Bulletin of the *Transilvania* University of Braşov Series III: Mathematics and Computer Science, Vol. 3(65), No. 1 - 2023, 41-56 https://doi.org/10.31926/but.mif.2023.3.65.1.4

DIAMOND-ALPHA INEQUALITIES WITH TWO PARAMETERS ON TIME SCALES

Bouharket BENAISSA*,1 and Mehmet Zeki SARIKAYA 2

Abstract

In this article, we give a new version of n-tuple diamond-alpha Hölder inequality on time scales, this result generalizes some results known in the literature. Second, we present n-tuple diamond-alpha inequality with two parameters on time scales. It is a tool to generalize integral inequalities on time scales, its goal is to create an inequality restarted from the left side with a parameter to a right side with two parameters. Moreover, new Minkowski integral inequality with two parameters is given, and some interesting integral inequalities are found.

2000 Mathematics Subject Classification:26D10, 39A13, 26D15.

 $\it Key\ words\colon$ Hölder's inequality, Minkowski inequality, Diamond-alpha, time scales .

1 Introduction and preliminaries

The Hölder and Minkowski inequalities are fundamental inequalities in computation in analysis and an indispensable tool for the study of the space L^q and its dual as spaces of sequences l_q . In recent years, the study of dynamic inequalities on Hölder and Minkowski time scales has received much attention, for more details, we refer to recent papers [2]-[10]. The goal of studying dynamic inequalities on time scales with diamond-alpha allows proving the delta, nabla and the both the integral form of differential inequalities and the discrete form of inequalities. The Minkowski inequality [7] states that, for $q \geq 1$, if

$$0 < \int_r^d |h(\tau)|^q \diamondsuit_{\alpha} \tau < \infty \quad and \quad 0 < \int_r^d |\phi(\tau)|^q \diamondsuit_{\alpha} \tau < \infty$$

^{1*} Corresponding author, Faculty of Material Sciences, Laboratory of Informatics and Mathematics, University of Tiaret, Algeria, e-mail: bouharket.benaissa@univ-tiaret.dz

²Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, e-mail: sarikayamz@gmail.com

then

$$\left(\int_{r}^{d} |h(\tau) + \phi(\tau)|^{q} \lozenge_{\alpha} \tau\right)^{\frac{1}{q}} \leq \left(\int_{r}^{d} |h(\tau)|^{q} \lozenge_{\alpha} \tau\right)^{\frac{1}{q}} + \left(\int_{r}^{d} |\phi(\tau)|^{q} \lozenge_{\alpha} \tau\right)^{\frac{1}{q}}.$$
(1)

In 2010, the authors [6] gave the following Theorem.

Theorem 1. (Theorem 3.2) Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d, Φ, Ψ, μ : $[r, d] \times [r, d] \to \mathbf{R}$ be \diamondsuit_{α} -integrable functions, and $\frac{1}{q} + \frac{1}{q'} = 1$ with q > 1. Then

$$\int_{r}^{d} \int_{r}^{d} |\mu(t_{1}, t_{2}) \Phi(t_{1}, t_{2}) \Psi(t_{1}, t_{2})| \diamondsuit_{\alpha} t_{1} \diamondsuit_{\alpha} t_{2} \leq$$

$$\left(\int_{r}^{d} \int_{r}^{d} |\mu(t_{1}, t_{2})| \Phi(t_{1}, t_{2})|^{q} \diamondsuit_{\alpha} t_{1} \diamondsuit_{\alpha} t_{2} \right)^{\frac{1}{q}} \times$$

$$\left(\int_{r}^{d} \int_{r}^{d} |\mu(t_{1}, t_{2})| |\Psi(t_{1}, t_{2})|^{q'} \diamondsuit_{\alpha} t_{1} \diamondsuit_{\alpha} t_{2} \right)^{\frac{1}{q'}}.$$
(2)

In [14], the authors gave some new three-tuple diamond-alpha integral Hölder's inequalities on time scales. The comprehensive development of the calculus of the diamond-alpha derivative and diamond-alpha integration is given in [11], [12]. Let **T** be a time scale and Φ be differentiable on **T** in the Δ and ∇ sense. For $\tau \in \mathbf{T}$, we define the diamond-alpha derivative $\Phi^{\Diamond_{\alpha}}(\tau)$ by

$$\Phi^{\diamondsuit_{\alpha}}(\tau) = \alpha \Phi^{\Delta}(\tau) + (1 - \alpha) \Phi^{\nabla}(\tau).$$

If Φ is Δ and ∇ differentiable, then Φ is diamond-alpha differentiable.

Theorem 2. [12, Theorem 3.2] Let $0 \le \alpha \le 1$. If Φ is both Δ and ∇ differentiable at $\tau \in \mathbf{T}$, then Φ is \Diamond_{α} differentiable at τ and

$$\Phi^{\diamondsuit_{\alpha}}(\tau) = \alpha \Phi^{\Delta}(\tau) + (1 - \alpha) \Phi^{\nabla}(\tau).$$

Definition 1. [11, Definition 1] Let $r, d \in \mathbf{T}$, and $\Phi : \mathbf{T} \to \mathbf{R}$. Then, the diamond- α integral from r to d of Φ is defined by

$$\int_{r}^{d} \Phi(t) \diamondsuit_{\alpha} t = \alpha \int_{r}^{d} \Phi(t) \Delta t + (1 - \alpha) \int_{r}^{d} \Phi(t) \nabla t, \quad 0 \le \alpha \le 1.$$

provided that there exists delta and nabla integrals of Φ on \mathbf{T} .

The diamond- α integral of Φ exists when Φ is a continuous function. Let $r, d, e \in \mathbf{T}, \lambda, \beta \in \mathbf{R}$ and Φ, Ψ be continuous functions on $[r, d] \cap \mathbf{T} = [r, d]_{\mathbf{T}}$. Then, the following properties hold.

