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ON THE CIRCULAR NUMERICAL RANGE OF 5-BY-5
PARTIAL ISOMETRIES

Mohammed BENHARRAT*! and Mehdi NAIMI?

Abstract

We prove, in some cases in term of kippenhahn curve, that if 5-by-5 par-
tial isometry whose numerical range is a circular disc then its center is must
be the origin. This gives a partial affirmative answer of the Conjecture 5.1.
of [H. 1. Gau et al., Linear and Multilinear Algebra, 64 (1) 2016, 14-35.], for
the five dimensional case.

2000 Mathematics Subject Classification: 47A12; 47A56.
Key words: numerical range, partial isometric, S,, operators.

1 Introduction

Let A be an n X n complex matrix, its numerical range W (A) is, by definition,
the set of complex numbers

W(A) ={(Az,z): ze€C", |zl =1}.

It is well known that W(A) is a nonempty compact convex subset of C, also
contains all the eigenvalues of A and therefore its convex hull, see for instance [6].
The matrix A is said to be a partial isometry if it is isometric on the orthogonal
complement of the kernel of A, Ker(A). Assume that A is a partial isometry
whose numerical range W (A) is a circular disc. The question is whether the
center of W(A) must be the origin. Gau et al. ,[5], gave an affirmative answer if
the dimension is at most 4, as follows,
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Theorem 1. [5, Theorem 2.1] If A is an n-by-n (n < 4) partial isometry with
W(A)={z€C:|z—a|l<r}, (r>0), thena=0.

Also have conjectured that theorem remains valid if A is an n-by-n partial
isometry, see [5, Conjecture 5.1.]. By the same procedure of [5], we give an
affirmative answer for this conjecture for 5-by-5 partial isometry in some cases
in terms of kippenhahn curve, to be more specific, our main theorem reads as
follows,

Theorem 2. Let A be a 5x5 partial isometry matric W(A) ={z € C: |z —a| <r},
(r > 0). If the kippenhahn curve Cr(A) has one of the following shapes,

(i) Cr(A) consists of three point and an ellipse.

(ii) Cr(A) consists of two ellipses and a point.

(i1i) Cr(A) consists of a curve of degree 4 with double tangent and an ellipse.
Then a = 0.

Two successful approaches to establishing this result are a canonical decom-
position of n x n partial isometry matrix and the Kippenhahn’s result for the
numerical range of n X n matrix.

It well known that the numerical range of an n x n matrix A is completely
determined by its Kippenhahn polynomial P(z,y, z) = det(zRe(A) + yIm(A) +
zI,), where Re(A) = (A + A*)/2 and Im(A) = (A — A*)/2i are the real and the
imaginary part of A, respectively. I, denotes the n x n identity matrix and i is
the complex number i> = —1. Let C(A) be the dual of the algebraic curve defined
to be the zero set of Py(z,y,2) = 0, on the complex projective plane CP?, which
consists of all equivalence classes of points in C?\ (0,0,0) under the equivalence
relation ~, this relation is defined by (z,y,2) ~ (2/,v/, 2’) if and only if there is a
nonzero A € C such that (z,y,z) = A(2/,y/,2"). Kippenhahn showed that W (A)
is the convex hull of the real points of C'(A), see [8] and its English translation [9]
for a detailed discussion of the connections between the polynomial P4, and the
numerical range of A. This characterization is used by many authors to answer
the question when the numerical range of a matrix is an elliptic disc. For 2 x 2
matrices a complete description of the numerical range is well known, that is
W (A) elliptic disk (with possibly degenerate interior), see [6]. In [8] Kippenhahn
showed that there are four classes of shapes which the numerical range of matrices
of order three. This was improved in [7] by expressing the conditions in terms
of the eigenvalues and entries of A, which are easier to apply. By the same
procedure, these results are generalized for 4 x 4 matrices. Let us mention here,
that numerous results are known in this direction only for some special classes of
matrices, for partial isomertry, nilpotent, doubly stochastic matrices (etc...), see
[11], [10]. But no unifying and general theory is not yet available.

In this paper, firstly, with a similar approach used in [2], we will give necessary
and sufficient conditions for 5-by-5 matrix A to have an ellipse in the associated
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real Kippenhahn curve Cr(A). We also express those conditions in terms of eigen-
values and entries of A, the main difficult is the heavy computations. All these
conditions will be useful for construct a 5 x 5 matrix with an elliptic numerical
range (Section 2.). Secondly, we establish the result of Theorem 2 in the special
case of Ss-matrices ( A is S,-matrix if A is a contraction, the eigenvalues of A are
all in the open unit disc D and rank(I, — A*A) = 1) (Section 3.). Finally, using
the results of two preceding sections, we give the proof of Theorem 2 (Section 4.).

2 Necessary and sufficient conditions for 5 x 5 matrix
to have an ellipse in its real Kippenhahn curve

Let A be a 5 x 5 complex matrix. Here we give necessary and sufficient
conditions for which the associated curve Cr(A) contains an ellipse or a circle. It
is well known that, by Schur’s theorem, every square matrix is unitarily equivalent
to an upper triangular matrix. So, without loss of generality, we can assume that

A1 a1z a1z a4 ais
A2 a3 agy ass
0 X3 ags aszs |, (1)
0 0 M ays
0 0 0 X

0
0
0
0

where \; = a; +if; , with o; and ; are real for j = 1,2,3,4,5.

