu_j \mu_k e^{i\theta} \neq \lambda_i (\mu_k + \mu_j)
$$
 for every $i, j, k \in \{w, t, v\} : i \neq j \neq k$,

where $P_i = \sum$ $S_{jkm}S_{lm}$ $|a_{jk}|^2 |a_{lm}|^2 - \sum$ $S_{jkl}S_{jml}$ $\text{Re}(a_{jk}a_{kl}\overline{a_{jm}}\overline{a_{ml}})-\sum$ $S_{jk}S_{lkm}$ $\text{Re}(a_{jk}a_{lm}\overline{a_{jm}}\overline{a_{lk}}).$ *for every* $i = 1, ..., 5$.

Proof. Taking conditions from lemma 2, we have,

$$
P_A(x, y, z) = \left[(\alpha_p x + \beta_p y + z)(\alpha_q x + \beta_q y + z) - \frac{r^2}{4} (x^2 + y^2) \right] \times \left[(\alpha_w x + \beta_w y + z)(\alpha_t x + \beta_t y + z)(\alpha_v x + \beta_v y + z) \right] - (\alpha_w x + \beta_w y + z)(x^2 + y^2) \mu_t \mu_v - (\alpha_t x + \beta_t y + z)(x^2 + y^2) \mu_w \mu_v - (\alpha_v x + \beta_v y + z)(x^2 + y^2) \mu_w \mu_t + (x - iy)(x^2 + y^2) \mu_w \mu_t \mu_v e^{i\theta} + (x + iy)(x^2 + y^2) \mu_w \mu_t \mu_v e^{-i\theta}],
$$

 $\mu_w \mu_t \mu_v \neq 0$, and $\lambda_j \mu_k + \lambda_k \mu_j - 2\mu_j \mu_k e^{i\theta} \neq \lambda_i (\mu_k + \mu_j)$ for every $i, j, k \in \{w, t, v\}$: $i \neq j \neq k$. Comparing the previous formula of $P_A(x, y, z)$ with polynomial (2). We obtain

$$
Q(x, y, z) = r2[(\alpha_w x + \beta_w y + z)(\alpha_t x + \beta_t y + z)(\alpha_v x + \beta_v y + z)
$$

-(x² + y²) ((\alpha_w x + \beta_w y + z)\mu_t\mu_v + (\alpha_t x + \beta_t y + z)\mu_w\mu_v + (\alpha_v x + \beta_v y + z)\mu_w\mu_t)
+ 2(x² + y²)(x\mu_w\mu_t\mu_v \cos(\theta) + y\mu_w\mu_t\mu_v \sin(\theta))]
+ 4(\alpha_p x + \beta_p y + z)(\alpha_q x + \beta_q y + z)
[((\alpha_w x + \beta_w y + z)\mu_t\mu_v + (\alpha_t x + \beta_t y + z)\mu_w\mu_v + (\alpha_v x + \beta_v y + z)\mu_w\mu_t)
- 2(x\mu_w\mu_t\mu_v \cos(\theta) + y\mu_w\mu_t\mu_v \sin(\theta))].

Computing the coefficients of $x^3, y^3, z^3, x^2y, xy^2, x^2z, xz^2, y^2z, yz^2, xyz$. By identification, we get, respectively,

1.
$$
r^{2}[\alpha_{w}\alpha_{t}\alpha_{v} - (\alpha_{w}\mu_{t}\mu_{v} + \alpha_{t}\mu_{w}\mu_{v} + \alpha_{v}\mu_{w}\mu_{t}) + 2\mu_{w}\mu_{t}\mu_{v}\cos(\theta)]
$$

+
$$
4\alpha_{p}\alpha_{q}[(\alpha_{w}\mu_{t}\mu_{v} + \alpha_{t}\mu_{w}\mu_{v} + \alpha_{v}\mu_{w}\mu_{t}) - 2\mu_{w}\mu_{t}\mu_{v}\cos(\theta)]
$$