1.
$$\int_{r}^{d} (\lambda \Phi(z) + \beta \Psi(z)) \diamondsuit_{\alpha} z = \lambda \int_{r}^{d} \Phi(z) \diamondsuit_{\alpha} z + \beta \int_{r}^{d} \Psi(z) \diamondsuit_{\alpha} z.$$

2.
$$\int_{r}^{d} \Phi(z) \diamondsuit_{\alpha} z = -\int_{d}^{r} \Phi(z) \diamondsuit_{\alpha} z, \quad \int_{r}^{r} \Phi(z) \diamondsuit_{\alpha} z = 0.$$

3.
$$\int_{r}^{d} \Phi(z) \diamondsuit_{\alpha} z = \int_{r}^{e} \Phi(z) \diamondsuit_{\alpha} z + \int_{e}^{d} \Phi(z) \diamondsuit_{\alpha} z.$$

4. If
$$\Phi(z) \ge 0$$
 for all $z \in [r, d]_{\mathbf{T}}$, then $\int_r^d \Phi(z) \diamondsuit_{\alpha} z \ge 0$.

5. If
$$\Phi(z) \leq \Psi(z)$$
 for all $z \in [r, d]_{\mathbf{T}}$, then $\int_{r}^{d} \Phi(z) \diamondsuit_{\alpha} z \leq \int_{r}^{d} \Psi(z) \diamondsuit_{\alpha} z$.

6. If
$$\Phi(z) \geq 0$$
 for all $z \in [r, d]_{\mathbf{T}}$, then $\Phi(z) = 0$ if only if $\int_r^d \Phi(z) \diamondsuit_{\alpha} z = 0$.

Lemma 1. [5, Theorem 1.1.21]. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d, and Φ , Ψ be two positive functions. If $\frac{1}{q} + \frac{1}{q'} = 1$ with q > 1, then

$$\int_{r}^{d} \Phi(\tau) \Psi(z) \diamondsuit_{\alpha} z \le \left(\int_{r}^{d} \Phi^{q}(z) \diamondsuit_{\alpha} z \right)^{\frac{1}{q}} \left(\int_{r}^{d} \Psi^{q'}(z) \diamondsuit_{\alpha} z \right)^{\frac{1}{q'}}. \tag{3}$$

The inequality (3) is reversed for 0 < q < 1.

2 m-tuple diamond-alpha Hölder inequality

To define the diamond- α integral for a function of m variables, we can extended the definition of the diamond- α integral for a function of two variables given in [6, page .4] and [13, page .2]. Throughout the paper, we assume that the m-Diamond-alpha integrals exist and are finite.

We present the next Lemma that is useful for proving our results.

Lemma 2. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d, q > 1, $m \ge 1$ and $\Phi, \Psi, \mu : [r, d] \times [r, d]^{m-1} \to \mathbf{R}$ be \diamondsuit_{α} -integrable functions, $\frac{1}{q} + \frac{1}{q'} = 1$. Then

$$\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m}) \Phi(t_{1}, \dots, t_{m}) \Psi(t_{1}, \dots, t_{m})| \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m} \leq$$

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Phi(t_{1}, \dots, t_{m})|^{q} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m} \right)^{\frac{1}{q}} \times$$

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Psi(t_{1}, \dots, t_{m})|^{q'} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m} \right)^{\frac{1}{q'}}.$$
(4)

The inequality (4) is reversed for 0 < q < 1.

Proof. Setting

$$B(t_{m+1}) = \left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m+1})| |\Phi(t_{1}, \dots, t_{m+1})|^{q} \Diamond_{\alpha} t_{1} \dots \Diamond_{\alpha} t_{m} \right)^{\frac{1}{q}},$$

$$H(t_{m+1}) = \left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m+1})| |\Psi(t_{1}, \dots, t_{m+1})|^{q'} \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m} \right)^{\frac{1}{q'}},$$

one may then write the inequality (4),

$$\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m+1}) \Phi(t_{1}, \dots, t_{m+1}) \Psi(t_{1}, \dots, t_{m+1})| \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m}$$

$$\leq B(t_{m+1}) H(t_{m+1}).$$

Now we assume that the inequality (4) is verified for m and using the Hölder's inequality (3), we get

$$\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m+1}) \Phi(t_{1}, \dots, t_{m+1}) \Psi(t_{1}, \dots, t_{m+1})| \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m+1}
\leq \int_{r}^{d} B(t_{m+1}) H(t_{m+1}) \diamond_{\alpha} t_{m+1}
\leq \left(\int_{r}^{d} B^{q}(t_{m+1}) \diamond_{\alpha} t_{m+1} \right)^{\frac{1}{q}} \left(\int_{r}^{d} H^{q'}(t_{m+1}) \diamond_{\alpha} t_{m+1} \right)^{\frac{1}{q'}}
= \left(\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m+1})| |\Phi(t_{1}, \dots, t_{m+1})|^{q} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m+1} \right)^{\frac{1}{q'}}
\times \left(\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m+1})| |\Psi(t_{1}, \dots, t_{m+1})|^{q'} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m+1} \right)^{\frac{1}{q'}}.$$

This complete the proof.

Remark 1. Taking m = 2, we result the inequality (2) [6].

Put $\alpha = 1$, we get the *m*-tuple *Delta*-Hölder inequality as below.

Corollary 1. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d, q > 1, $m \ge 1$ and $\Phi, \Psi, \mu : [r, d]^m \to \mathbf{R}$ be Δ -integrable functions. Then

$$\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m}) \Phi(t_{1}, \dots, t_{m}) \Psi(t_{1}, \dots, t_{m})| \Delta t_{1} \dots \Delta t_{m} \leq$$

$$\left(\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Phi(t_{1}, \dots, t_{m})|^{q} \Delta t_{1} \dots \Delta t_{m} \right)^{\frac{1}{q}} \times$$

$$\left(\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Psi(t_{1}, \dots, t_{m})|^{q'} \Delta t_{1} \dots \Delta t_{m} \right)^{\frac{1}{q'}}.$$
(5)

Remark 2. Take $\alpha = 0$, we obtain the Hölder's m-tuple ∇ inequality.

Let T = R, we get the Hölder's m-tuple inequality as follows.