Then, we have

Py(z,y, z) = det(zRe(A) + yIm(A) + zI5)
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where ¢ (x,y) = oz + Bjy + 2, for j = 1,2,3,4,5. By straightforward calculus,
we obtain

5 1:2+y2
PA(‘T):% Z) = H(azx + Bzy + Z) -
=1

Q(z,y,2), (2)
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where

Qz,y,2) = > lam|(qiz + Biy + 2)(cjz + Bjy + 2) (o + Pry + 2)
SiikSim

— Y [eRe(arimTrm) + YIm(ap @mrm)) (cix + Biy + 2)(ajz + By + 2)

Sijskrlm
5 22 _ y2

Z(aix + Biy + 2)P; + Z (ix + Biy + 2)] 5 Re(ajkak1Qim@jm)

=1 SiSikim

2+ y?
4

x2+y2
4

+ xylm(aranamam)] + Z [wRe (k@) + yIm(araimaim)]|ai;|?

S5 Skim
2 + y2

Z [wRe(aija k01 @imtmi) + yIm(a;;a;;arGimm)]
SiiktSimi

2, .2
x° + _
i Y E [zRe(aija;raim@imaix) + yIm(a;;araimaman)]

SiikStmSimSik

1
- 1[(953 — 3xy*)Re(a12a23a34a45a15) + (—y° + 3yz?)Im(ar2a23a310a045a75)]-

With S;,i,. 4,, for some n < 5, denotes the collection of all n-tuples (i1, i2, ..., i)
of natural numbers such that 1 <i; < iy < ... <i5 and

Pi= > lagllaml* = D Re(apan@mam) — Y Re(ajraum@mar)

SikmSim Skt Simi SikSikm

for every i = 1,..,5. The sums are taken with two by two different indexes which
means that ¢ # j £ k £ 1 # m.
We begin by the following Lemma.

Lemma 1. Let A be a 5 x 5 matriz. Then the Kippenhahn curve Cr(A) consists
of two ellipses, one with foci A1, Ao and minor axis of length r, the other with foci
A3, Ay and minor axis of length s, and A5 if and only if
2
Pa(z,y,2) = [(a1z + Pry + 2)(azz + Boy + z) — T (2 + y?)][(asz + B3y +
— 2 (2 g2

z)(auw + Bay + 2) — L (2 + y*)(asz + Bsy + 2),

where \j = o +1ifj,7 =1,2,3,4,5 and the a}s and 6}5 are real.

Proof. Let B = [Aol ; } o [AO?’ ;" ] @ Xs. As Cr(A) = Cr(B), by duality the
2 4

polynomials P4 and Pp are the same, therefore
202 2
Pa(w,y.2) = [(anz +Bry+2) sz +Bay +2) = ) (g + Byy +2) (car +

2(n2 2
Bay + 2) — I (5 + By + 2).
The converse is clear. O

Using the above lemma, we can prove the following theorem.
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Theorem 3. Let A be in upper-triangular form (1). Then the Kippenhahn curve
CRr(A) consists of two ellipses, one with foci A\, Ay and minor axis of length r,
the other with foci A¢, Ay, and minor axis of length s, and a point Ay, if and only

if

(a) >+ 5% =3 |amm|*
Slm

() 2w + A+ 20) + 820w + A0+ X)) = >0 a2\ + A + Ap)
SiikSim

- Z ARl Qim Qkm -
Skim
(c) T2 (Awdo + A + Mdo) + 52 Awdp + Awdg + ApAg)
= 2 lam PO+ Xde + 0) = 3 (A + X)) ariaum@m

SijkSim SijSkim
+ Y kORI
Sikim
(d) 7"2)\11,)\,5)\@ + 52)\w)\p)\q = Z |alm|2>\i)\j)\k — Z )\i)\jaklalmakm
SijkStm S Skim
+ Y kKA Tim A — 0120230340450715-
SiSikim
2 2 s 2
(e) reauapa, + s7auapag — — Ow = > am | iajay
SiikSim
153 1
— > Re(an@imrm)oioj — 1 Y. Pai+ - > Re(ajrapamaim)o
S35 Skim i=1 SiSjkim
1 1
+1 > Re(amaimarm)|aij|* — 1 Y. Re(aya,000mam)
S35 Skim Skt Simi
1 1
- = > Re(a;jakaimaiman) — ~Re(a12a23a340450715).
4 Sk Stm Sim Stk 4
2 2 s 2
(f) r Bwﬁtﬂv +s /Bw/Bpﬁq - Tﬁw = Z ‘alm‘ BZ/BJ/BIC
SiikSim
158 1 7
— Y Im(araum@rm)Bib; — 1 > PiBi — 3 Y. Re(ajrariamajm)pi
SijSkim =1 SiSjkim
- 1 .
+2 > Im(agmarm)|ai* — = Y Im(aijajkau@mam)
SijSkim SiiktSiml
1 1
— = > Im(a;ja;iamaimak) + —Im(ai2az3azsassars).
4 SiikSimSimSik 4
2 2 s
w wy [ w w - T
(9) 77 (o + ey + aary) + 5% (py + 0oy + apoy) 1
= Z ’almP(OziOéj + oo + ozjak) — Z Re(aklalmakm)(ozi + Ozj)

SijkSim SiiSkim

158 1
1 > P+ B > Re(ajrapiaima;m),
(]

=1 Sikim
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where Py = > |ajelam|® — > Re(ajn0m@Gmam)
SikmSim Sik1Sjmi
— > Re(ajr@m@mar), for every i =1,..,5.
Sk Sikm

Proof. By lemma 1, we have,

Pa(x,y,2) = (qwx + Buy + 2)(apr + Bpy + 2) (g + Bey + 2)
(wx + Bry + 2)(awx + Byy + 2)

x? + y2

R &

+ 5% (qw + Buy + 2)(apx + Bpy + 2)(agz + Bey + 2)

2,2
x°+
1 i 252 (x4 Buwy + 2)].

