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ON THE CIRCULAR NUMERICAL RANGE OF 5-BY-5
PARTIAL ISOMETRIES

Mohammed BENHARRAT∗,1 and Mehdi NAIMI2

Abstract

We prove, in some cases in term of kippenhahn curve, that if 5-by-5 par-
tial isometry whose numerical range is a circular disc then its center is must
be the origin. This gives a partial affirmative answer of the Conjecture 5.1.
of [H. l. Gau et al., Linear and Multilinear Algebra, 64 (1) 2016, 14–35.], for
the five dimensional case.
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1 Introduction

Let A be an n×n complex matrix, its numerical range W (A) is, by definition,
the set of complex numbers

W (A) = {⟨Ax, x⟩ : x ∈ Cn, ∥x∥ = 1} .

It is well known that W (A) is a nonempty compact convex subset of C, also
contains all the eigenvalues of A and therefore its convex hull, see for instance [6].
The matrix A is said to be a partial isometry if it is isometric on the orthogonal
complement of the kernel of A, Ker(A). Assume that A is a partial isometry
whose numerical range W (A) is a circular disc. The question is whether the
center of W (A) must be the origin. Gau et al. ,[5], gave an affirmative answer if
the dimension is at most 4, as follows,
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Theorem 1. [5, Theorem 2.1] If A is an n-by-n (n ≤ 4) partial isometry with
W (A) = {z ∈ C : |z − a| ≤ r}, (r > 0), then a = 0.

Also have conjectured that theorem remains valid if A is an n-by-n partial
isometry, see [5, Conjecture 5.1.]. By the same procedure of [5], we give an
affirmative answer for this conjecture for 5-by-5 partial isometry in some cases
in terms of kippenhahn curve, to be more specific, our main theorem reads as
follows,

Theorem 2. Let A be a 5×5 partial isometry matrixW (A) = {z ∈ C : |z − a| ≤r},
(r > 0). If the kippenhahn curve CR(A) has one of the following shapes,

(i) CR(A) consists of three point and an ellipse.

(ii) CR(A) consists of two ellipses and a point.

(iii) CR(A) consists of a curve of degree 4 with double tangent and an ellipse.

Then a = 0.

Two successful approaches to establishing this result are a canonical decom-
position of n × n partial isometry matrix and the Kippenhahn’s result for the
numerical range of n× n matrix.

It well known that the numerical range of an n × n matrix A is completely
determined by its Kippenhahn polynomial PA(x, y, z) = det(xRe(A) + yIm(A) +
zIn), where Re(A) = (A + A∗)/2 and Im(A) = (A − A∗)/2i are the real and the
imaginary part of A, respectively. In denotes the n × n identity matrix and i is
the complex number i2 = −1. Let C(A) be the dual of the algebraic curve defined
to be the zero set of PA(x, y, z) = 0, on the complex projective plane CP2, which
consists of all equivalence classes of points in C3 \ (0, 0, 0) under the equivalence
relation ∼, this relation is defined by (x, y, z) ∼ (x′, y′, z′) if and only if there is a
nonzero λ ∈ C such that (x, y, z) = λ(x′, y′, z′). Kippenhahn showed that W (A)
is the convex hull of the real points of C(A), see [8] and its English translation [9]
for a detailed discussion of the connections between the polynomial PA, and the
numerical range of A. This characterization is used by many authors to answer
the question when the numerical range of a matrix is an elliptic disc. For 2 × 2
matrices a complete description of the numerical range is well known, that is
W (A) elliptic disk (with possibly degenerate interior), see [6]. In [8] Kippenhahn
showed that there are four classes of shapes which the numerical range of matrices
of order three. This was improved in [7] by expressing the conditions in terms
of the eigenvalues and entries of A, which are easier to apply. By the same
procedure, these results are generalized for 4 × 4 matrices. Let us mention here,
that numerous results are known in this direction only for some special classes of
matrices, for partial isomertry, nilpotent, doubly stochastic matrices (etc...), see
[11], [10]. But no unifying and general theory is not yet available.

In this paper, firstly, with a similar approach used in [2], we will give necessary
and sufficient conditions for 5-by-5 matrix A to have an ellipse in the associated
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real Kippenhahn curve CR(A). We also express those conditions in terms of eigen-
values and entries of A, the main difficult is the heavy computations. All these
conditions will be useful for construct a 5 × 5 matrix with an elliptic numerical
range (Section 2.). Secondly, we establish the result of Theorem 2 in the special
case of S5-matrices ( A is Sn-matrix if A is a contraction, the eigenvalues of A are
all in the open unit disc D and rank(In − A∗A) = 1) (Section 3.). Finally, using
the results of two preceding sections, we give the proof of Theorem 2 (Section 4.).

2 Necessary and sufficient conditions for 5× 5 matrix
to have an ellipse in its real Kippenhahn curve

Let A be a 5 × 5 complex matrix. Here we give necessary and sufficient
conditions for which the associated curve CR(A) contains an ellipse or a circle. It
is well known that, by Schur’s theorem, every square matrix is unitarily equivalent
to an upper triangular matrix. So, without loss of generality, we can assume that

A =



λ1 a12 a13 a14 a15

0 λ2 a23 a24 a25

0 0 λ3 a34 a35

0 0 0 λ4 a45

0 0 0 0 λ5


, (1)

where λj = αj + iβj , with αj and βj are real for j = 1, 2, 3, 4, 5.