=
$$
\sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}\alpha_{i}\alpha_{j}\alpha_{k} - \sum_{S_{ij}S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}})\alpha_{i}\alpha_{j} - \frac{1}{4} \sum_{i=1}^{5} P_{i}\alpha_{i}
$$

+
$$
\frac{1}{2} \sum_{S_i S_{jklm}} \text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}})\alpha_i
$$

+ $\frac{1}{4} \sum_{S_i S_{jklm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}})|a_{ij}|^2 - \frac{1}{4} \sum_{S_{ijk} S_{jml}} \text{Re}(a_{ij}a_{jk}a_{kl}\overline{a_{im}}\overline{a_{mj}})$
- $\frac{1}{4} \sum_{S_{ijk} S_{lm}} \text{Re}(a_{ij}a_{jk}a_{lm}\overline{a_{im}}\overline{a_{lk}}) - \frac{1}{4} \text{Re}(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}).$
2. $r^2[\beta_{w}\beta_t\beta_v - (\beta_{w}\mu_t\mu_v + \beta_t\mu_w\mu_v + \beta_v\mu_w\mu_t) + 2\mu_w\mu_t\mu_v \sin(\theta)]$
+ $4\beta_p\beta_q[(\beta_w\mu_t\mu_v + \beta_t\mu_w\mu_v + \beta_v\mu_w\mu_t) - 2\mu_w\mu_t\mu_v \sin(\theta)]$
= $\sum_{S_{ijk} S_{lm}} |a_{lm}|^2\beta_i\beta_j\beta_k - \sum_{S_{ijk} S_{lm}} \text{Im}(a_{kl}a_{lm}\overline{a_{km}})\beta_i\beta_j - \frac{1}{4} \sum_{i=1}^5 P_i\beta_i$
- $\frac{1}{2} \sum_{S_i S_{jklm}} \text{Im}(a_{kl}a_{kl}\overline{a_{im}}\overline{a_{jm}})\beta_i$
+ $\frac{1}{4} \sum_{S_{ijk} S_{lm}} \text{Im}(a_{kl}a_{lm}\overline{a_{km}})|a_{ij}|^2 - \frac{1}{4} \sum_{S_{ijk} S_{im}} \text{Im}(a_{ij}a_{jk}a_{kl}\overline{a_{im}}\overline{a_{ml}})$
- $\frac{1}{4} \sum_{S_{ijk} S_{lm}} \text{Im}(a_{kl}a_{lm}\overline{a_{im}}\overline{a_{lk}}) + \frac{1}{4} \text{Im}(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}).$
- $3. r^2 + 4(\mu_t\mu_v + \mu_w\mu_v + \mu$

+
$$
\sum_{S_i S_{jklm}} Im(a_{jk}a_{kl}a_{lm}\overline{a_{jm}})\beta_i + \frac{1}{4} \sum_{S_{ij} S_{klm}} Re(a_{kl}a_{lm}\overline{a_{km}})|a_{ij}|^2
$$

-
$$
\frac{1}{4} \sum_{S_{ijkl} S_{iml}} Re(a_{ij}a_{jk}a_{kl}\overline{a_{im}a_{ml}}) - \frac{1}{4} \sum_{S_{ijk} S_{lm} S_{im} S_{lk}} Re(a_{ij}a_{jk}a_{lm}\overline{a_{im}a_{lk}})
$$

+
$$
\frac{3}{4} Re(a_{12}a_{23}a_{34}a_{45}\overline{a_{15}}).
$$

6.
$$
r^{2}[(\alpha_{t}\alpha_{v}+\alpha_{w}\alpha_{v}+\alpha_{w}\alpha_{t})-(\mu_{t}\mu_{v}+\mu_{w}\mu_{v}+\mu_{w}\mu_{t})]+4\alpha_{p}\alpha_{q}(\mu_{t}\mu_{v}+\mu_{w}\mu_{v}+\mu_{w}\mu_{t})
$$