[ (Qw + Buwy + 2) (s + By + 2)(x + Boy + 2)

Comparing the previous formula of P4 (x,y, z) with (2), we obtain,

Q('% Y, Z) = 702(0‘111-%' + /Bwy + Z)(O‘tx + /Bty + Z)(O‘vx + /va + Z)
+ 83w + Buy + 2) (o + Byy + 2) (g + Byy + 2)

2 2
e +
1 Y r2s2(awx+ﬁwy+z).

3 2

Computing the coefficients of 3,43, 23, 2%y, xy?, 222, 22, y%2, y2?, xyz by identi-

fication, we find, respectively

’1“282

2 2 _ 2
1. réagopon + 82 a0y — O = > Faiajag
SiikSim
1
= > Re(ajrapama;m)o;

1.5
- Z Re(aklalmakm)aiozj - — Z Piozi +
4.3 2 5,5 1m

SijSkim
1 o, -
+— > Re(apamarm)|ai;]| 1 Y. Re(aijajrartimam)
SijSklm Sijklsiml
1 - 1 L
~1 Re(aijajrambiman:) — ZRe(a12a23a34a456115).
S5k StmSim Stk

282

2. 12B0B1By + 52BuBoBy — —Bw = |am|?BiB;Br

4 SijkSim

1 5
— Y Im(amaim@rm)Bib; — 1 > PBi—
i=1

1 .
= > Re(ajramam@m)pBi
S Skim

2 SiSjikim

. 1 -
+ = Y Im(agaumaem)|ai;|® — 1 Y. Im(aijajkaruaimam)
SijSkim Sijk1Simi
1 1 .
- — > Im(ai;ja;kaimamar) + —Im(ai2a23a34a45075).
4 S5k StmSim Stk 4

3.2 +82 = |agm |t

Im
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2.2
res
4. TQ(Bwatav + Bravyon + BvaOét)—i-SQ(ﬁwOépOéq + 5};0411)05(1 + Bqawap) - Tﬁw
= Y am P (B + qsonBj + ajorBi) — Y. Im(agaumaem )iy
SijkSim S Skim
. 1 -
— > Re(amammarm)(aifj + ;b)) + = Y, Re(ajraramaim)pbi
SijSkim 2 SiSjikim
o 1 , 12
+ Y Im(ajpamam@m)as + — Y Im(apamaem)|ai]” — 1 P;3;
SiSjikim SijSkim i=1
1 1
—— Y Im(aijerenaimam;) — - > Im(ai;akarmaimair)
4 Sijk1Simi 4 Sk SimSim Stk
3 .
— Zlm(a12a23a34a45a15)'
2.2
r°s
5. 7“2(04w/6tﬂv + o Buw B + avﬁwﬁt)"’SQ(aw/Bpﬂq + apﬂwﬂq + aq/Bw/Bp) —— Qg

4

= 3 awm|*(iBiBe + BiBr + caxBiB) — >, Re(amiaimarm)BiB;

SijkSim SijSkim
1.5
— > Im(amaimaem) (B + o) — 1 Y Py
S Skim i=1
1 - .
—5 .2 Re(apanam@m)oi+ >0 Im(ajkanamjm)bi
SiSjikim SiSikim
1 1
+ = Y Re(awaumarm)|aij|* — ) > Re(aijar0m0mam)
SijSkim Sijk1Simi
1 3 .
- — Re(aijajkalmaimalk) + —Re(a12a23a34a45a15).
4 SiikSimSimSik 4
7’252
6. 72 (Qus + upory + apoy) + sz(awap + oy + apay) — -
= Z ]almlz(aiaj + oo + OéjOék) — E Re(aklalmakm)(ai + ij)
SiikStm S5 Skim
138 1 .
- Z Z Pz + 5 Z Re(ajkaklalmajm).
i=1 Sjklm
7. 1% (Qup + o + o) + 8% (Quy + ap + a)
= Z |alm]2(ozi + o + ak) — Z Re(aklalmakm).
S,-ijlm Sklm
2 2 r?s’
8. r (Bwﬂt + Buwbv + Bvﬂt) +s (5”&15}7 + /Bw/Bq + Bpﬁq) - T

= Y aml*(BiB; + BiBk + BiBe) — Y. Im(amamarm)(Bi + ;)

SijkSim S Skim
15 1
=3 2 bi— 5 >0 Re(ajkamaim@jm)-
=1 Sikim

9. 12(Bu + Br+ Bo) + *(Bu+ Bp+ By) = 2 lam|*(Bi + B; + Br)

SijkSim

- Z Im(aklalmakm) .
Skim
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10. T2(awﬁt + Oéwﬂv + atﬂw + Oét/Bv + avﬂw + avﬁt) + 52(051061) + Oéwﬁq + ap/Bw +
apBy + agBuw + agBp) = Y lam|*(iBj + ajBi + qifk + axBi + ajBk +

SijkSim
Oék,Bj) - Z Re(aklalmakm)(ﬁi + Bj) - Z Im(aklalmakm)(ai + aj)
S35 Skim SijSkim
+ > Im(ajx0x0mTm)-

Sikim
Note that the combination of (1), (2), (4) and (5) is equivalent to (d), (e) and
(f), since (1) — (5) —i(2) +i(4) yields (d).
(6), (8) and (10) is equivalent to (c¢) and (g) as (6) — (8) +i(10) yields (c).
(7) and (9) is equivalent to (b), it follows from (7) + i(9).
This completes the proof. O

Remark 1. e The last theorem was obtained in [1, Theorem 2.2/, but, there
exists a gap in this Theorem, we shall point out that in its proof the errors
is exactly on the left side of equation (4') and (5") and we should also add
the condition (e), (f), and (g) to ensure the converse implication.

o If we take s = 0 in the previous theorem, then Cr(A) consists of ellipse and
three points.