Then, we have

PA(x, y, z) = det(xRe(A) + yIm(A) + zI5)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x, y)
a12
2 (x− iy) a13

2 (x− iy) a14
2 (x− iy) a15

2 (x− iy)

(x+ iy)a122 ψ2(x, y)
a23
2 (x− iy) a24

2 (x− iy) a25
2 (x− iy)

(x+ iy)a132 (x+ iy)a232 ψ3(x, y)
a34
2 (x− iy) a35

2 (x− iy)

(x+ iy)a142 (x+ iy)a242 (x+ iy)a342 ψ4(x, y)
a45
2 (x− iy)

(x+ iy)a152 (x+ iy)a252 (x+ iy)a352 (x+ iy)a452 ψ5(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where ψj(x, y) = αjx + βjy + z, for j = 1, 2, 3, 4, 5. By straightforward calculus,
we obtain

PA(x, y, z) =
5∏

i=1

(αix+ βiy + z)− x2 + y2

4
Q(x, y, z), (2)
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where

Q(x, y, z) =
∑

SijkSlm

|alm|2(αix+ βiy + z)(αjx+ βjy + z)(αkx+ βky + z)

−
∑

SijSklm

[xRe(aklalmakm) + yIm(aklalmakm)](αix+ βiy + z)(αjx+ βjy + z)

− x2 + y2

4

5∑
i=1

(αix+ βiy + z)Pi +
∑

SiSjklm

(αix+ βiy + z)[
x2 − y2

2
Re(ajkaklalmajm)

+ xyIm(ajkaklalmajm)] +
x2 + y2

4

∑
SijSklm

[xRe(aklalmakm) + yIm(aklalmakm)]|aij |2

− x2 + y2

4

∑
SijklSiml

[xRe(aijajkaklaimaml) + yIm(aijajkaklaimaml)]

− x2 + y2

4

∑
SijkSlmSimSlk

[xRe(aijajkalmaimalk) + yIm(aijajkalmaimalk)]

− 1

4
[(x3 − 3xy2)Re(a12a23a34a45a15) + (−y3 + 3yx2)Im(a12a23a34a45a15)].

With Si1i2...in , for some n ≤ 5, denotes the collection of all n-tuples (i1, i2, ..., in)
of natural numbers such that 1 ≤ i1 < i2 < ... ≤ i5 and

Pi =
∑

SjkmSlm

|ajk|2|alm|2 −
∑

SjklSjml

Re(ajkaklajmaml)−
∑

SjkSlkm

Re(ajkalmajmalk)

for every i = 1, .., 5. The sums are taken with two by two different indexes which
means that i ̸= j ̸= k ̸= l ̸= m.

We begin by the following Lemma.

Lemma 1. Let A be a 5× 5 matrix. Then the Kippenhahn curve CR(A) consists
of two ellipses, one with foci λ1, λ2 and minor axis of length r, the other with foci
λ3, λ4 and minor axis of length s, and λ5 if and only if

PA(x, y, z) = [(α1x + β1y + z)(α2x + β2y + z) − r2

4 (x
2 + y2)][(α3x + β3y +

z)(α4x+ β4y + z)− s2

4 (x
2 + y2)](α5x+ β5y + z),

where λj = αj + iβj , j = 1, 2, 3, 4, 5 and the α′
js and β′js are real.

Proof. Let B =

[
λ1 r
0 λ2

]
⊕

[
λ3 s
0 λ4

]
⊕ λ5. As CR(A) = CR(B), by duality the

polynomials PA and PB are the same, therefore

PA(x, y, z) = [(α1x+β1y+z)(α2x+β2y+z)− r2(x2+y2)
4 ][(α3x+β3y+z)(α4x+

β4y + z)− s2(x2+y2)
4 ](α5x+ β5y + z).

The converse is clear.

Using the above lemma, we can prove the following theorem.
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Theorem 3. Let A be in upper-triangular form (1). Then the Kippenhahn curve
CR(A) consists of two ellipses, one with foci λp, λq and minor axis of length r,
the other with foci λt, λv and minor axis of length s, and a point λw if and only
if

(a) r2 + s2 =
∑
Slm

|alm|2.

(b) r2(λw + λt + λv) + s2(λw + λq + λp) =
∑

SijkSlm

|alm|2(λi + λj + λk)

−
∑
Sklm

aklalmakm.

(c) r2(λwλv + λwλt + λtλv) + s2(λwλp + λwλq + λpλq)
=

∑
SijkSlm

|alm|2(λiλj + λiλk + λjλk)−
∑

SijSklm

(λi + λj)aklalmakm

+
∑

Sjklm

ajkaklalmajm.

(d) r2λwλtλv + s2λwλpλq =
∑

SijkSlm

|alm|2λiλjλk −
∑

SijSklm

λiλjaklalmakm

+
∑

SiSjklm

ajkaklalmajmλi − a12a23a34a45a15.

(e) r2αwαtαv + s2αwαpαq −
r2s2

4
αw =

∑
SijkSlm

|alm|2αiαjαk

−
∑

SijSklm

Re(aklalmakm)αiαj −
1

4

5∑
i=1

Piαi +
1

2

∑
SiSjklm

Re(ajkaklalmajm)αi

+
1

4

∑
SijSklm

Re(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Re(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Re(aijajkalmaimalk)−
1

4
Re(a12a23a34a45a15).

(f) r2βwβtβv + s2βwβpβq −
r2s2

4
βw =

∑
SijkSlm

|alm|2βiβjβk

−
∑

SijSklm

Im(aklalmakm)βiβj −
1

4

5∑
i=1

Piβi −
1

2

∑
SiSjklm

Re(ajkaklalmajm)βi

+
1

4

∑
SijSklm

Im(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Im(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Im(aijajkalmaimalk) +
1

4
Im(a12a23a34a45a15).

(g) r2(αwαt + αwαv + αvαt) + s2(αwαp + αwαq + αpαq)−
r2s2

4
=

∑
SijkSlm

|alm|2(αiαj + αiαk + αjαk)−
∑

SijSklm

Re(aklalmakm)(αi + αj)

− 1

4

5∑
i=1

Pi +
1

2

∑
Sjklm

Re(ajkaklalmajm),
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where Pi =
∑

SjkmSlm

|ajk|2|alm|2 −
∑

SjklSjml

Re(ajkaklajmaml)

−
∑

SjkSlkm

Re(ajkalmajmalk), for every i = 1, .., 5.