+4($\alpha_{p}+\alpha_{q}$)[($\alpha_{w}\mu_{t}\mu_{v}+\alpha_{t}\mu_{w}\mu_{v}+\alpha_{v}\mu_{w}\mu_{t})-2\mu_{w}\mu_{t}\mu_{v}\cos(\theta)$]
= $\sum_{S_{ijk}S_{lm}}|a_{lm}|^{2}(\alpha_{i}\alpha_{j}+\alpha_{i}\alpha_{k}+\alpha_{j}\alpha_{k})-\sum_{S_{ij}S_{klm}}Re(a_{kl}a_{lm}\overline{a_{km}})(\alpha_{i}+\alpha_{j})$
 $-\frac{1}{4}\sum_{i=1}^{5}P_{i}+\frac{1}{2}\sum_{S_{jklm}}Re(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}).$

7.
$$
r^{2}(\alpha_{w} + \alpha_{t} + \alpha_{v}) + 4(\alpha_{w}\mu_{t}\mu_{v} + \alpha_{t}\mu_{w}\mu_{v} + \alpha_{v}\mu_{w}\mu_{t}) - 8\mu_{w}\mu_{t}\mu_{v}\cos(\theta)
$$

+
$$
4(\alpha_{p} + \alpha_{q})(\mu_{t}\mu_{v} + \mu_{w}\mu_{v} + \mu_{w}\mu_{t})
$$

=
$$
\sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}(\alpha_{i} + \alpha_{j} + \alpha_{k}) - \sum_{S_{klm}} \text{Re}(a_{kl}a_{lm}\overline{a_{km}}).
$$

8.
$$
r^{2}[(\beta_{t}\beta_{v}+\beta_{w}\beta_{v}+\beta_{w}\beta_{t})-(\mu_{t}\mu_{v}+\mu_{w}\mu_{v}+\mu_{w}\mu_{t})]+4\beta_{p}\beta_{q}(\mu_{t}\mu_{v}+\mu_{w}\mu_{v}+\mu_{w}\mu_{t})+4(\beta_{p}+\beta_{q})[(\beta_{w}\mu_{t}\mu_{v}+\beta_{t}\mu_{w}\mu_{v}+\beta_{v}\mu_{w}\mu_{t})-2\mu_{w}\mu_{t}\mu_{v}\sin(\theta)]=\sum_{S_{ijk}S_{lm}}|a_{lm}|^{2}(\beta_{i}\beta_{j}+\beta_{i}\beta_{k}+\beta_{j}\beta_{k})-\sum_{S_{ij}S_{klm}}\text{Im}(a_{kl}a_{lm}\overline{a_{km}})(\beta_{i}+\beta_{j})-\frac{1}{4}\sum_{i=1}^{5}P_{i}-\frac{1}{2}\sum_{S_{jklm}}\text{Re}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}).
$$

9.
$$
r^{2}(\beta_{w} + \beta_{t} + \beta_{v}) + 4(\beta_{w}\mu_{t}\mu_{v} + \beta_{t}\mu_{w}\mu_{v} + \beta_{v}\mu_{w}\mu_{t}) - 8\mu_{w}\mu_{t}\mu_{v}\sin(\theta)
$$

+
$$
4(\beta_{p} + \beta_{q})(\mu_{t}\mu_{v} + \mu_{w}\mu_{v} + \mu_{w}\mu_{t})
$$

=
$$
\sum_{S_{ijk}S_{lm}} |a_{lm}|^{2}(\beta_{i} + \beta_{j} + \beta_{k}) - \sum_{S_{klm}} Im(a_{kl}a_{lm}\overline{a_{km}}).
$$