In the following, we can see that Cr(A) contains an ellipse and a curve of
degree 4 with a double tangent. Using the same conditions derived in [13], to
determine whether the numerical range boundary has a flatness for a 3 x 3 irre-
ducible matrix A, these conditions are given in term of geometrical properties of
flatness.

Let L be the supporting line of the convex set W(A) containing the flatness
and perpendicular to the line which pass through the origin and forms angle
from the positive x—axis, and let x be the (signed) distance from the origin to L.
It is seen that j is the largest eigenvalue of Re(e 1 A) (cf.[13], [8]).

Lemma 2. Let A be a 5 x 5 matriz. Then the Kippenhahn curve Cr(A) consists
of one ellipse with foci A1,Ao and minor axis of length r, and a curve of degree
4 with a double tangent and foci at A3 , Ay and A5 if and only if the following
conditions hold
(i) there exist 6 € (0,27 and a real p such that
2
,
Pa(z,y,2) = |(aaz + pry + 2)(azz + Boy + 2) — Z@Z +v°)
x [(asz + B3y + 2)(cuz + Bay + 2)(as5z + Bsy + 2)
— (s + By + 2)(2? + y?) (Re(e ™ Aa) + ) (Re(e™A5) + p1
— (uz + Bay + 2) (2 +y*) Re(e ™ X3) + 1) (Re(e ™ X5) + p)
— (a5 + Bsy + 2)(2® + y*)Re(e ™ A3) + p)(Re(e " Aa) + 4
+ (= iy)(2® + y*) (Re(e X3) + p) (Re(e™"Ag) + p) (Re(eX5) + p)e’
+( ?)(Re (

z + iy)(2® + ) (Re(e™X3) + ) (Re(e ™) + 1) (Re(e ™" A5) + p)e ™).
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(ii) (Re(eX3) + p)(Re(eAs) + p) (Re(eX5) + 1) # 0.

(iii) Aj(Re(e™¥Ng) + ) + Ae(Re(e™N;) + 1) — 2(Re(e79N;) + p)(Re(e ¥ N;) +
p)et? #£ Ni(Re(e N,) +pu)+ (Re(e N;)) + 1)), for every3 <i+#j #k <5.

)\1 T
0 A
penhahn curve is of degree 4 with a double tangent, and eigenvalues at Az , A4
and As.

Since Cr(A) = Cr(B), the polynomials P4 and Pp are the same.

Proof. Let B = [ @ C where C' is 3-by-3 irreducible matrix whose Kip-

2
PB(a?,y,Z) - I:(Oélw + 513/ =+ Z’)(CMQ.Z’ + /BQy + Z) - TZ('%Q + y2) Pc(a:,y,z)

Put C in an upper triangular form

A3 a b
0 )\4 &
0 0 Xs

By assumption 0W (C') has a flat of portion (containing in the supporting line
L), let 6 € [0,27] be the angular between z-axis and the line which pass through
the origin and perpendicular to L, so e C has a vertical flatness. According to
Kippenhahn’s classification, Re(e™C) must have a multiple eigenvalue, so there
exist a real u such that

. Re(e™\3) + p e 19q/2 e 9p/2
io — . 3 . .
Re(e™C) +1n= /2 Re(e™9)\y) + p e 0c/2
el%h/2 el9z/2 Re(e 19)5) + u

has rank one, because if otherwise Re(e™C) + I'u has zero rank, then Re(e ()
and Im(e~C) commutes, and C is therefore reducible, while due to the latter all
2 x 2 minors of Re(e™C) + Iu are equal to zero. Consequently,

lal® = 4(Re(e23) + p)(Re(e M) + o)
b = 4(Re(e™923) + p)(Re(e™¥Ns) + )
2 _ i i (3)
lc]” = 4(Re(e™ " Ag) + p)(Re(e™As5) + 1)
ab = 2(Re(e™\3) + p)cel?.

It is easy to see from equations above that if one of off-diagonal a,b or ¢ is zero,
then at least two of them are equal to zero, this contradict the irreducibility of C,
so abc # 0.
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On the other hand,

(asx + B3y + 2) a/2(x — iy) b/2(x — iy)
Po(z,y,z) =det | a/2(x+1iy)  (cuz+Pay+z)  ¢/2(z —1iy)
b/2(z + iy) ¢/2(x+iy)  (asz + B5y + 2)

= (asx + B3y + 2)(auzx + Bay + 2)(asz + Bsy + 2)

1
— 1(962 + ) [(asz + B3y + 2)|c|? + (quz + Bay + 2)|b]* + (asz + Bsy + 2)|al’]

—_

— 1
+ §($2 + 32)(x — iy)abe + §($2 + y*)(z + iy)acb.