Proof. By lemma 1, we have,

PA(x, y, z) = (αwx+ βwy + z)(αpx+ βpy + z)(αqx+ βqy + z)

(αtx+ βty + z)(αvx+ βvy + z)

− x2 + y2

4
[r2(αwx+ βwy + z)(αtx+ βty + z)(αvx+ βvy + z)

+ s2(αwx+ βwy + z)(αpx+ βpy + z)(αqx+ βqy + z)

− x2 + y2

4
r2s2(αwx+ βwy + z)].

Comparing the previous formula of PA(x, y, z) with (2), we obtain,

Q(x, y, z) = r2(αwx+ βwy + z)(αtx+ βty + z)(αvx+ βvy + z)

+ s2(αwx+ βwy + z)(αpx+ βpy + z)(αqx+ βqy + z)

− x2 + y2

4
r2s2(αwx+ βwy + z).

Computing the coefficients of x3, y3, z3, x2y, xy2, x2z, xz2, y2z, yz2, xyz by identi-
fication, we find, respectively

1. r2αwαtαv + s2αwαpαq −
r2s2

4
αw =

∑
SijkSlm

|alm|2αiαjαk

−
∑

SijSklm

Re(aklalmakm)αiαj −
1

4

5∑
i=1

Piαi +
1

2

∑
SiSjklm

Re(ajkaklalmajm)αi

+
1

4

∑
SijSklm

Re(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Re(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Re(aijajkalmaimalk)−
1

4
Re(a12a23a34a45a15).

2. r2βwβtβv + s2βwβpβq −
r2s2

4
βw =

∑
SijkSlm

|alm|2βiβjβk

−
∑

SijSklm

Im(aklalmakm)βiβj −
1

4

5∑
i=1

Piβi −
1

2

∑
SiSjklm

Re(ajkaklalmajm)βi

+
1

4

∑
SijSklm

Im(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Im(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Im(aijajkalmaimalk) +
1

4
Im(a12a23a34a45a15).

3. r2 + s2 =
∑
Slm

|alm|2.
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4. r2(βwαtαv + βtαwαv + βvαwαt)+s
2(βwαpαq + βpαwαq + βqαwαp)−

r2s2

4
βw

=
∑

SijkSlm

|alm|2(αiαjβk + αiαkβj + αjαkβi)−
∑

SijSklm

Im(aklalmakm)αiαj

−
∑

SijSklm

Re(aklalmakm)(αiβj + αjβi) +
1

2

∑
SiSjklm

Re(ajkaklalmajm)βi

+
∑

SiSjklm

Im(ajkaklalmajm)αi +
1

4

∑
SijSklm

Im(aklalmakm)|aij |2 −
1

4

5∑
i=1

Piβi

− 1

4

∑
SijklSiml

Im(aijajkaklaimaml)−
1

4

∑
SijkSlmSimSlk

Im(aijajkalmaimalk)

− 3

4
Im(a12a23a34a45a15).

5. r2(αwβtβv + αtβwβv + αvβwβt)+s
2(αwβpβq + αpβwβq + αqβwβp)−

r2s2

4
αw

=
∑

SijkSlm

|alm|2(αiβjβk + αjβiβk + αkβiβj)−
∑

SijSklm

Re(aklalmakm)βiβj

−
∑

SijSklm

Im(aklalmakm)(αiβj + αjβi)−
1

4

5∑
i=1

Piαi

− 1

2

∑
SiSjklm

Re(ajkaklalmajm)αi +
∑

SiSjklm

Im(ajkaklalmajm)βi

+
1

4

∑
SijSklm

Re(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Re(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Re(aijajkalmaimalk) +
3

4
Re(a12a23a34a45a15).

6. r2(αwαt + αwαv + αvαt) + s2(αwαp + αwαq + αpαq)−
r2s2

4
=

∑
SijkSlm

|alm|2(αiαj + αiαk + αjαk)−
∑

SijSklm

Re(aklalmakm)(αi + αj)

− 1

4

5∑
i=1

Pi +
1

2

∑
Sjklm

Re(ajkaklalmajm).

7. r2(αw + αt + αv) + s2(αw + αp + αq)
=

∑
SijkSlm

|alm|2(αi + αj + αk)−
∑
Sklm

Re(aklalmakm).

8. r2(βwβt + βwβv + βvβt) + s2(βwβp + βwβq + βpβq)−
r2s2

4
=

∑
SijkSlm

|alm|2(βiβj + βiβk + βjβk)−
∑

SijSklm

Im(aklalmakm)(βi + βj)

− 1

4

5∑
i=1

Pi −
1

2

∑
Sjklm

Re(ajkaklalmajm).

9. r2(βw + βt + βv) + s2(βw + βp + βq) =
∑

SijkSlm

|alm|2(βi + βj + βk)

−
∑
Sklm

Im(aklalmakm).
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10. r2(αwβt +αwβv +αtβw +αtβv +αvβw +αvβt) + s2(αwβp +αwβq +αpβw +
αpβq + αqβw + αqβp) =

∑
SijkSlm

|alm|2(αiβj + αjβi + αiβk + αkβi + αjβk +

αkβj)−
∑

SijSklm

Re(aklalmakm)(βi + βj)−
∑

SijSklm

Im(aklalmakm)(αi + αj)

+
∑

Sjklm

Im(ajkaklalmajm).

Note that the combination of (1), (2), (4) and (5) is equivalent to (d), (e) and
(f), since (1)− (5)− i(2) + i(4) yields (d).