Corollary 2. Let $r, d \in \mathbf{R}$ with $r < d, q > 1, m \ge 1$ and $\Phi, \Psi, \mu : [r, d]^m \to \mathbf{R}$ be integrable functions, thus

$$\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m}) \Phi(t_{1}, \dots, t_{m}) \Psi(t_{1}, \dots, t_{m})| dt_{1} \dots dt_{m} \leq$$

$$\left(\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Phi(t_{1}, \dots, t_{m})|^{q} dt_{1} \dots dt_{m} \right)^{\frac{1}{q}} \times$$

$$\left(\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Psi(t_{1}, \dots, t_{m})|^{q'} dt_{1} \dots dt_{m} \right)^{\frac{1}{q'}}.$$
(6)

Set $\mu = 1$, we deduce the following Corollary.

Corollary 3. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d, q > 1, $m \ge 1$ and $\Phi, \Psi : [r, d]^m \to \mathbf{R}$ be \diamondsuit_{α} -integrable functions, then

$$\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})\Psi(t_{1}, \dots, t_{m})| \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m} \leq$$

$$\left(\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})|^{q} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m}\right)^{\frac{1}{q}} \times$$

$$\left(\int_{r}^{d} \int_{r}^{d} \dots \int_{r}^{d} \Psi(t_{1}, \dots, t_{m})|^{q'} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m}\right)^{\frac{1}{q'}}.$$
(7)

2.1 m-Tuple diamond-alpha Minkowski inequality

Lemma 3. Let **T** be a time scale, $r, d \in \mathbf{T}$ with $r < d, q \ge 1, m \ge 1$ and $\Phi, \Psi, \mu : [r, d]^m \to \mathbf{R}$ be \diamondsuit_{α} -integrable functions, then

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| \Phi(t_{1}, \dots, t_{m}) + \Psi(t_{1}, \dots, t_{m})|^{q} \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m}\right)^{\frac{1}{q}} \leq
\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Phi(t_{1}, \dots, t_{m})|^{q} \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m}\right)^{\frac{1}{q}} +
\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Psi(t_{1}, \dots, t_{m})|^{q} \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m}\right)^{\frac{1}{q}}.$$
(8)

The inequality (8) is reversed for 0 < q < 1.

Proof. If q=1, we use the triangle inequality. For q>1, we denote $X=(t_1,...,t_m)$, we have

$$| \mu(X) || \Phi(X) + \Psi(X) |^{q} = | \mu(X) || \Phi(X) + \Psi(X) || \Phi(X) + \Psi(X) |^{q-1}$$

$$\leq | \mu(X) || \Phi(X) || \Phi(X) + \Psi(X) |^{q-1} + | \mu(X) || \Psi(X) || \Phi(X) + \Psi(X) |^{q-1},$$

apply Hölder's inequality (4), we get

$$\int_{r}^{d} \dots \int_{r}^{d} |\mu(X)|^{\frac{1}{q}} |\Phi(X)| |\mu(X)|^{\frac{1}{q'}} |\Phi(X) + \Psi(X)|^{q-1} \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m}$$

$$\leq \left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(X)| |\Phi(X) + \Psi(X)|^{\frac{p-1}{q'}} \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m} \right)^{\frac{1}{q'}} \times$$

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(X)| |\Phi(X)|^{q} \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m} \right)^{\frac{1}{q}}.$$

This gives us

$$\int_{r}^{d} \dots \int_{r}^{d} |\mu(X)| |\Phi(X) + \Psi(X)|^{q} \Diamond_{\alpha} t_{1} \dots \Diamond_{\alpha} t_{m} \leq$$

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(X)| |\Phi(X) + \Psi(X)|^{q} \Diamond_{\alpha} t_{1} \dots \Diamond_{\alpha} t_{m}\right)^{\frac{1}{q'}}$$

$$\times \left[\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(X)| |\Phi(X)|^{q} \Diamond_{\alpha} t_{1} \dots \Diamond_{\alpha} t_{m}\right)^{\frac{1}{q}} +$$

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(X)| |\Psi(X)|^{q} \Diamond_{\alpha} t_{1} \dots \Diamond_{\alpha} t_{m}\right)^{\frac{1}{q}} ,$$

therefore

$$\begin{split} &\left(\int_{r}^{d}\dots\int_{r}^{d}\mid\mu(X)\mid\mid\Phi(X)+\Psi(X)\mid^{q}\diamondsuit_{\alpha}t_{1}\dots\diamondsuit_{\alpha}t_{m}\right)\\ &\times\left(\int_{r}^{d}\dots\int_{r}^{d}\mid\mu(X)\mid\mid\Phi(X)+\Psi(X)\mid^{q}\diamondsuit_{\alpha}t_{1}\dots\diamondsuit_{\alpha}t_{m}\right)^{-\frac{1}{q'}}\leq \\ &\left(\int_{r}^{d}\dots\int_{r}^{d}\mid\mu(X)\mid\mid\Phi(X)\mid^{q}\diamondsuit_{\alpha}t_{1}\dots\diamondsuit_{\alpha}t_{m}\right)^{\frac{1}{q}}+\\ &\left(\int_{r}^{d}\dots\int_{r}^{d}\mid\mu(X)\mid\mid\Psi(X)\mid^{q}\diamondsuit_{\alpha}t_{1}\dots\diamondsuit_{\alpha}t_{m}\right)^{\frac{1}{q}}, \end{split}$$

since $1 - \frac{1}{q'} = \frac{1}{q}$, we result the inequality (8).

Remark 3. • Using m = 1, we get the weight inequality form for (1) [7].

• By setting m = 2, we get the following weight inequality. For $q \ge 1$, we have

$$\left(\int_{r}^{d} \int_{r}^{d} |\mu(t_{1}, t_{2})| |\Phi(t_{1}, t_{2}) + \Psi(t_{1}, t_{2})|^{q} \Diamond_{\alpha} t_{1} \Diamond_{\alpha} t_{2}\right)^{\frac{1}{q}} \leq$$

$$\left(\int_{r}^{d} \int_{r}^{d} |\mu(t_{1}, t_{2})| |\Phi(t_{1}, t_{2})|^{q} \Diamond_{\alpha} t_{1} \Diamond_{\alpha} t_{2}\right)^{\frac{1}{q}} +$$

$$\left(\int_{r}^{d} \int_{r}^{d} |\mu(t_{1}, t_{2})| |\Psi(t_{1}, t_{2})|^{q} \Diamond_{\alpha} t_{1} \Diamond_{\alpha} t_{2}\right)^{\frac{1}{q}}.$$
(9)

Inequality (9) is reversed for 0 < q < 1.