Combining this relation with (3) and abe # 0 we get successively (i) and (7).
Moreover the polynomial Pc (and therefore the matrix C) is irreducible. Thus,
P cannot be factored into three linear factors, or into a quadratic factor and
a linear one. We note that linear factors in the left-hand side of the equation
Po(x,y,z) = 0 are corresponding always to eigenvalues of the matrix C' (see [9],
[8] and [13]).
Assume that Po(z,y, z) has a linear factor (a;z + 5;y + z) which corresponds
to A, = 3,4,5. Also,
Po(x,y,2) = (asz + B3y + 2)(qux + Bay + 2)(asz + B5y + 2)
— (asz + By + 2)(2® + v papss
— (quz + Bay + 2) (2% + y*) paps
— (asz + Bsy + 2)(2® + v uzpia
+ (z — iy) (22 + v pspapse’®
%)

+ (z +iy) (2” + v pspapse

where 11; = Re(e™);) + p, we can see that for two by two equal index 4, j,k €
{1,2,3}, (az + Biy + 2) gives,
(jx + By + 2)(® + y*) pipan
+ (g + Bry + 2) (@ + ¥ i
— (& — iy)(a® + v e
— (¢ +1iy) (@® + v papjpne
This means that the coefficients of z, a;x, B;y in the last polynomial are equals,
which gives
Bilojpipu + cepip; — 24 g cos(0)] = i [Bjpwapur + Bttty — 2paipij i sin(0)] (4)

vttt + Qg pifly — 2ptifi pu; cos(0) = auifpipte + pin;) (5)
and
Bt + Breptipty — 24ip e Sin(0) = Bilpipur + pripes]. (6)
One can see that (4), (5) and (6) are equivalent to \jug + Agptj — 2ujue? =
Xi(pk + 1) and hence (244).
The converse is obvious. O
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In what follows, set u; = Re(e*w)\j) + p for every j =1,..., 5.

Theorem 4. Let A be in upper-triangular form (1). Then Cr(A) consists of one
ellipse with foci A\g,\, and minor axis of length v, and a curve of degree 4 with a
double tangent and foci at Ay, , \¢ and Ny, if and only if there exist 0 € [0, 27| and
a real p such that

(a) 12 + 4(pepto + potto + popir) = 37 amm[*.

im

(0) 12 (Mw 4+ At + Ao) + A[(Aw et + Mpbwfto + Nofifbw) — 2hbuw b fyel?
+ ()‘P + )‘Q)(N’t,uv + oy by + uw,ut)]

z ]almP(}\i + )\j + )\k) — Z ALl Qlm Tk, -
Siijlm Sklm

(C) T2()‘w/\t + /\t)\v + )\w)\v) + 4[Ap)‘q<,utﬂv + Haw Hy + Mtﬂw) .
+ ()‘p + )‘q)(Awﬂt/lv + At pbo + Ao pit ) — (>‘p + )‘q)(QMwHt/‘velg)]

E ’almP(/\i)\j + AN\ + /\j)\k) — Z (/\z' + )\j)aklalmm
SijkSim SijSkim

+ > ROk T)m-
Sikim

(d) T2 (AwAidv) + A Ag(Nwtttfto + Aeptaoti + Avptefiw) — 2t iz froe™?)]

2 PR -
= > am|"ANNA = X0 NiNjap@imGem + Y. GjkGkmGim A
SijkSim SijSkim SiSjkim
— A120G23034045015-

() r?loawarany, — (Quptepty + Qoo + Ot it) + 2ttt fo cOS(0))]
+ dapag[(Qufitfiy + o + Quptuwpie) — 24w it po c08(0)]

1.5
= Y |amPoiajar— Y Re(agamagm)oio; — 1 > Py
SiikSim S5 Skim i=1
1 _
+ = Z Re(ajkaklalmajm)ai
2 SiSjikim

. 1 .
+ = Y Re(agaumarm)|aij|* — 1 Y. Re(aijarartimamr)
SijSkim Sijk1Simi
1 1 _
- — > Re(aijajramaimarn;) — —Re(ai2az3azsassars).
4 S35k SimSim Stk 4

(f) 2 [BuwBiBo — (Buwtttttn + Bettwito + Bottwhit) + 24w fie iy sin(0)]
+ 46pﬁq[(ﬁwﬂtﬂv + Bty + Botbwiit) — 2 it piy Sin(6)]

5
= Y aml?8iBiBk — > Im(agamm@rm)BiB; — i ;Pzﬂi

SijkSim SijSkim
1 .
~3 Y. Re(ajraramam)bi
SiSjikim
1 1
+1 > Im(agaumarm)|aij* — 1 Y. Im(aijak080@mGm)
SijSkim Siik1Simi
1 1 _
1 > Im(a;;ajaumGiman) + Zlm(a12a23a34a45a15).
S35k StmSim Stk
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(9) m?*[(aray + oy + ) — (peto + Hawbtn + papir)]
+ doporg (et + fatho + fafit)
+ 4(% + aq)[(awutuv + Qpflag o + Qi) — 2hfit fhy c08(0)]