10. $r^2(\alpha_w\beta_t + \alpha_w\beta_v + \alpha_t\beta_w + \alpha_t\beta_v + \alpha_v\beta_w + \alpha_v\beta_t) + 4(\alpha_p\beta_q + \alpha_q\beta_p)(\mu_t\mu_v +$ $\mu_w\mu_v + \mu_w\mu_t$ $+4(\alpha_p+\alpha_q)[(\beta_w\mu_t\mu_v+\beta_t\mu_w\mu_v+\beta_v\mu_w\mu_t)-2\mu_w\mu_t\mu_v\sin(\theta)]$ $+ 4(\beta_p + \beta_q)[(\alpha_w\mu_t\mu_v + \alpha_t\mu_w\mu_v + \alpha_v\mu_w\mu_t) - 2\mu_w\mu_t\mu_v \cos(\theta)]$ $=$ Σ $S_{ijk}S_{lm}$ $|a_{lm}|^2(\alpha_i\beta_j+\alpha_j\beta_i+\alpha_i\beta_k+\alpha_k\beta_i+\alpha_j\beta_k+\alpha_k\beta_j)$ − ∑ $S_{ij}S_{klm}$ $\text{Re}(a_{kl}a_{lm}\overline{a_{km}})(\beta_i+\beta_j)$ − ∑ $S_{ij}S_{klm}$ $\text{Im}(a_{kl}a_{lm}\overline{a_{km}})(\alpha_i+\alpha_j)+\sum$ S_{jklm} $\text{Im}(a_{jk}a_{kl}a_{lm}\overline{a_{jm}}).$

Note that the combination of (1) , (2) , (4) and (5) is equivalent to (d) , (e) and (f) , because $(1) - (5) - i(2) + i(4)$ yields (d).

(6), (8) and (10) is equivalent to (c) and (g), since $(6) - (8) + i(10)$ yields (c). (7) and (9) is equivalent to (b), it follows from $(7) + i(9)$. \Box This completes the proof.

3 On the circular numerical range of S_5 matrices

Recall that an n-by-n matrix A is said to be of class S_n if A is a contraction, the eigenvalues of A are all in the open unit disc \mathbb{D} and $rank(I_n - A^*A) = 1$. Two unitary equivalent S_n -matrices have the following useful characterization.

Lemma 3. $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$ Theorem 4.1] Let A_1 and A_2 be two n-dimensional operators with A_2 in S_n . Then A_1 is unitary equivalent to A_2 if and only if A_1 is a contraction and $W(A_1) = W(A_2)$.

Now, we establish the result of Theorem 2 in the special case of S_5 -matrices.

Theorem 5. Let A be a non-invertible S_5 matrix with $W(A) = \{z \in \mathbb{C} : |z-a| \leq r\},\$ $(r > 0)$. If kippenhahn curve $C_R(A)$ has one of the following shapes,

- (i) $C_R(A)$ consists of three points and an ellipse.
- (ii) $C_R(A)$ consists of two ellipses and a point.

Then $a=0$.

Proof. Without loss of generality, we assume that A is an upper triangular matrix. The assumption on the numerical range of A implies that the origin a is an eigenvalue with algebraic multiplicity at least 2. So, by [3, Corollary 1.3] A takes the following form

$$
A = \begin{bmatrix} a & 1 - a^2 & -a\sqrt{1 - a^2} & 0 & 0 \\ 0 & a & \sqrt{1 - a^2} & 0 & 0 \\ 0 & 0 & 0 & \sqrt{1 - |b|^2} & -\overline{b}\sqrt{1 - |c|^2} \\ 0 & 0 & 0 & b & \sqrt{1 - |b|^2}\sqrt{1 - |c|^2} \\ 0 & 0 & 0 & 0 & c \end{bmatrix}
$$

Moreover, we can take a positive by a suitable rotation, thus $W(A)$ is symmetric with respect to the real axis, which means that $W(A) = W(A^*)$, $(A^*$ is the adjoint matrix of A), as we mentioned below A is of class S_5 and therefore by Lemma 3 A and A[∗] are unitary equivalent, moreover one can see that the eigenvalues b and c of A must be real or complex conjugates. Let

$$
B = A - aI_5 = \begin{bmatrix} 0 & 1 - a^2 & -a\sqrt{1 - a^2} & 0 & 0 \\ 0 & 0 & \sqrt{1 - a^2} & 0 & 0 \\ 0 & 0 & -a & \sqrt{1 - |b|^2} & -\overline{b}\sqrt{1 - |c|^2} \\ 0 & 0 & 0 & b - a & \sqrt{1 - |b|^2}\sqrt{1 - |c|^2} \\ 0 & 0 & 0 & 0 & c - a \end{bmatrix}.
$$

.