3 Diamond-alpha inequality with two parameters of summation

Now let us present the first result with two parameters of summation and also give some results relative to this theorem.

Theorem 3. Let **T** be a time scale, $r, d \in \mathbf{T}$ with $r < d, m \ge 1$ and $\Phi, \Psi : [r, d]^m \to \mathbf{R}$ be \diamondsuit_{α} -integrable functions. If $0 < q_1 \le q_2 < \infty$, the inequality

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})|^{q_{1}} |\Psi(t_{1}, \dots, t_{m})| \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m}\right)^{\frac{1}{q_{1}}} \leq \left(\int_{r}^{d} \dots \int_{r}^{d} |\Psi(t_{1}, \dots, t_{m})| \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m}\right)^{\frac{q_{1} - q_{2}}{q_{1} q_{2}}} \times \left(\int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})|^{q_{2}} |\Psi(t_{1}, \dots, t_{m})| \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m}\right)^{\frac{1}{q_{2}}}, \tag{10}$$

holds if the right side is finite.

The inequality (10) holds for $-\infty < q_2 \le q_1 < 0$ and is reversed for $0 < q_2 \le q_1 < \infty$.

Proof. Let $0 < q_1 \le q_2 < \infty$, for $q_1 = q_2$ It has equality. Suppose that $q_1 \ne q_2$, then apply Hölder's m-tuple diamond-alpha inequality (7) for $\frac{q_2}{q_1} > 1$, we get

$$\begin{split} &\int_{r}^{d} \dots \int_{r}^{d} \mid \Phi(t_{1}, \dots, t_{m}) \mid^{q_{1}} \mid \Psi(t_{1}, \dots, t_{m}) \mid \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m} \\ &= \int_{r}^{d} \dots \int_{r}^{d} \mid \Psi(X) \mid^{\frac{q_{2} - q_{1}}{q_{2}}} \mid \Phi^{q_{1}}(X) \mid \mid \Psi(X) \mid^{\frac{q_{1}}{q_{2}}} \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m} \\ &\leq \left(\int_{r}^{d} \dots \int_{r}^{d} \mid \Psi(t_{1}, \dots, t_{m}) \mid \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m} \right)^{\frac{q_{2} - q_{1}}{q_{2}}} \times \\ &\left(\int_{r}^{d} \dots \int_{r}^{d} \mid \Phi(t_{1}, \dots, t_{m}) \mid^{q_{2}} \mid \Psi(t_{1}, \dots, t_{m}) \mid \diamondsuit_{\alpha} t_{1} \dots \diamondsuit_{\alpha} t_{m} \right)^{\frac{q_{1}}{q_{2}}}. \end{split}$$

Setting $\alpha=1$, then we obtain the *m*-tuple Δ -integral inequality with two parameters q_1 and q_2 as follows.

Corollary 4. Let **T** be a time scale, $r, d \in \mathbf{T}$ with $r < d, m \ge 1$ and $\Phi, \Psi : [r, d]^n \to \mathbf{R}$ be Δ -integrable functions. If $0 < q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})|^{q_{1}} |\Psi(t_{1}, \dots, t_{m})| \Delta t_{1} \dots \Delta t_{m}\right)^{\frac{1}{q_{1}}} \\
\leq \left(\int_{a}^{b} \dots \int_{a}^{b} |\Psi(x_{1}, \dots, x_{n})| \Delta t_{1} \dots \Delta t_{m}\right)^{\frac{q_{2} - q_{1}}{q_{1}} q_{2}} \\
\left(\int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})|^{q_{2}} |\Psi(t_{1}, \dots, t_{m})| \Delta t_{1} \dots \Delta t_{m}\right)^{\frac{1}{q_{2}}}.$$
(11)

The inequality (11) holds for $-\infty < q_2 \le q_1 < 0$ and is reversed for $0 < q_2 \le q_1 < \infty$.

Remark 4. Putting $\alpha = 0$, we obtain the version of m-tuple ∇ -integral inequality for two parameters q_1 and q_2 .

Let T = R, we get the m-tuple integral inequality as follows.

Corollary 5. Let $a, b \in \mathbf{R}$ with a < b, $n \ge 1$ and $\Phi, \Psi : [a, b]^n \to \mathbf{R}$ be integrable functions. If 0 , the inequality

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})|^{q_{1}} |\Psi(t_{1}, \dots, t_{m})| dt_{1} \dots dt_{m}\right)^{\frac{1}{q_{1}}} \leq \left(\int_{r}^{d} \dots \int_{r}^{d} |\Psi(t_{1}, \dots, t_{m})| dt_{1} \dots dt_{m}\right)^{\frac{q_{2}-q_{1}}{q_{1}q_{2}}} \times \left(\int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})|^{q_{2}} |\Psi(t_{1}, \dots, t_{m})| dt_{1} \dots dt_{m}\right)^{\frac{1}{q_{2}}}.$$
(12)

The inequality (12) holds for $-\infty < q_2 \le q_1 < 0$ and reversed for $0 < q_2 \le q_1 < \infty$.