= Y |am)? (0o + oy + ojog) — Y Re(agiamaem) (o + a;)
SiikSim SijSkim
15 1

- - Z -Pz + = Z Re(ajkaklalmajm).
43 2 Sikim

(h) Hw it oy 7é 0.
(i) Njpk + Arpg — 2p5p€™ # Ni(ur + pj) for every i, j,k € {w,t,v} - i #j #k,

where Pi= ]ajk|2\alm|2— > Re(ajrap@imami)— Y. Re(ajrimajmanr)-
SikmSim Sik1Simi S;ikSikm
for every i =1,..,5.
Proof. Taking conditions from lemma 2, we have,
r’ 2 2
Pa(z,y,2) = |(apz + Bpy + 2)(aga + By + 2) — (2% +y7)
X [(wr + Buwy + 2) (e + Bry + 2)(awz + Byy + 2)
— (w + Buy + 2)(&® + y*) o
(OétZC + ﬁty + Z)(IE +y )Mw,uv
— (@ + Boy + 2)(@® + ¥ prupie
+ (& — iy) (2 + v pwpre e
+ (2 + iy) (2® + ) prwpepoe ™),
fwttepn 7 0, and Nj g+ Mg — 2p5 € # Ni(pr + pa5) for every i, j, k € {w, t,v} :

i # j # k. Comparing the previous formula of Ps(z,y, z) with polynomial (2).
We obtain

Q(z,y,2) = r*[(qwz + Buy + 2)(uz + By + 2)(awx + By + 2)
— (2 + 9%) ((wm + Buwy + 2)petio + (4@ + By + 2) prwtio + (@ + Buy + 2) fruwfiz)
+ 2% + y?) (prwpt o c08(0) + Yp i i $0(6))]
+ 4(apx + Bpy + 2) (g + Bey + 2)
[((qwz + Buy + 2) s + (o + Bry + 2) bt + (0T + Buy + 2) v pie)
— 2( b o €08(0) + Yt e o sin(0))].
Computing the coefficients of x3,y3, 23, 2%y, vy?, 222, £z, y?2,y2%, 2yz. By
identification, we get, respectively,

1. 7"Q[OZwOZtOfv - (awutﬂv + Qi by + Oévﬂw,uft) + 2o fht oy COS(Q)]
+ 4apaq{(awﬂtﬂv + Qg oy + Cp papftt) — 2ftap ity cOS(0)]

1 5
= Y |umlPoicjor — Y Re(apamarm,)cia; — 1 > Pioy
SijkStm SijSkim =
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+ = > Re(ajrapamam)o;

SiSjikim
1 1
+ = Y Re(agaumarm)|aij|* — 1 Y. Re(aija;r0kamam)
SijSkim Sijk1Simi
1 1 _
~ 1 Re(aijajramaiman) — ZRe(a12a23a34a45a15)-
SiikSimSimSik

2. 172[BuwBiBy — (Buwtttts + Bettwpbs + Boltwite) + 2ftw ity sin(0)]
+ 4By By (Buwtittto + Betwtto + Botwiie) — 24w ittty sin(6)]

5
= Y aml?8iBiBk — Y Im(agamm@em)BiBi — i ;Piﬂi

SijikSim SijSkim
1
—5 .2 Relapranam;m)bi
SiSikim
1 1
+ - Y Im(agapmarm)lag® — = Y Tm(ijaam@mam)
SijSkim Skt Siml
1 1 o
~1 Im(a;jaxam@iman) + Zlm(a12a23a34a45a15)~
S5k SimSim Stk

3. 7% 4 A ppto + frutto + frwpi) = 3 laim .
Slm

4. TQ[(ﬁwatav + /Btawav + /Bvawat) + 2 bt o Sin(e)
- (/Bwﬂtﬂv + /Btluwﬂv + /Bvﬂw,ut)] + 4apaq[(5wut,uv + 5t,ulwﬂv + /Bvﬂw///t) -
2t it 1 Sin(6)]
+ 4(0417/811 + aqﬂp)[(awutﬂv + Quftwfhy + Oy pfit) — 2 ity c0S(6)]
= > JamlP(qia By + aiopfy + ajarBi) — >0 Im(ag@m Q) ooy
SiikSim SijSkim

1
— Y Re(anamarm) (B + ofi) + = > Re(ajraramajm)Bi
SijSklm 2 SiSjklm

15
— 12 bfit Y m(epanamm)ei+ 7 3 Im(awaim@in) i)
i=1 SiSikim S5 Skim
1 1

—1 Y. Im(aijajkap@imam;) — 1 > Im(aija;kapmaimai)
SijktSiml S5k StmSim Sk

3
- Zlm(a12a23a34a45a15)-

5- r2[(aw/8tﬁv + at/Bw/BU + av/Bw/Bt) + 2Mwﬂtﬂv COS(Q) - (aw,uft,ulv + Qi oy Ko +
O‘vﬂwl‘t)]
+ 4B, B[ (ot pty + Qs iy + Qupftasfit) — 2ftan it fho cOS(6)]
+ 4(pBq + agBp) [(Butttttn + Bttbwtt + Bopwfit) — 2wttty $in(6)]
= > |awm|*(iBiBe + BiBr + cawBiBi) — >, Re(amiaim@rm)BiB;

SijkSim SijSkim
1.8
— > Im(aram@rm) (B + a;f;) — 1 > Py
SijSkim i=1
1

~3 Y. Re(ajranamaim)a;
Sisjklm
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1

+ > Im(ajpapamam)Bi+~ >, Re(apamaem)|ai;|?
SiSjikim SijSkim
1 1

—— > Re(aijajram@imam) — > Re(aijajraimaimair)
4 Sijk1Simi 4 Sk SimSimSik

3 _
+ ZRe(a12a23a34a45a15)-

6. 72 [(aupuy o+ apor) — (e o fas o i )| A0 ot (L oo + pao fo + Ha it
+ d(ap + ag) [(Qwhetto + Qpwtto + Qwptwpe) — 2fwpiepo cos(0)]
= Z ]almP(aiaj + oo + ajak) — Z Re(aklalmakm)(ai + aj)
SijkSim SijSkim
15 1 -
- - Z Pz + = Z Re(ajkaklalmajm).
43 2 Sium

7. 12 (y + a4 ) + (i fly + Qg oy + Q) — St bt oy cOS(6)
+ 4(ap + ag) (fuefio + flwfto + fwhit)
= > lam[Poi+ o5+ ag) — Y Re(amaum@em).