(6), (8) and (10) is equivalent to (c) and (g) as (6)− (8) + i(10) yields (c).
(7) and (9) is equivalent to (b), it follows from (7) + i(9).
This completes the proof.

Remark 1. � The last theorem was obtained in [1, Theorem 2.2], but, there
exists a gap in this Theorem, we shall point out that in its proof the errors
is exactly on the left side of equation (4′) and (5′) and we should also add
the condition (e), (f), and (g) to ensure the converse implication.

� If we take s = 0 in the previous theorem, then CR(A) consists of ellipse and
three points.

In the following, we can see that CR(A) contains an ellipse and a curve of
degree 4 with a double tangent. Using the same conditions derived in [13], to
determine whether the numerical range boundary has a flatness for a 3 × 3 irre-
ducible matrix A, these conditions are given in term of geometrical properties of
flatness.

Let L be the supporting line of the convex set W (A) containing the flatness
and perpendicular to the line which pass through the origin and forms angle θ
from the positive x−axis, and let µ be the (signed) distance from the origin to L.
It is seen that µ is the largest eigenvalue of Re(e−iθA) (cf.[13], [8]).

Lemma 2. Let A be a 5× 5 matrix. Then the Kippenhahn curve CR(A) consists
of one ellipse with foci λ1,λ2 and minor axis of length r, and a curve of degree
4 with a double tangent and foci at λ3 , λ4 and λ5 if and only if the following
conditions hold

(i) there exist θ ∈ [0, 2π[ and a real µ such that

PA(x, y, z) =

[
(α1x+ β1y + z)(α2x+ β2y + z)− r2

4
(x2 + y2)

]
× [(α3x+ β3y + z)(α4x+ β4y + z)(α5x+ β5y + z)

− (α3x+ β3y + z)(x2 + y2)(Re(e−iθλ4) + µ)(Re(e−iθλ5) + µ)

− (α4x+ β4y + z)(x2 + y2)(Re(e−iθλ3) + µ)(Re(e−iθλ5) + µ)

− (α5x+ β5y + z)(x2 + y2)(Re(e−iθλ3) + µ)(Re(e−iθλ4) + µ)

+ (x− iy)(x2 + y2)(Re(e−iθλ3) + µ)(Re(e−iθλ4) + µ)(Re(e−iθλ5) + µ)eiθ

+ (x+ iy)(x2 + y2)(Re(e−iθλ3) + µ)(Re(e−iθλ4) + µ)(Re(e−iθλ5) + µ)e−iθ].
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(ii) (Re(e−iθλ3) + µ)(Re(e−iθλ4) + µ)(Re(e−iθλ5) + µ) ̸= 0.

(iii) λj(Re(e
−iθλk) + µ) + λk(Re(e

−iθλj) + µ)− 2(Re(e−iθλj) + µ)(Re(e−iθλk) +
µ)eiθ ̸= λi((Re(e

−iθλk)+µ)+(Re(e−iθλj)+µ)), for every 3 ≤ i ̸= j ̸= k ≤ 5.

Proof. Let B =

[
λ1 r
0 λ2

]
⊕ C where C is 3-by-3 irreducible matrix whose Kip-

penhahn curve is of degree 4 with a double tangent, and eigenvalues at λ3 , λ4
and λ5.

Since CR(A) = CR(B), the polynomials PA and PB are the same.

PB(x, y, z) =

[
(α1x+ β1y + z)(α2x+ β2y + z)− r2

4
(x2 + y2)

]
PC(x, y, z)

Put C in an upper triangular formλ3 a b
0 λ4 c
0 0 λ5

 .
By assumption ∂W (C) has a flat of portion (containing in the supporting line
L), let θ ∈ [0, 2π[ be the angular between x-axis and the line which pass through
the origin and perpendicular to L, so e−iθC has a vertical flatness. According to
Kippenhahn’s classification, Re(e−iθC) must have a multiple eigenvalue, so there
exist a real µ such that

Re(e−iθC) + Iµ =

Re(e−iθλ3) + µ e−iθa/2 e−iθb/2
eiθa/2 Re(e−iθλ4) + µ e−iθc/2

eiθb/2 eiθc/2 Re(e−iθλ5) + µ


has rank one, because if otherwise Re(e−iθC)+ Iµ has zero rank, then Re(e−iθC)
and Im(e−iθC) commutes, and C is therefore reducible, while due to the latter all
2× 2 minors of Re(e−iθC) + Iµ are equal to zero. Consequently,

|a|2 = 4(Re(e−iθλ3) + µ)(Re(e−iθλ4) + µ).

|b|2 = 4(Re(e−iθλ3) + µ)(Re(e−iθλ5) + µ).

|c|2 = 4(Re(e−iθλ4) + µ)(Re(e−iθλ5) + µ).

ab = 2(Re(e−iθλ3) + µ)ceiθ.

(3)

It is easy to see from equations above that if one of off-diagonal a, b or c is zero,
then at least two of them are equal to zero, this contradict the irreducibility of C,
so abc ̸= 0.
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On the other hand,

PC(x, y, z) = det

(α3x+ β3y + z) a/2(x− iy) b/2(x− iy)
a/2(x+ iy) (α4x+ β4y + z) c/2(x− iy)

b/2(x+ iy) c/2(x+ iy) (α5x+ β5y + z)


= (α3x+ β3y + z)(α4x+ β4y + z)(α5x+ β5y + z)

− 1

4
(x2 + y2)[(α3x+ β3y + z)|c|2 + (α4x+ β4y + z)|b|2 + (α5x+ β5y + z)|a|2]

+
1

8
(x2 + y2)(x− iy)abc+

1

8
(x2 + y2)(x+ iy)acb.