3.1 Diamond-alpha Minkowski inequality with two parameters of summation

Lemma 4. Let **T** be a time scale, $r, d \in \mathbf{T}$ with $r < d, m \ge 1$ and $\Phi, \Psi, \mu : [r, d]^m \to \mathbf{R}$ be \diamondsuit_{α} -integrable functions. If $1 \le q_1 \le q_2 < \infty$, the inequality

$$\left(\int_{r}^{d} ... \int_{r}^{d} |\mu(t_{1},...,t_{m})| |\Phi(t_{1},...,t_{m}) + \Psi(t_{1},...,t_{m})|^{q_{1}} \diamondsuit_{\alpha} t_{1} ... \diamondsuit_{\alpha} t_{m}\right)^{\frac{1}{q_{1}}} \leq \left(\int_{a}^{b} ... \int_{a}^{b} |\mu(x_{1},...,x_{n})| \diamondsuit_{\alpha} t_{1} ... \diamondsuit_{\alpha} t_{m}\right)^{\frac{q_{2}-q_{1}}{q_{1}q_{2}}} \times \left[\left(\int_{r}^{d} ... \int_{r}^{d} |\mu(t_{1},...,t_{m})| |\Phi(t_{1},...,t_{m})|^{q_{2}} \diamondsuit_{\alpha} t_{1} ... \diamondsuit_{\alpha} t_{m}\right)^{\frac{1}{q_{2}}} + \left(\int_{r}^{d} ... \int_{r}^{d} |\mu(t_{1},...,t_{m})| |\Psi(t_{1},...,t_{m})|^{q_{2}} \diamondsuit_{\alpha} t_{1} ... \diamondsuit_{\alpha} t_{m}\right)^{\frac{1}{q_{2}}}\right], \tag{13}$$

holds if the right side is finite.

The inequality (13) is reversed for $0 < q_2 < q_1 \le 1$.

Proof. By using the inequalities (10) and (8), we result the inequality (13). \Box

3.2 New Minkowski's inequality in time scales

Putting $q_1 = 1$ and $q_2 = q$ in the inequality (13), we obtain a new weighted Minkowski inequality in time scales.

Corollary 6. Let **T** be a time scale, $r, d \in \mathbf{T}$ with $r < d, m \ge 1$ and $\Phi, \Psi, \mu : [r, d]^m \to \mathbf{R}$ be \diamondsuit_{α} -integrable functions. If $1 \le q < \infty$, the inequality

$$\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Phi(t_{1}, \dots, t_{m}) + \Psi(t_{1}, \dots, t_{m})| \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m} \leq$$

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m}\right)^{\frac{q-1}{q}} \times$$

$$\left[\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Phi(t_{1}, \dots, t_{m})|^{q} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m}\right)^{\frac{1}{q}} +$$

$$\left(\int_{r}^{d} \dots \int_{r}^{d} |\mu(t_{1}, \dots, t_{m})| |\Psi(t_{1}, \dots, t_{m})|^{q} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m}\right)^{\frac{1}{q}} \right].$$
(14)

The inequality (14) is reversed for 0 < q < 1.

Set $\mu = 1$ in the inequality (14), we get a new Minkowski's inequality in time scales.

Corollary 7. Let **T** be a time scale, $r, d \in \mathbf{T}$ with $-\infty < r < d < +\infty$, $m \ge 1$ and $\Phi, \Psi : [r, d]^m \to \mathbf{R}$ be \Diamond_{α} -integrable functions. If $1 \le q < \infty$, the inequality

$$\int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m}) + \Psi(t_{1}, \dots, t_{m})| \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m} \leq (d - r)^{m(\frac{q - 1}{q})} \times \left[\left(\int_{r}^{d} \dots \int_{r}^{d} |\Phi(t_{1}, \dots, t_{m})|^{q} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m} \right)^{\frac{1}{q}} + \left(\int_{r}^{d} \dots \int_{r}^{d} |\Psi(t_{1}, \dots, t_{m})|^{q} \diamond_{\alpha} t_{1} \dots \diamond_{\alpha} t_{m} \right)^{\frac{1}{q}} \right].$$
(15)

The inequality (15) is reversed for 0 < q < 1.

4 Integral inequality with one variable

Now we present some interesting cases of the Theorem 3.

Lemma 5. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d and $\Phi, \Psi : [r, d] \to \mathbf{R}$ be \Diamond_{α} -integrable functions. If $0 < q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} |\Psi(t)| |\Phi(t)|^{q_{1}} \diamond_{\alpha} t\right)^{\frac{1}{q_{1}}} \\
\leq \left(\int_{r}^{d} |\Psi(t)| \diamond_{\alpha} t\right)^{\frac{q_{2}-q_{1}}{q_{1}q_{2}}} \left(\int_{r}^{d} |\Psi(t)| |\Phi(t)|^{q_{2}} \diamond_{\alpha} t\right)^{\frac{1}{q_{2}}} (16)$$

The inequality (16) holds for $-\infty < q_2 \le q_1 < 0$ and is reversed for $0 < q_2 \le q_1 < \infty$.

Remark 5. The above integral inequality (16) coincide with the integral inequality (3.1) in [2].

Taking $\alpha = 1$, we get the version of Δ -integral inequality as follows.

Corollary 8. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d and $\Phi, \Psi : [r, d] \to \mathbf{R}$ be Δ -integrable functions. If $0 < q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} |\Psi(t)| |\Phi(t)|^{q_{1}} \Delta t\right)^{\frac{1}{q_{1}}} \leq \left(\int_{r}^{d} |\Psi(t)| \Delta t\right)^{\frac{q_{2}-q_{1}}{q_{1}q_{2}}} \left(\int_{r}^{d} |\Psi(t)| \Phi(t)|^{q_{2}} \Delta t\right)^{\frac{1}{q_{2}}}.$$
(17)

The inequality (17) holds for $-\infty < q_2 \le q_1 < 0$ and reversed for $0 < q_2 \le q_1 < \infty$.

Remark 6. The above integral inequality (17) coincide with the integral inequality (3.3) in [4].

Let T = R, we get the following integral inequality.

Corollary 9. Let $r, d \in \mathbf{R}$ with r < d and $\Phi, \Psi : [r, d] \to \mathbf{R}$ be integrable functions. If $0 < q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} |\Psi(t)| |\Phi(t)|^{q_{1}} dt\right)^{\frac{1}{q_{1}}} \leq \left(\int_{r}^{d} |\Psi(t)| dt\right)^{\frac{q_{2}-q_{1}}{q_{1}q_{2}}} \left(\int_{r}^{d} |\Psi(t)| |\Phi(t)|^{q_{2}} dt\right)^{\frac{1}{q_{2}}}.$$
(18)

The inequality (18) holds for $-\infty < q_2 \le q_1 < 0$ and reversed for $0 < q_2 \le q_1 < \infty$.