SiikSim Skim

8. r? [(ﬁtﬁv + Buw By +Bw5t) — (e pro + oo o +Mwut)] +4ﬁpﬂq (ot Lo Loy +Nwﬂt>
+4(Bp + By) [(Buwhtetto + Beptwptn + Bopbwits) — 2wt fro Sin(0)]
= > |amP(BiBj + BiBr + BiBe) — Y. Im(amam@im)(Bi + 5;)

SiikSim S Skim
158 1
1 > Pi— 3 >~ Re(ajraniaimajm)-
i=1 Sjklm

9. r2(Buw + Bt + Bv) + 4(Buwhittio + Bepbwtio + Botwiir) — Sttwhit iy sin(6)
+ 4(Bp + Bq) (pthtn + fawtto + pwfie)
= > lam*(Bi+ 85+ Be) — X Im(ariamarm)-

SiikSim Skim

10. T2(aw/8t + CVw/Bv + at/@w + atﬁv + avﬁw + aU/Bt) + 4(ap5q + Oéqﬁp)(,lit,uv +
fwhty + fuwhit)
+ 4y + ) [((Buwtithto + Betiwhto + Bophwptt) — 2piwfttfiy sin(6)]
+4(Bp + By) (it ftv + o + Qo fte) — 2t po c08(6)]
= > lam*(@iB; + ajBi + iy + apfi + ;B + owf3)

SijkSim

— > Re(ani@imaem)(Bi + B;)
SijSkim

— Z Im(aklalmakm)(ai + Oéj) + Z Im(ajkaklalm%ﬁ).
SijSkim Sjkim

Note that the combination of (1), (2), (4) and (5) is equivalent to (d), (e) and
(f), because (1) — (5) —i(2) + i(4) yields (d).
(6), (8) and (10) is equivalent to (c¢) and (g), since (6) — (8) +1i(10) yields (c).
(7) and (9) is equivalent to (b), it follows from (7) + i(9).
This completes the proof. O
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3 On the circular numerical range of S; matrices

Recall that an n-by-n matrix A is said to be of class .S, if A is a contraction,
the eigenvalues of A are all in the open unit disc D and rank(I, — A*A) = 1. Two
unitary equivalent S,,-matrices have the following useful characterization.

Lemma 3. [}, Theorem 4.1] Let Ay and As be two n-dimensional operators with
Ay in Sy,. Then Ay is unitary equivalent to As if and only if A1 is a contraction
and W(Ay) = W(A).

Now, we establish the result of Theorem 2 in the special case of Ss-matrices.

Theorem 5. Let A be a non-invertible S5 matriz with W(A)={z € C: —d <r},
(r > 0). If kippenhahn curve Cr(A) has one of the following shapes,

(i) Cr(A) consists of three points and an ellipse.
(ii) Cr(A) consists of two ellipses and a point.
Then a = 0.

Proof. Without loss of generality, we assume that A is an upper triangular matrix.
The assumption on the numerical range of A implies that the origin a is an
eigenvalue with algebraic multiplicity at least 2. So, by [3, Corollary 1.3] A takes
the following form

[ ¢ 1—a® —avV1-—a? 0 0 i
0 a V1—a? 0 0
A=|0 0 0 \/1—[b? —by/1—|cf?
0 0 0 b \/1—yby2\/1—yc\2
0 0 0 0 c |

Moreover, we can take a positive by a suitable rotation, thus W (A) is symmetric
with respect to the real axis, which means that W (A) = W(A*), (A* is the adjoint
matrix of A), as we mentioned below A is of class S5 and therefore by Lemma 3
A and A* are unitary equivalent, moreover one can see that the eigenvalues b and
c of A must be real or complex conjugates. Let

[0 1—a® —avV1—ad? 0 0 ]
0 0 V1—a? 0 0
B=A-als=|0 0 —a V1 1[b? —by/1T—|c2
0 0 0 b—a  /1—b2\/1—]c?
| 0 0 0 0 c—a
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Consider the homogeneous Kippenhahn polynomial Pg(z,y,z) = det(xReB +
yImB+ zI5) of degree 5 on the complex projective plane CP?. Since by hypotheses
W (B) is a circular disc with center 0 and radius r, then Cr(B) has one of two
possibles shapes,

(i) A circle with center 0 and radius r together with three points —a,b—a,c—a
inside it.

(ii) A circle with center 0 and radius r together with a point(—a,b—a or ¢ —a)
and an ellipse with (minor axis length s < 2r) and the two remaining points
as the foci, all inside the circle.

Applying condition (d) of Theorem 3 to the upper-triangular matrix B yields to
4r*(—a(b—a)(c — a))
= (1-a*?*(=a)(b—a)(c—a)— (1 —d®)(—a)V1—a2V1—a?(b—a)(c—a)
=0.