Combining this relation with (3) and abc ̸= 0 we get successively (i) and (ii).
Moreover the polynomial PC (and therefore the matrix C) is irreducible. Thus,
PC cannot be factored into three linear factors, or into a quadratic factor and
a linear one. We note that linear factors in the left-hand side of the equation
PC(x, y, z) = 0 are corresponding always to eigenvalues of the matrix C (see [9],
[8] and [13]).

Assume that PC(x, y, z) has a linear factor (αix+ βiy+ z) which corresponds
to λi, i = 3, 4, 5. Also,

PC(x, y, z) = (α3x+ β3y + z)(α4x+ β4y + z)(α5x+ β5y + z)

− (α3x+ β3y + z)(x2 + y2)µ4µ5

− (α4x+ β4y + z)(x2 + y2)µ3µ5

− (α5x+ β5y + z)(x2 + y2)µ3µ4

+ (x− iy)(x2 + y2)µ3µ4µ5e
iθ

+ (x+ iy)(x2 + y2)µ3µ4µ5e
−iθ,

where µi = Re(e−iθλi) + µ, we can see that for two by two equal index i, j, k ∈
{1, 2, 3}, (αix+ βiy + z) gives,

(αjx+ βjy + z)(x2 + y2)µiµk

+ (αkx+ βky + z)(x2 + y2)µiµj

− (x− iy)(x2 + y2)µiµjµke
iθ

− (x+ iy)(x2 + y2)µiµjµke
−iθ.

This means that the coefficients of z, αix, βiy in the last polynomial are equals,
which gives

βi[αjµiµk +αkµiµj − 2µiµjµk cos(θ)] = αi[βjµiµk +βkµiµj − 2µiµjµk sin(θ)] (4)

αjµiµk + αkµiµj − 2µiµjµk cos(θ) = αi[µiµk + µiµj ] (5)

and
βjµiµk + βkµiµj − 2µiµjµk sin(θ) = βi[µiµk + µiµj ]. (6)

One can see that (4), (5) and (6) are equivalent to λjµk + λkµj − 2µjµke
iθ =

λi(µk + µj) and hence (iii).
The converse is obvious.
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In what follows, set µj = Re(e−iθλj) + µ for every j = 1, ..., 5.

Theorem 4. Let A be in upper-triangular form (1). Then CR(A) consists of one
ellipse with foci λq,λp and minor axis of length r, and a curve of degree 4 with a
double tangent and foci at λw , λt and λv if and only if there exist θ ∈ [0, 2π[ and
a real µ such that

(a) r2 + 4(µtµv + µwµv + µwµt) =
∑
Slm

|alm|2.

(b) r2(λw + λt + λv) + 4[(λwµtµv + λtµwµv + λvµtµw)− 2µwµtµve
iθ

+ (λp + λq)(µtµv + µwµv + µwµt)]
=

∑
SijkSlm

|alm|2(λi + λj + λk)−
∑
Sklm

aklalmakm.

(c) r2(λwλt + λtλv + λwλv) + 4[λpλq(µtµv + µwµv + µtµw)
+ (λp + λq)(λwµtµv + λtµwµv + λvµtµw)− (λp + λq)(2µwµtµve

iθ)]
=

∑
SijkSlm

|alm|2(λiλj + λiλk + λjλk)−
∑

SijSklm

(λi + λj)aklalmakm

+
∑

Sjklm

ajkaklalmajm.

(d) r2(λwλtλv) + 4[λpλq((λwµtµv + λtµwµv + λvµtµw)− 2µwµtµve
iθ)]

=
∑

SijkSlm

|alm|2λiλjλk −
∑

SijSklm

λiλjaklalmakm +
∑

SiSjklm

ajkaklalmajmλi

− a12a23a34a45a15.

(e) r2[αwαtαv − (αwµtµv + αtµwµv + αvµwµt) + 2µwµtµv cos(θ)]
+ 4αpαq[(αwµtµv + αtµwµv + αvµwµt)− 2µwµtµv cos(θ)]

=
∑

SijkSlm

|alm|2αiαjαk −
∑

SijSklm

Re(aklalmakm)αiαj −
1

4

5∑
i=1

Piαi

+
1

2

∑
SiSjklm

Re(ajkaklalmajm)αi

+
1

4

∑
SijSklm

Re(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Re(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Re(aijajkalmaimalk)−
1

4
Re(a12a23a34a45a15).

(f) r2[βwβtβv − (βwµtµv + βtµwµv + βvµwµt) + 2µwµtµv sin(θ)]
+ 4βpβq[(βwµtµv + βtµwµv + βvµwµt)− 2µwµtµv sin(θ)]

=
∑

SijkSlm

|alm|2βiβjβk −
∑

SijSklm

Im(aklalmakm)βiβj −
1

4

5∑
i=1

Piβi

− 1

2

∑
SiSjklm

Re(ajkaklalmajm)βi

+
1

4

∑
SijSklm

Im(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Im(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Im(aijajkalmaimalk) +
1

4
Im(a12a23a34a45a15).
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(g) r2[(αtαv + αwαv + αwαt)− (µtµv + µwµv + µwµt)]
+ 4αpαq(µtµv + µwµv + µwµt)
+ 4(αp + αq)[(αwµtµv + αtµwµv + αvµwµt)− 2µwµtµv cos(θ)]
=

∑
SijkSlm

|alm|2(αiαj + αiαk + αjαk)−
∑

SijSklm

Re(aklalmakm)(αi + αj)

− 1

4

5∑
i=1

Pi +
1

2

∑
Sjklm

Re(ajkaklalmajm).

(h) µwµtµv ̸= 0.

(i) λjµk +λkµj − 2µjµke
iθ ̸= λi(µk +µj) for every i, j, k ∈ {w, t, v} : i ̸= j ̸= k,

where Pi=
∑

SjkmSlm

|ajk|2|alm|2−
∑

SjklSjml

Re(ajkaklajmaml)−
∑

SjkSlkm

Re(ajkalmajmalk).

for every i = 1, .., 5.