Remark 7. The inequality (18) coincide with the inequalities in [1], [3].

4.1 Diamond-alpha Minkowski inequality with two parameters of summation

Setting m = 1 in the Lemma 4, we get the following Corollary.

Corollary 10. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d and $\Phi, \Psi, \mu : [r, d] \to \mathbf{R}$ be \Diamond_{α} -integrable functions. If $1 \le q_1 \le q_2 < \infty$, thus

$$\left(\int_{r}^{d} |\mu(t)| |\Phi(t) + \Psi(t)|^{q_{1}} \diamondsuit_{\alpha} t\right)^{\frac{1}{q_{1}}} \leq \left(\int_{r}^{d} |\mu(t)| \diamondsuit_{\alpha} t\right)^{\frac{q_{2} - q_{1}}{q_{2} q_{2}}} \times \left[\left(\int_{r}^{d} |\mu(t)| |\Phi(t)|^{q_{2}} \diamondsuit_{\alpha} x\right)^{\frac{1}{q_{2}}} + \left(\int_{r}^{d} |\mu(t)| |\Psi(t)|^{q_{2}} \diamondsuit_{\alpha} x\right)^{\frac{1}{q_{2}}}\right].$$
(19)

The inequality (19) is reversed for $0 < q_2 < q_1 \le 1$.

We present some remarks about the inequality (19).

1. Taking $q_1=1$ and $q_2=q$, we deduce a new weight Minkowski's inequality in time scales for $1\leq q<\infty$

$$\int_{r}^{d} |\mu(t)| |\Phi(t) + \Psi(t)| \diamondsuit_{\alpha} t \leq \left(\int_{r}^{d} |\mu(t)| \diamondsuit_{\alpha} t\right)^{\frac{q-1}{q}} \times \left[\left(\int_{r}^{d} |\mu(t)| |\Phi(t)|^{q} \diamondsuit_{\alpha} t\right)^{\frac{1}{q}} + \left(\int_{r}^{d} |\mu(t)| |\Psi(t)|^{q} \diamondsuit_{\alpha} t\right)^{\frac{1}{q}} \right] (20)$$

The inequality (20) is reversed for 0 < q < 1.

2. Taking $\mu = 1$ and $-\infty < r < d < +\infty$, thus gives us for $1 \le q_1 \le q_2 < \infty$

$$\left(\int_{r}^{d} |\Phi(t) + \Psi(t)|^{q_{1}} \diamondsuit_{\alpha} t \right)^{\frac{1}{q_{1}}} \leq (d - r)^{\frac{q_{2} - q_{1}}{q_{1} q_{2}}} \times \left[\left(\int_{r}^{d} |\Phi(t)|^{q_{2}} \diamondsuit_{\alpha} t \right)^{\frac{1}{q_{2}}} + \left(\int_{r}^{d} |\Psi(t)|^{q_{2}} \diamondsuit_{\alpha} t \right)^{\frac{1}{q_{2}}} \right].$$
(21)

The inequality (21) is reversed for $0 < q_2 < q_1 \le 1$.

3. Putting $q_1 = 1$ and $q_2 = q$ in the inequality (21), we get a new refinement to Minkowski's inequality in time scales. For $1 \le q$

$$\int_{r}^{d} |\Phi(t) + \Psi(t)| \diamondsuit_{\alpha} t$$

$$\leq (d - r)^{\frac{q-1}{q}} \left[\left(\int_{r}^{d} |\Phi(t)|^{q} \diamondsuit_{\alpha} t \right)^{\frac{1}{q}} + \left(\int_{r}^{d} |\Psi(t)|^{q} \diamondsuit_{\alpha} t \right)^{\frac{1}{q}} \right]. (22)$$

The inequality (22) is reversed for 0 < q < 1.

4. For $\mathbf{T} = \mathbf{R}$, we get for $1 \leq q$

$$\int_{r}^{d} |\Phi(t) + \Psi(t)| dt$$

$$\leq (d - r)^{\frac{q-1}{q}} \left[\left(\int_{r}^{d} |\Phi(t)|^{q} dt \right)^{\frac{1}{q}} + \left(\int_{r}^{d} |\Psi(t)|^{q} dt \right)^{\frac{1}{q}} \right]. (23)$$

The inequality (23) is reversed for 0 < q < 1.

5 Integral inequality with two variables

From the Theorem 3, we get the following results.

Lemma 6. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d and $\Phi, \Psi : [r, d] \times [r, d] \to \mathbf{R}$ be \Diamond_{α} -integrable functions. If $0 < q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{1}} |\Psi(t_{1}, t_{2})| \diamondsuit_{\alpha} t_{1} \diamondsuit_{\alpha} t_{2}\right)^{\frac{1}{q_{1}}}$$

$$\leq \left(\int_{r}^{d} \int_{r}^{d} |\Psi(t_{1}, t_{2})| \diamondsuit_{\alpha} t_{1} \diamondsuit_{\alpha} t_{2}\right)^{\frac{q_{2} - q_{1}}{q_{1} q_{2}}} \times$$

$$\times \left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{2}} |\Psi(t_{1}, t_{2})| \diamondsuit_{\alpha} t_{1} \diamondsuit_{\alpha} t_{2}\right)^{\frac{1}{q_{2}}}.$$
(24)

The inequality (24) holds for $-\infty < q_2 \le q_1 < 0$ and reversed for $0 < q_2 \le q_1 < \infty$.

Put $\alpha = 1$, thus we obtain the version of Δ -integral inequality as follows.

Corollary 11. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d and $\Phi, \Psi : [r, d] \times [r, d] \to \mathbf{R}$ be Δ -integrable functions. If $0 < q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{1}} |\Psi(t_{1}, t_{2})| \Delta t_{1} \Delta t_{2}\right)^{\frac{1}{q_{1}}} \leq \left(\int_{r}^{d} \int_{r}^{d} |\Psi(t_{1}, t_{2})| \Delta t_{1} \Delta t_{2}\right)^{\frac{q_{2} - q_{1}}{q_{1} q_{2}}} \left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{2}} |\Psi(t_{1}, t_{2})| \Delta t_{1} \Delta t_{2}\right)^{\frac{1}{q_{2}}}.$$
(25)

The inequality (25) holds for $-\infty < q_2 \le q_1 < 0$ and reversed for $0 < q_2 \le q_1 < \infty$.