Consider the homogeneous Kippenhahn polynomial $P_B(x, y, z) = det(xReB +$ $y \text{Im} B + zI_5$) of degree 5 on the complex projective plane \mathbb{CP}^2 . Since by hypotheses $W(B)$ is a circular disc with center 0 and radius r, then $C_R(B)$ has one of two possibles shapes,

- (i) A circle with center 0 and radius r together with three points $-a, b-a, c-a$ inside it.
- (ii) A circle with center 0 and radius r together with a point($-a, b a$ or $c a$) and an ellipse with (minor axis length $s \leq 2r$) and the two remaining points as the foci, all inside the circle.

Applying condition (d) of Theorem 3 to the upper-triangular matrix B yields to

$$
4r2(-a(b-a)(c-a))
$$

= $(1-a2)2(-a)(b-a)(c-a) - (1-a2)(-a)\sqrt{1-a2}\sqrt{1-a2}(b-a)(c-a)$
= 0.

Then either $a = 0$, $a = b$ or $a = c$. If it is the first case so it will done, otherwise if it is one of the two latter cases, the condition (c) of Theorem 3 gives,

$$
4r2(-a(b-a)+(b-a)(c-a) - a(c-a))
$$

= $(1 - a2)2(-a(b-a)+(b-a)(c-a) - a(c-a))$
+ $a2(1 - a2)(b-a)(c-a)+(1 - a2)(b-a)(c-a)$
- $(1 - a2)2(-a(b-a) - a(c-a))$
= 0.

Thus $a = b$ if $a = c$ and vise versa. By the condition (b) of Theorem 3

$$
4r2(-a + (b - a) + (c - a)) + s2(0 + 0 + \lambda) = (1 - a2)2(-a + b - a + c - a)+ a2(1 - a2)(b - a + c - a) + (1 - a2)(b - a + c - a)+ (1 - b2)(c - a) + b2(1 - c2)(b - a)- a(1 - b2)(1 - c2) + a(1 - a2)2 + b(1 - b2)(1 - c2).
$$

where λ takes one of the eigenvalue $-a, b - a$ or $c - a$. Assume that $a = b = c$, we get $(4r^2 + s^2)(-a) = 0$ or $ar^2 = 0$. Hence $a = 0$. This complete the proof.

Remark 2. It is well known that for every S_n matrix A, $Re(A)$ have only simple eigenvalues see [4, Corollary 2.7], then $C_R(A)$ not contains a curve of degree 4 with double tangent.

4 Proof of Theorem 2

It is well known that a n -by-n partial isometry A can be represented on $Ker(A) \oplus Ker(A)^{\perp}$, by

$$
A = \begin{bmatrix} 0 & B \\ 0 & C \end{bmatrix}
$$

with B and C satisfying $B^*B + C^*C = I_{Ker(A)^{\perp}}$, where $I_{Ker(A)^{\perp}}$ is the identity matrix on $Ker(A)^{\perp}$, see [5, Proposition 2.1]. Also, the irreducibility of a partial isometry can be characterized by,

Lemma 4. [5, lemma 2.8] Let

$$
A = \begin{bmatrix} 0_m & B \\ 0 & C \end{bmatrix} \qquad \text{on} \qquad \mathbb{C}^n = \mathbb{C}^m \oplus \mathbb{C}^{n-m}, \quad (1 \le m \le n).
$$

(a) If $k = rank B < m$, then A is unitarily similar to $0_{m-k} \oplus A_1$ for some matrix

$$
A_1 = \begin{bmatrix} 0_k & B_1 \\ 0 & C_1 \end{bmatrix} \quad on \quad \mathbb{C}^{n-m+k} = \mathbb{C}^k \oplus \mathbb{C}^{n-m}, \quad with \quad rank B_1 = k.
$$

(b) If $m > \lfloor n/2 \rfloor$, the largest integer less than or equal to $n/2$, then A is unitarily similar to $0_{2m-n} \oplus A_2$ for some matrix

$$
A_2 = \begin{bmatrix} 0_{n-m} & B_2 \\ 0 & C_2 \end{bmatrix} \quad on \quad \mathbb{C}^{2(n-m)} = \mathbb{C}^{n-m} \oplus \mathbb{C}^{n-m}.
$$

The next proposition relates partial isometries with S_n -matrices.