Proof. Taking conditions from lemma 2, we have,

PA(x, y, z) =

[
(αpx+ βpy + z)(αqx+ βqy + z)− r2

4
(x2 + y2)

]
× [(αwx+ βwy + z)(αtx+ βty + z)(αvx+ βvy + z)

− (αwx+ βwy + z)(x2 + y2)µtµv

− (αtx+ βty + z)(x2 + y2)µwµv

− (αvx+ βvy + z)(x2 + y2)µwµt

+ (x− iy)(x2 + y2)µwµtµve
iθ

+ (x+ iy)(x2 + y2)µwµtµve
−iθ],

µwµtµv ̸= 0, and λjµk+λkµj−2µjµke
iθ ̸= λi(µk+µj) for every i, j, k ∈ {w, t, v} :

i ̸= j ̸= k. Comparing the previous formula of PA(x, y, z) with polynomial (2).
We obtain

Q(x, y, z) = r2[(αwx+ βwy + z)(αtx+ βty + z)(αvx+ βvy + z)

− (x2 + y2) ((αwx+ βwy + z)µtµv + (αtx+ βty + z)µwµv + (αvx+ βvy + z)µwµt)

+ 2(x2 + y2)(xµwµtµv cos(θ) + yµwµtµv sin(θ))]

+ 4(αpx+ βpy + z)(αqx+ βqy + z)

[((αwx+ βwy + z)µtµv + (αtx+ βty + z)µwµv + (αvx+ βvy + z)µwµt)

− 2(xµwµtµv cos(θ) + yµwµtµv sin(θ))].

Computing the coefficients of x3, y3, z3, x2y, xy2, x2z, xz2, y2z, yz2, xyz. By
identification, we get, respectively,

1. r2[αwαtαv − (αwµtµv + αtµwµv + αvµwµt) + 2µwµtµv cos(θ)]
+ 4αpαq[(αwµtµv + αtµwµv + αvµwµt)− 2µwµtµv cos(θ)]

=
∑

SijkSlm

|alm|2αiαjαk −
∑

SijSklm

Re(aklalmakm)αiαj −
1

4

5∑
i=1

Piαi
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+
1

2

∑
SiSjklm

Re(ajkaklalmajm)αi

+
1

4

∑
SijSklm

Re(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Re(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Re(aijajkalmaimalk)−
1

4
Re(a12a23a34a45a15).

2. r2[βwβtβv − (βwµtµv + βtµwµv + βvµwµt) + 2µwµtµv sin(θ)]
+ 4βpβq[(βwµtµv + βtµwµv + βvµwµt)− 2µwµtµv sin(θ)]

=
∑

SijkSlm

|alm|2βiβjβk −
∑

SijSklm

Im(aklalmakm)βiβj −
1

4

5∑
i=1

Piβi

− 1

2

∑
SiSjklm

Re(ajkaklalmajm)βi

+
1

4

∑
SijSklm

Im(aklalmakm)|aij |2 −
1

4

∑
SijklSiml

Im(aijajkaklaimaml)

− 1

4

∑
SijkSlmSimSlk

Im(aijajkalmaimalk) +
1

4
Im(a12a23a34a45a15).

3. r2 + 4(µtµv + µwµv + µwµt) =
∑
Slm

|alm|2.

4. r2[(βwαtαv + βtαwαv + βvαwαt) + 2µwµtµv sin(θ)
− (βwµtµv + βtµwµv + βvµwµt)] + 4αpαq[(βwµtµv + βtµwµv + βvµwµt) −
2µwµtµv sin(θ)]
+ 4(αpβq + αqβp)[(αwµtµv + αtµwµv + αvµwµt)− 2µwµtµv cos(θ)]
=

∑
SijkSlm

|alm|2(αiαjβk + αiαkβj + αjαkβi)−
∑

SijSklm

Im(aklalmakm)αiαj

−
∑

SijSklm

Re(aklalmakm)(αiβj + αjβi) +
1

2

∑
SiSjklm

Re(ajkaklalmajm)βi

− 1

4

5∑
i=1

Piβi +
∑

SiSjklm

Im(ajkaklalmajm)αi +
1

4

∑
SijSklm

Im(aklalmakm)|aij |2

− 1

4

∑
SijklSiml

Im(aijajkaklaimaml)−
1

4

∑
SijkSlmSimSlk

Im(aijajkalmaimalk)

− 3

4
Im(a12a23a34a45a15).

5. r2[(αwβtβv + αtβwβv + αvβwβt) + 2µwµtµv cos(θ) − (αwµtµv + αtµwµv +
αvµwµt)]
+ 4βpβq[(αwµtµv + αtµwµv + αvµwµt)− 2µwµtµv cos(θ)]
+ 4(αpβq + αqβp)[(βwµtµv + βtµwµv + βvµwµt)− 2µwµtµv sin(θ)]
=

∑
SijkSlm

|alm|2(αiβjβk + αjβiβk + αkβiβj)−
∑

SijSklm

Re(aklalmakm)βiβj

−
∑

SijSklm

Im(aklalmakm)(αiβj + αjβi)−
1

4

5∑
i=1

Piαi

− 1

2

∑
SiSjklm

Re(ajkaklalmajm)αi
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+
∑

SiSjklm

Im(ajkaklalmajm)βi +
1

4

∑
SijSklm

Re(aklalmakm)|aij |2

− 1

4

∑
SijklSiml

Re(aijajkaklaimaml)−
1

4

∑
SijkSlmSimSlk

Re(aijajkalmaimalk)

+
3

4
Re(a12a23a34a45a15).

6. r2[(αtαv+αwαv+αwαt)−(µtµv+µwµv+µwµt)]+4αpαq(µtµv+µwµv+µwµt)
+ 4(αp + αq)[(αwµtµv + αtµwµv + αvµwµt)− 2µwµtµv cos(θ)]
=

∑
SijkSlm

|alm|2(αiαj + αiαk + αjαk)−
∑

SijSklm

Re(aklalmakm)(αi + αj)

− 1

4

5∑
i=1

Pi +
1

2

∑
Sjklm

Re(ajkaklalmajm).