Let T = R, we deduce the following integral inequality.

Corollary 12. Let $r, d \in \mathbf{R}$ with r < d and $\Phi, \Psi : [r, d] \times [r, d] \to \mathbf{R}$ be integrable functions. If $0 < q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{1}} |\Psi(t_{1}, t_{2})| dt_{1} dt_{2}\right)^{\frac{1}{q_{1}}} \leq \left(\int_{r}^{d} \int_{r}^{d} |\Psi(t_{1}, t_{2})| dt_{1} dt_{2}\right)^{\frac{q_{2} - q_{1}}{q_{1} q_{2}}} \left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{2}} |\Psi(t_{1}, t_{2})| dt_{1} dt_{2}\right)^{\frac{1}{q_{2}}}.$$
(26)

The inequality (26) holds for $-\infty < q_2 \le q_1 < 0$ and reversed for $0 < q_2 \le q_1 < \infty$.

Proposition 1. Taking $\Psi = 1$ in inequalities (16) and (24), we obtain simple and recently diamond-alpha inequalities with two parameters of summation. For $0 < q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} |\Phi(t)|^{q_{1}} \lozenge_{\alpha} t\right)^{\frac{1}{q_{1}}} \leq (d-r)^{\frac{q_{2}-q_{1}}{q_{1}q_{2}}} \left(\int_{r}^{d} |\Phi(t)|^{q_{2}} \lozenge_{\alpha} t\right)^{\frac{1}{q_{2}}}.$$
 (27)

$$\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{1}} \diamondsuit_{\alpha} t_{1} \diamondsuit_{\alpha} t_{2}\right)^{\frac{1}{q_{1}}} \\
\leq \left(d - r\right)^{2\left(\frac{q_{2} - q_{1}}{q_{1} q_{2}}\right)} \left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{2}} \diamondsuit_{\alpha} t_{1} \diamondsuit_{\alpha} t_{2}\right)^{\frac{1}{q_{2}}}.$$
(28)

Inequalities (27) and (28) hold for $-\infty < q_2 \le q_1 < 0$ and reversed for $0 < q_2 \le q_1 < \infty$.

Proposition 2. Setting $\mathbf{T} = \mathbf{R}$, we get the following classical integral inequalities. For $0 < q_1 \le q_2 < \infty$ or $-\infty < q_2 \le q_1 < 0$

$$\left(\int_{r}^{d} |\Phi(t)|^{q_{1}} dt\right)^{\frac{1}{q_{1}}} \leq (d-r)^{\frac{q_{2}-q_{1}}{q_{1}}} \left(\int_{r}^{d} |\Phi(t)|^{q_{2}} dt\right)^{\frac{1}{q_{2}}}, \tag{29}$$

$$\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{1}} dt_{1} dt_{2}\right)^{\frac{1}{q_{1}}} \leq (d-r)^{2\left(\frac{q_{2}-q_{1}}{q_{1}q_{2}}\right)} \left(\int_{r}^{b} \int_{r}^{d} |\Phi(t_{1}, t_{2})|^{q_{2}} dt_{1} dt_{2}\right)^{\frac{1}{q_{2}}}.$$
(30)

The above inequalities are reversed for $0 < q_2 \le q_2 < \infty$.

5.1 Double integral Minkowski's Diamond-alpha inequality with two parameters

Setting m=2 in Lemma 4, we get the following Corollary.

Corollary 13. Let **T** be a time scale, $r, d \in \mathbf{T}$ with r < d and $\Phi, \Psi, \mu : [r, d] \times [r, d] \to \mathbf{R}$ be \Diamond_{α} -integrable functions. If $1 \le q_1 \le q_2 < \infty$, then

$$\left(\int_{r}^{d} \int_{r}^{d} |\mu(t,y)| |\Phi(t,y) + \Psi(t,y)|^{q_{1}} \Diamond_{\alpha} t \Diamond_{\alpha} y\right)^{\frac{1}{q_{1}}}$$

$$\leq \left(\int_{r}^{d} \int_{r}^{d} |\mu(t,y)| \Diamond_{\alpha} t \Diamond_{\alpha} y\right)^{\frac{q_{2}-q_{1}}{q_{1}q_{2}}}$$

$$\times \left[\left(\int_{r}^{d} \int_{r}^{d} |\mu(t,y)| |\Phi(t,y)|^{q_{2}} \Diamond_{\alpha} t \Diamond_{\alpha} y\right)^{\frac{1}{q_{2}}}$$

$$+ \left(\int_{r}^{d} \int_{r}^{d} |\mu(t,y)| |\Psi(t,y)|^{q_{2}} \Diamond_{\alpha} t \Diamond_{\alpha} y\right)^{\frac{1}{q_{2}}}\right]. \tag{31}$$

The inequality (31) is reversed for $0 < q_2 < q_1 \le 1$.

We present some interesting results concerning inequality (31).

1. Set $q_1 = 1$ and $q_2 = q$, we get weight Minkowski's inequality in time scales for $1 \le q < \infty$

$$\int_{r}^{d} \int_{r}^{d} |\mu(t,y)| |\Phi(t,y) + \Psi(t,y)| \diamondsuit_{\alpha} t \diamondsuit_{\alpha} y$$

$$\leq \left(\int_{r}^{d} \int_{r}^{d} |\mu(t,y)| \diamondsuit_{\alpha} t \diamondsuit_{\alpha} y \right)^{\frac{q-1}{q}}$$

$$\times \left[\left(\int_{r}^{d} \int_{r}^{d} |\mu(t,y)| |\Phi(t,y)|^{q} \diamondsuit_{\alpha} t \diamondsuit_{\alpha} y \right)^{\frac{1}{q}}$$

$$+ \left(\int_{r}^{d} \int_{r}^{d} |\mu(t,y)| |\Psi(t,y)|^{q} \diamondsuit_{\alpha} t \diamondsuit_{\alpha} y \right)^{\frac{1}{q}}$$
(32)

The inequality (32) is reversed for 0 < q < 1.