Proposition 1. [5, Proposition 2.3] Let A be an n-by-n matrix. Then A is an irreducible partial isometry with dimker $A = 1$ if and only if A is of class S_n with θ in $\sigma(A)$.

Now, we are ready to establish our main theorem.

Proof of Theorem 2. Let A be an 5×5 partial isometry with

$$
W(A) = \{ z \in \mathbb{C} : |z - a| \le r \}, \quad (r > 0).
$$

First let us remark that if A is reducible, then A is unitarily similar to $A_1 \oplus A_2$, where A_1 and A_2 are two partial isometries with order at most 4. Since one of $W(A_1)$ or $W(A_2)$ must be equal to that of A, so by Theorem 1 it follows that $a=0.$

Now, we assume that A is irreducible. According to the dimension of the kernel of A, we distinguish three cases.

Case 1. dim kerA = 1. By Proposition 1, A is non-invrtible S_5 -matrix, so according to Theorem 5 and Remark 2, $a = 0$.

Case 2. dim $ker A = 2$. Since $W(A)$ is a circular disc centered at a, we may assume that

$$
A = \begin{bmatrix} 0 & B \\ 0 & C \end{bmatrix} = \begin{bmatrix} 0 & 0 & k & l & t \\ 0 & 0 & g & h & j \\ 0 & 0 & b & e & f \\ 0 & 0 & 0 & a & d \\ 0 & 0 & 0 & 0 & a \end{bmatrix} \quad \text{on } \mathbb{C}^2 \oplus \mathbb{C}^3,
$$

with

$$
I_3 = B^*B + C^*C
$$

= $\begin{bmatrix} |k|^2 + |g|^2 + |b|^2 & \bar{k}l + \bar{g}h + \bar{b}e & \bar{k}t + \bar{g}j + \bar{b}f \\ \bar{l}k + \bar{h}g + \bar{e}b & |l|^2 + |h|^2 + |e|^2 + |a|^2 & \bar{l}t + \bar{h}j + \bar{e}f + \bar{a}d \\ \bar{t}k + \bar{j}g + \bar{f}b & \bar{t}l + \bar{j}h + \bar{f}e + \bar{d}a & |t|^2 + |j|^2 + |f|^2 + |d|^2 + |a|^2 \end{bmatrix}$.

As in the proof of Theorem5, a is positive and $C_R(A)$ has one of the three possible shapes.

- (i) $C_R(A)$ contains a circle (with center a, radius r) and three points 0, 0, b.
- (ii) $C_R(A)$ is a circle (with center a, radius r), together with an ellipse and a point.
- (iii) $C_R(A)$ contains a circle (with center a, radius r) and a curve of degree 4 with a double tangent.

Applying condition (d) of Theorem 3 and Theorem 4 to $A - aI_5$ we get

$$
4r^{2}(a.a.(b-a)) = |d|^{2}a^{2}(b-a) - a^{2}ed\overline{f} + a(b-a)hd\overline{f} + a(b-a)dd\overline{f}
$$

\n
$$
- aged\overline{f} - aked\overline{t}
$$

\n
$$
= |d|^{2}a^{2}(b-a) - a^{2}ed\overline{f} + ad(b-a)(h\overline{f} + l\overline{t}) - aed(g\overline{f} + k\overline{t})
$$

\n
$$
= |d|^{2}a^{2}(b-a) - a^{2}ed\overline{f} - ad(b-a)(e\overline{f} + a\overline{d}) + aedb\overline{f}
$$