7. r2(αw + αt + αv) + 4(αwµtµv + αtµwµv + αvµwµt)− 8µwµtµv cos(θ)
+ 4(αp + αq)(µtµv + µwµv + µwµt)
=

∑
SijkSlm

|alm|2(αi + αj + αk)−
∑
Sklm

Re(aklalmakm).

8. r2[(βtβv+βwβv+βwβt)−(µtµv+µwµv+µwµt)]+4βpβq(µtµv+µwµv+µwµt)
+ 4(βp + βq)[(βwµtµv + βtµwµv + βvµwµt)− 2µwµtµv sin(θ)]
=

∑
SijkSlm

|alm|2(βiβj + βiβk + βjβk)−
∑

SijSklm

Im(aklalmakm)(βi + βj)

− 1

4

5∑
i=1

Pi −
1

2

∑
Sjklm

Re(ajkaklalmajm).

9. r2(βw + βt + βv) + 4(βwµtµv + βtµwµv + βvµwµt)− 8µwµtµv sin(θ)
+ 4(βp + βq)(µtµv + µwµv + µwµt)
=

∑
SijkSlm

|alm|2(βi + βj + βk)−
∑
Sklm

Im(aklalmakm).

10. r2(αwβt + αwβv + αtβw + αtβv + αvβw + αvβt) + 4(αpβq + αqβp)(µtµv +
µwµv + µwµt)
+ 4(αp + αq)[(βwµtµv + βtµwµv + βvµwµt)− 2µwµtµv sin(θ)]
+ 4(βp + βq)[(αwµtµv + αtµwµv + αvµwµt)− 2µwµtµv cos(θ)]
=

∑
SijkSlm

|alm|2(αiβj + αjβi + αiβk + αkβi + αjβk + αkβj)

−
∑

SijSklm

Re(aklalmakm)(βi + βj)

−
∑

SijSklm

Im(aklalmakm)(αi + αj) +
∑

Sjklm

Im(ajkaklalmajm).

Note that the combination of (1), (2), (4) and (5) is equivalent to (d), (e) and
(f), because (1)− (5)− i(2) + i(4) yields (d).

(6), (8) and (10) is equivalent to (c) and (g), since (6)− (8) + i(10) yields (c).

(7) and (9) is equivalent to (b), it follows from (7) + i(9).

This completes the proof.
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3 On the circular numerical range of S5 matrices

Recall that an n-by-n matrix A is said to be of class Sn if A is a contraction,
the eigenvalues of A are all in the open unit disc D and rank(In−A∗A) = 1. Two
unitary equivalent Sn-matrices have the following useful characterization.

Lemma 3. [4, Theorem 4.1] Let A1 and A2 be two n-dimensional operators with
A2 in Sn. Then A1 is unitary equivalent to A2 if and only if A1 is a contraction
and W (A1) =W (A2).

Now, we establish the result of Theorem 2 in the special case of S5-matrices.

Theorem 5. Let A be a non-invertible S5 matrix withW (A)={z ∈ C : |z−a|≤r},
(r > 0). If kippenhahn curve CR(A) has one of the following shapes,

(i) CR(A) consists of three points and an ellipse.

(ii) CR(A) consists of two ellipses and a point.

Then a = 0.

Proof. Without loss of generality, we assume that A is an upper triangular matrix.
The assumption on the numerical range of A implies that the origin a is an
eigenvalue with algebraic multiplicity at least 2. So, by [3, Corollary 1.3] A takes
the following form

A =



a 1− a2 −a
√
1− a2 0 0

0 a
√
1− a2 0 0

0 0 0
√
1− |b|2 −b

√
1− |c|2

0 0 0 b
√
1− |b|2

√
1− |c|2

0 0 0 0 c


.

Moreover, we can take a positive by a suitable rotation, thus W (A) is symmetric
with respect to the real axis, which means thatW (A) =W (A∗), (A∗ is the adjoint
matrix of A), as we mentioned below A is of class S5 and therefore by Lemma 3
A and A∗ are unitary equivalent, moreover one can see that the eigenvalues b and
c of A must be real or complex conjugates. Let

B = A− aI5 =



0 1− a2 −a
√
1− a2 0 0

0 0
√
1− a2 0 0

0 0 −a
√
1− |b|2 −b

√
1− |c|2

0 0 0 b− a
√
1− |b|2

√
1− |c|2

0 0 0 0 c− a


.
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Consider the homogeneous Kippenhahn polynomial PB(x, y, z) = det(xReB +
yImB+zI5) of degree 5 on the complex projective plane CP2. Since by hypotheses
W (B) is a circular disc with center 0 and radius r, then CR(B) has one of two
possibles shapes,

(i) A circle with center 0 and radius r together with three points −a, b−a, c−a
inside it.

(ii) A circle with center 0 and radius r together with a point(−a, b− a or c− a)
and an ellipse with (minor axis length s ≤ 2r) and the two remaining points
as the foci, all inside the circle.

Applying condition (d) of Theorem 3 to the upper-triangular matrix B yields to

4r2(−a(b− a)(c− a))

= (1− a2)2(−a)(b− a)(c− a)− (1− a2)(−a)
√

1− a2
√

1− a2(b− a)(c− a)

= 0.