2. Setting $\mu = 1$ and $-\infty < r < d < +\infty$, we deduce that for $1 \le q_1 \le q_2 < \infty$

$$\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t,y) + \Psi(t,y)|^{q_{1}} \diamond_{\alpha} t \diamond_{\alpha} y\right)^{\frac{1}{q_{1}}} \leq \left(d - r\right)^{2\left(\frac{q_{2} - q_{1}}{q_{1} q_{2}}\right)} \times \left[\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t,y)|^{q_{2}} \diamond_{\alpha} t \diamond_{\alpha} y\right)^{\frac{1}{q_{2}}} + \left(\int_{r}^{d} \int_{r}^{d} |\Psi(t,y)|^{q_{2}} \diamond_{\alpha} t \diamond_{\alpha} y\right)^{\frac{1}{q_{2}}}\right].$$
(33)

The inequality (33) is reversed for $0 < q_2 < q_1 \le 1$.

3. Taking p=1 and $q_2=q$ in the inequality (33), we obtain a refinement to Minkowski's inequality in time scales. For $1 \le q < \infty$

$$\int_{r}^{d} \int_{r}^{d} |\Phi(t,y) + \Psi(t,y)| \diamondsuit_{\alpha} t \diamondsuit_{\alpha} y \leq (d-r)^{2\left(\frac{q-1}{q}\right)} \times \left[\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t,y)|^{q} \diamondsuit_{\alpha} t \diamondsuit_{\alpha} y \right)^{\frac{1}{q}} + \left(\int_{r}^{d} \int_{r}^{d} |\Psi(t,y)|^{q} \diamondsuit_{\alpha} t \diamondsuit_{\alpha} y \right)^{\frac{1}{q}} \right].$$
(34)

Inequality (34) is reversed for 0 < q < 1.

4. Putting $\mathbf{T} = \mathbf{R}$, we get for $1 \le q < \infty$

$$\int_{r}^{d} \int_{r}^{d} |\Phi(t,y) + \Psi(t,y)| dt dy \leq (d-r)^{2\left(\frac{q-1}{q}\right)} \times \left[\left(\int_{r}^{d} \int_{r}^{d} |\Phi(t,y)|^{q} dt dy \right)^{\frac{1}{q}} + \left(\int_{r}^{d} \int_{r}^{d} |\Psi(t,y)|^{q} dt dy \right)^{\frac{1}{q}} \right].$$
(35)

Inequality (35) is reversed for 0 < q < 1.

6 Conclusion

In this paper, using the *n*-tuple diamond-alpha Hölder inequality and the Minkowski inequality on time scales, we have established Diamond-alpha Hölder and Diamond-alpha Minkowski inequalities with two summation parameters on time scale, in additionally a new refinement of the Minkowski inequality on time scales with one and two variables. We present the delta, nabla and continuous inequalities as special cases of our main results.

References

- [1] Benaissa, B., Sarikaya, M.Z. and Senouci, A., On some new hardy-type inequalities, Math. Meth. Appl. Sci, 43 (2020), no. 15, 8488-8495. https://doi.org/10.1002/mma.6503
- [2] Benaissa, B., A generalization of reverse Hölder's inequality via the diamond-a integral on time scales, Hacet. J. Math. Stat. **51** (2022), no. 2, 383-389. https://doi.org/10.15672/hujms.877967
- [3] Benaissa, B. and Benguessoum, A., Reverses Hardy-Type Inequalities Via Jensen Integral Inequality, Math. Montisnigri, **52** (2021), no. 5, 8488-8495. https://doi.org/10.20948/mathmontis-2021-52-5
- [4] Benaissa, B., Some inequalities on time scales similar to reverse Hardy's inequality, Rad Hazu. Matematičke Znanosti **26**(=551) (2022), 113-126. https://doi.org/10.21857/mnlqgcr4ry.

- [5] Agarwal, R.P, O'Rega, D. and Saker, S.H., *Hardy type inequalities on time scales*, Springer International Publishing Switzerland 2016.
- [6] Ammi, M.R.S. and Torres, D.F.M. Hölder's and Hardy's two dimensional Diamond-alpha inequalities on time scales, Ann. Univ. Craiova, Math. Comp. Science Series, 37 (2010), no. 1, 1-11.
- [7] Ammi, M.R.S., Ferreira, R.A.C. and Torres, D.F.M., *Diamond-Jensen's inequality on time scales*, J. Inequal. Appl. (2008), Article number 576876. https://doi.org/10.1155/2008/576876
- [8] Bohner, H. and Peterson, A., Dynamic equations on time scale. An introduction with applications, Birkhuser, Boston, 2001.
- [9] Chen, G. and Chen, Z., A functional generalization of the reverse Hölder integral inequality on time scales, Mathematical and Computer Modelling, 54, (2011), no. 11-12, 2939–2942.
- [10] Ozkan, U.M., Sarikaya, M.Z. and Yildirim, H., Extensions of certain integral inequalities on time scales, Appl. Math. Letters 21 (2008), no. 10, 993–1000.
- [11] O'Regan, D., Rezk, H.M. and Saker, S.H., Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with kernels, Results. Math. 73 (2018), Article number 146.
- [12] Rogers, J.W. and Sheng, Q., Notes on the diamond-alpha dynamic derivative on time scales, J. Math. Anal. Appl. **326** (2007), no. 1, 228–241.
- [13] Pachpatte, D.B., Some Ostrowski type inequalities for double integrals on time scales, Acta. Appl. Math. **161** (2019), 1-11. https://doi.org/10.1007/s10440-018-0201-2
- [14] Yan, F. and Wang, J., Generalizations and refinements of three-tuple Diamond-Alpha integral Hölder's inequality on time scales, J. Inequal. Appl. (2019), Article number 318. https://doi.org/10.1186/s13660-019-2271-8