\n
$$
= 0.
$$

Thus $a = 0$ or $b = a$. If $b = a$, by condition (c) of Theorem 3 and Theorem 4

$$
4r^{2}(a^{2}) = a^{2}(|e|^{2} + |f|^{2} + |d|^{2}) + 2ae\overline{df} + ae\overline{gh} + aek\overline{l} + afg\overline{j} + afk\overline{t}
$$

+ $adh\overline{j} + adl\overline{t} + edg\overline{j} + edk\overline{t}.$
= $a^{2}(|e|^{2} + |f|^{2} + |d|^{2}) + 2ae\overline{df} + ae(g\overline{h} + k\overline{l}) + af(g\overline{j} + k\overline{t})$
+ $ad(h\overline{j} + l\overline{t}) + ed(g\overline{j} + k\overline{t})$
= 0

and therefore $a = 0$.

Case 3. dim $ker A > 2$, then it follows from Lemma 4 that A is reducible, then $a = 0$.

This completes the proof of the theorem.

 \Box

Remark 3. In order to give a complete answer to the conjecture of Gau et al, in dimension 5, it remains to study the case when $C_R(A)$ is an ellipse and a curve of order 6, consisting of an oval and a curve of three cups. Based on the factoribility of P_A , Kippenhahn in [8] gave a fully classification of the numerical range of 3×3 matrices, also a pertinent tests were offered in [13]. However, there is no much results about the connection between concrete description of the curve $C_R(A)$ and P_A when $W(A)$ is an oval. Thus, this case is still an open question.

References

- [1] Datidar, S.G. and Bera, G.H., *Elliptic numerical range of* 5×5 matrices, International Journal of Mathematical Analysis 11, 2017, no. 15, 719–732.
- [2] Gau, H.L., *Elliptic numerical ranges of* 4×4 *matrices*, Taiwanese J. Math. 10 (2006), 117–128.
- [3] Gau, H.L. and Wu, P.Y., Luca's theorem refined. Linear Multilinear Algebra 45 (1999), 359–373.
- [4] Gau, H.L. and Wu, P.Y., *Numerical range of* $S(\phi)$. Linear Multilinear Algebra 45 (1998), 49–73.
- [5] Gau, H.L., Wang, K.Z. and Wu, P.Y. Circular numerical ranges of partial isometries, Linear and Multilinear Algebra 64 (2016), no. 1, 14–35.
- [6] Gustafson, K.E. and Rao, D.K.M., Numerical range: the field of values of linear operators and matrices, Springer, 1997.
- [7] Keeler, D., Rodman, L. and Spitkovsky, I., The numerical range of 3×3 matrices, Linear Algebra Appl. 252 (1997) 115–139.
- [8] Kippenhahn, R., Uber den Wertevorrat einer matrix, Math. Nachr. 6 (1951) 193–228.
- [9] Kippenhahn, R., On the numerical range of a matrix, Linear Multilinear Algebra 56 (2008), no. 1-2, 185–225 (translated from the German by Paul F. Zachlin and Michiel E. Hochstenbach).
- [10] Militzer, E., Patton, L.J., Spitkovsky, I.M. and Tsai, M.C., Numerical ranges of 4 -by- 4 nilpotent matrices: flat portions on the boundary. In: D. Bini et al. (eds.) Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics. Operator Theory: Advances and Applications, Birkhauser, Cham, 259 (2017), 561–591.
- [11] Nylen, P. and Tam, T.Y., Numerical range of a doubly stochastic matrix, Linear Algebra Appl. 153 (1991) 161–176.
- [12] Rault, P., Sendova, T. and Spitkovsky, I.M., 3−by−3 Matrices with elliptical numerical range revisited, Electron. Linear Algebra 26 (2013) 158–167.
- [13] Rodman, L. and Spitkovsky, I., 3×3 matrices with flat portion on the boundary of the numerical range, Linear Algebra Appl. 397 (2005) 193–207.