Then either a = 0, a = b or a = c. If it is the first case so it will done, otherwise
if it is one of the two latter cases, the condition (c) of Theorem 3 gives,

4r2(−a(b− a) + (b− a)(c− a)− a(c− a))

= (1− a2)2(−a(b− a) + (b− a)(c− a)− a(c− a))

+ a2(1− a2)(b− a)(c− a) + (1− a2)(b− a)(c− a)

− (1− a2)2(−a(b− a)− a(c− a))

= 0.

Thus a = b if a = c and vise versa. By the condition (b) of Theorem 3

4r2(−a+ (b− a) + (c− a)) + s2(0 + 0 + λ) = (1− a2)2(−a+ b− a+ c− a)

+ a2(1− a2)(b− a+ c− a) + (1− a2)(b− a+ c− a)

+ (1− b2)(c− a) + b2(1− c2)(b− a)

− a(1− b2)(1− c2) + a(1− a2)2 + b(1− b2)(1− c2).

where λ takes one of the eigenvalue −a, b − a or c − a. Assume that a = b = c,
we get (4r2 + s2)(−a) = 0 or ar2 = 0. Hence a = 0. This complete the proof.

Remark 2. It is well known that for every Sn matrix A, Re(A) have only simple
eigenvalues see [4, Corollary 2.7], then CR(A) not contains a curve of degree 4
with double tangent.

4 Proof of Theorem 2

It is well known that a n-by-n partial isometry A can be represented on
Ker(A)⊕Ker(A)⊥, by

A =

[
0 B
0 C

]
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with B and C satisfying B∗B + C∗C = IKer(A)⊥ , where IKer(A)⊥ is the identity

matrix on Ker(A)⊥, see [5, Proposition 2.1]. Also, the irreducibility of a partial
isometry can be characterized by,

Lemma 4. [5, lemma 2.8] Let

A =

[
0m B
0 C

]
on Cn = Cm ⊕ Cn−m, (1 ≤ m ≤ n).

(a) If k = rankB < m, then A is unitarily similar to 0m−k⊕ A1 for some matrix

A1 =

[
0k B1

0 C1

]
on Cn−m+k = Ck ⊕ Cn−m, with rankB1 = k.

(b) If m > [n/2], the largest integer less than or equal to n/2, then A is unitarily
similar to 02m−n ⊕A2 for some matrix

A2 =

[
0n−m B2

0 C2

]
on C2(n−m) = Cn−m ⊕ Cn−m.

The next proposition relates partial isometries with Sn-matrices.

Proposition 1. [5, Proposition 2.3] Let A be an n-by-n matrix. Then A is an
irreducible partial isometry with dimkerA = 1 if and only if A is of class Sn with
0 in σ(A).

Now, we are ready to establish our main theorem.

Proof of Theorem 2. Let A be an 5× 5 partial isometry with

W (A) = {z ∈ C : |z − a| ≤ r} , (r > 0).

First let us remark that if A is reducible, then A is unitarily similar to A1 ⊕ A2,
where A1 and A2 are two partial isometries with order at most 4. Since one of
W (A1) or W (A2) must be equal to that of A , so by Theorem 1 it follows that
a = 0.

Now, we assume that A is irreducible. According to the dimension of the
kernel of A, we distinguish three cases.

Case 1. dim kerA = 1. By Proposition 1, A is non-invrtible S5-matrix, so
according to Theorem 5 and Remark 2, a = 0.

Case 2. dim kerA = 2. Since W (A) is a circular disc centered at a, we may
assume that

A =

[
0 B

0 C

]
=


0 0 k l t
0 0 g h j
0 0 b e f
0 0 0 a d
0 0 0 0 a

 on C2 ⊕ C3,
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with

I3 = B∗B + C∗C

=

|k|
2 + |g|2 + |b|2 kl + gh+ be kt+ gj + bf

lk + hg + eb |l|2 + |h|2 + |e|2 + |a|2 lt+ hj + ef + ad

tk + jg + fb tl + jh+ fe+ da |t|2 + |j|2 + |f |2 + |d|2 + |a|2

 .
As in the proof of Theorem5, a is positive and CR(A) has one of the three possible
shapes.

(i) CR(A) contains a circle (with center a, radius r) and three points 0, 0, b.

(ii) CR(A) is a circle (with center a, radius r) , together with an ellipse and a
point.

(iii) CR(A) contains a circle (with center a, radius r) and a curve of degree 4
with a double tangent.

Applying condition (d) of Theorem 3 and Theorem 4 to A− aI5 we get

4r2(a.a.(b− a)) = |d|2a2(b− a)− a2edf + a(b− a)hdj + a(b− a)ldt

− agedj − akedt

= |d|2a2(b− a)− a2edf + ad(b− a)(hj + lt)− aed(gj + kt)

= |d|2a2(b− a)− a2edf − ad(b− a)(ef + ad) + aedbf

= 0.

Thus a = 0 or b = a. If b = a, by condition (c) of Theorem 3 and Theorem 4

4r2(a2) = a2(|e|2 + |f |2 + |d|2) + 2aedf + aegh+ aekl + afgj + afkt

+ adhj + adlt+ edgj + edkt.

= a2(|e|2 + |f |2 + |d|2) + 2aedf + ae(gh+ kl) + af(gj + kt)

+ ad(hj + lt) + ed(gj + kt)

= 0

and therefore a = 0.
Case 3. dim kerA > 2, then it follows from Lemma 4 that A is reducible,

then a = 0.
This completes the proof of the theorem.

Remark 3. In order to give a complete answer to the conjecture of Gau et al, in
dimension 5, it remains to study the case when CR(A) is an ellipse and a curve of
order 6, consisting of an oval and a curve of three cups. Based on the factoribility
of PA, Kippenhahn in [8] gave a fully classification of the numerical range of 3×3
matrices, also a pertinent tests were offered in [13]. However, there is no much
results about the connection between concrete description of the curve CR(A) and
PA when W (A) is an oval. Thus, this case is still an open question.
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