Then either a = 0, a = b or a = ¢. If it is the first case so it will done, otherwise
if it is one of the two latter cases, the condition (c¢) of Theorem 3 gives,

4r*(—a(b—a) + (b—a)(c —a) — a(c — a))
=(1-a®?*(—ab—a)+ (b—a)(c—a) —alc —a))
+a?’(1—a®)(b—a)(c—a)+ (1 —a®)(b—a)(c—a)
~ (1 -a*)*(~a(b - a) - a(c - a))
= 0.

Thus @ = b if @ = ¢ and vise versa. By the condition (b) of Theorem 3
4r®2(—a+(b—a)+(c—a) +s2(0+0+N) =1 -d*)* (—a+b—a+c—a)
+a*’1-a®>)b—a+c—a)+ (1 —-ad>)(b—a+c—a)
+ (1 =b)(c—a)+b*(1—c*)(b—a)
—a(l =01 =) +a(l —ad®)?+b(1 —b*)(1 - ).
where A takes one of the eigenvalue —a,b — a or ¢ — a. Assume that a = b = ¢,

we get (472 + s2)(—a) = 0 or ar? = 0. Hence a = 0. This complete the proof. [

Remark 2. It is well known that for every S,, matriz A, Re(A) have only simple
eigenvalues see [4, Corollary 2.7], then Cr(A) not contains a curve of degree 4
with double tangent.

4 Proof of Theorem 2

It is well known that a n-by-n partial isometry A can be represented on
Ker(A) @ Ker(A)*, by
e [O B}

0 C
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with B and C' satisfying B*B + C*C = Ik, (a)1, where Iy, 4y is the identity
matrix on Ker(A)*, see [5, Proposition 2.1]. Also, the irreducibility of a partial
isometry can be characterized by,

Lemma 4. [5, lemma 2.8] Let

Om B n m n—m
pr— pr— < < .
A { 0 C’} on C C"agC , (1<m<n)

(a) If k = rankB < m, then A is unitarily similar to 0,,—® A1 for some matrix

Al = [Ook 21] on CVmtk—ckeCcr™,  with rankB; = k.
1
(b) If m > [n/2], the largest integer less than or equal to n/2, then A is unitarily
similar to Ogp_p ® Ao for some matriz

AQ — {On—m B2

2(n—m) _ on—m n—m
0 CJ on C C eC ™.

The next proposition relates partial isometries with S,-matrices.

Proposition 1. [5, Proposition 2.3] Let A be an n-by-n matriz. Then A is an
irreducible partial isometry with dimker A = 1 if and only if A is of class S,, with
0 in o(A).

Now, we are ready to establish our main theorem.

Proof of Theorem 2. Let A be an 5 x 5 partial isometry with
W(A)={z€C:|z—a|<r}, (r>0).

First let us remark that if A is reducible, then A is unitarily similar to A1 & As,
where A; and A, are two partial isometries with order at most 4. Since one of
W(A;) or W(Az) must be equal to that of A , so by Theorem 1 it follows that
a=0.

Now, we assume that A is irreducible. According to the dimension of the
kernel of A, we distinguish three cases.

Case 1. dimkerA = 1. By Proposition 1, A is non-invrtible Ss-matrix, so
according to Theorem 5 and Remark 2, a = 0.

Case 2. dimkerA = 2. Since W(A) is a circular disc centered at a, we may
assume that

00 k [ t
0 B 00 g h j
= =10 0 b e f on C? @ C3,
0 C 000 a d
000 0 a
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with
Is=B*B+C*C
k> + g + |b? %l + gh + be kt+gj+0bf
= | lk+hg+e |IP+|hf*+ e+ |a) lt+hj+ef +ad
ik + jg+ fb tU+jh+ fe+da |t + 1>+ |f1*+ |d? +|a)?

As in the proof of Theorem5, a is positive and Cr(A) has one of the three possible
shapes.

(i) Cr(A) contains a circle (with center a, radius r) and three points 0, 0, b.

(ii) Cr(A) is a circle (with center a, radius r) , together with an ellipse and a
point.

(iii) Cr(A) contains a circle (with center a, radius r) and a curve of degree 4
with a double tangent.

Applying condition (d) of Theorem 3 and Theorem 4 to A — als we get

4r%(a.a.(b — a)) = |d[*a®(b — a) — a®edf + a(b — a)hdj + a(b — a)ldt
— agedj — akedt
= |d]*a*(b — a) — a®edf + ad(b — a)(hj + It) — aed(gj + kt)
= |d|*a*(b — a) — a®edf — ad(b — a)(ef + ad) + aedbf
=0.

Thus @ =0 or b = a. If b = a, by condition (c¢) of Theorem 3 and Theorem 4

4r%(a?) = a®(|e|® + |f|> + |d|*) + 2aedf + aegh + aekl + afgj + afkt
+ adhj + adlt + edgj + edkt.
= a*(le|® + | f|? + |d|*) + 2aedf + ae(gh + kl) + af(gj + kt)
+ ad(hj + lt) + ed(gj + kt)
=0

and therefore a = 0.

Case 3. dimkerA > 2, then it follows from Lemma 4 that A is reducible,
then a = 0.

This completes the proof of the theorem. O

Remark 3. In order to give a complete answer to the conjecture of Gau et al, in
dimension 5, it remains to study the case when Cr(A) is an ellipse and a curve of
order 6, consisting of an oval and a curve of three cups. Based on the factoribility
of Pa, Kippenhahn in [8] gave a fully classification of the numerical range of 3 x 3
matrices, also a pertinent tests were offered in [13]. However, there is no much
results about the connection between concrete description of the curve Cr(A) and
P4 when W(A) is an oval. Thus, this case is still an open question.
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