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CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH
COMPLEX ORDER ASSOCIATED WITH GENERALIZED

BESSEL FUNCTIONS

T. AL-HAWARY1, A. AMOURAH2, M. K. AOUF3 and
B. A. FRASIN∗,4

Abstract

In this paper we obtain the necessary and sufficient conditions for general-
ized Bessel functions of the first kind zup(z) to be in the classes S(b, λ, β) and
R(b, λ, β) of analytic functions with complex order and also give the neces-
sary and sufficient conditions for z(2−up(z)) to be in the classes TS(b, λ, β)
and TR(b, λ, β). Furthermore, we give the necessary and sufficient condi-
tions for J(k, c) to be in the class TR(b, λ, β) provided that the function f
is in the class Rτ (A,B). Finally, we give conditions for the integral operator

G(k, c, z) =
z∫
0

(2− up(t))dt to be in the class TR(b, λ, β). Several corollaries

and consequences of the main results are also obtained.
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1 Introduction

Bessel functions are needful in many branches of applied mathematics and
mathematical physics, for example, those in acoustics, angular resolution, radio
physics, hydrodynamics, and signal processing. Therefore, these special functions
have been studied extensively, see [6, 9, 10, 11, 18, 20, 26, 27].
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Let A denote the class of functions of the form:

f(z) = z +
∞∑
n=2

anz
n (1)

which are analytic in the open unit disc U = {z : |z| < 1} . Further, let T be the
subclass of A consisting of functions of the form:

f(z) = z −
∞∑
n=2

|an| zn, z ∈ U. (2)

A function f ∈ A is said to be starlike of complex order b(b ∈ C∗ = C⧹{0}), that
is f ∈ S(b) if it satisfies the inequality

Re

{
1 +

1

b

(
zf ′(z)

f(z)
− 1

)}
> 0, (z ∈ U, b ∈ C∗) (3)

Also, a function f ∈ A is said to be convex of complex order b(b ∈ C∗), that is
f ∈ C(b) if it satisfies the inequality

Re

{
1 +

1

b

zf ′′(z)

f ′(z)

}
> 0 (z ∈ U, b ∈ C∗). (4)

The class S(b) was introduced and studied by Nasr and Aouf [?], (see also [30])
and the class C(b) was introduced and studied by Wiatrowski [34], (see also [4]
and [29]).

Furthermore a function f ∈ A is said to be close-to-convex of complex order
b(b ∈ C∗) if it satisfies the inequality

Re

{
1 +

1

b

(
f ′(z)− 1

)}
> 0 (z ∈ U, b ∈ C∗). (5)

The class R(b) was introduced and studied by Halim [22] and Owa [31] (see
Aouf and Mostafa [5]).

Finally, let S(b, λ, β) denote the class of functions f ∈ A which satisfies the
inequality∣∣∣∣1b

(
zf ′(z) + λz2f ′′(z)

(1− λ)f(z) + λf ′(z)
− 1

)∣∣∣∣ < β, (z ∈ U, b ∈ C∗, 0 < β ≤ 1, 0 ≤ λ ≤ 1).

(6)
Also let R(b, λ, β) denote the class of functions f ∈ A which satisfies the inequality∣∣∣∣1b (f ′(z) + λzf ′′(z)− 1

)∣∣∣∣ < β, (z ∈ U,b ∈ C∗, 0 < β ≤ 1, 0 ≤ λ ≤ 1). (7)

The classes S(b, λ, β) and R(b, λ, β) was introduced and studied by Altintas et al.
[[2] with n = 1].

We note that:
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(1) S(b, 0, 1) ⊂ S(b), S(b, 1, 1) ⊂ C(b) and R(b, 0, 1) ⊂ R(b),

(2) S(b, 0, β) = S(b, β) =
{
f ∈ A:

∣∣∣1b ( zf ′(z)
f(z) − 1

)∣∣∣ < β, z ∈ U
}
,

(3) S(b, 1, β) = C(b, β) =
{
f ∈ A:

∣∣∣1b ( zf ′′(z)
f ′(z) − 1

)∣∣∣ < β, z ∈ U
}
,

(4) R(b, 0, β) = R(b, β) =
{
f ∈ A:

∣∣1
b (f

′(z)− 1)
∣∣ < β, z ∈ U

}
.

Further, we define the classes TS(b, λ, β) and TR(b, λ, β) by
TS(b, λ, β) = S(b, λ, β) ∩ T and TR(b, λ, β) = R(b, λ, β) ∩ T .
We note that TS(1, λ, β) = TS(λ, β) (see [2]).
A function f ∈ A is said to be in the class Rτ (A,B), τ ∈ C∗ and −1 ≤ B ≤

A ≤ 1 if it satisfies the inequality∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, z ∈ U. (8)

The class Rτ (A,B) was introduced and studied by Dixit and Pal [14].
The generalized Bessel function wp (see, [9]) is defined as a particular solution

of the linear differential equation

z2w′′(z) + bzw′(z) + [cz2 − p2 + (1− b)p]w(z) = 0, (9)

where b, p, c ∈ C. The analytic function wp has the form:

wp(z) =
∞∑
n=0

(−1)n(c)n

n!Γ(p+ n+ b+1
2 )

.
(z
2

)2n+p
, z ∈ C. (10)

Now, the generalized and normalized Bessel function up is defined with the trans-
formation

up(z) = 2pΓ(p+
b+ 1

2
)z−p/2wp(z

1/2)

=
∞∑
n=0

(−c/4)n

(k)nn!
zn, (11)

where k = p+ (b+ 1)/2 ̸= 0,−1,−2, . . . and (a)n is the well-known Pochhammer

symbol, defined in terms of the Euler Gamma function for a ̸= 0,−1,−2, . . . by

(a)n =
Γ(a+ n)

Γ(a)
=

{
1, if n = 0
a(a+ 1)(a+ 2) . . . (a+ n− 1), if n ∈ N = {1, 2, · · · }.

The function up is analytic on C and satisfies the second linear differential equation

4z2u′′(z) + 2(2p+ b+ 1)zu′(z) + czu(z) = 0. (12)

Using the Hadamard product, we now consider the linear operator J(k, c) : A → A
defined by

J(k, c)f(z) = zup(z) ∗ f(z)

=

∞∑
n=2

(−c/4)n

(k)n−1(n− 1)!
anz

n, (13)
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where ∗ denote the convolution or Hadamard product of two series.
Motivated by results on connections between various subclasses of analytic

univalent functions by using hypergeometric functions (see ,[7, 8, 19, 24, 33]),
Struve functions (see [21, 23, 35]), Poisson distribution series (see [1, 12, 15, 16,
17, 25]) and Pascal distribution series (see [13, 16]), we determine necessary and
sufficient conditions for the function zup(z) to be in the classes S(b, λ, β) and
R(b, λ, β) and also give necessary and sufficient condition for z(2−up(z)) to be in
these classes. Also, we give necessary and sufficient condition for J(k, c) to be in
the class TR(b, λ, β) provided that the function f is in the class Rτ (A,B). Finally,

we give conditions for the integral operator G(k, c, z) =
z∫
0

(2 − up(t))dt to be in

the class TR(b, λ, β).
To establish our main results, we need the following lemmas.

Lemma 1. ([3], with n = 1) A sufficient condition for a function of the form (1)
to be in the class S(b, λ, β) is that

∞∑
n=2

[
λn2 + n(1 + λ (β |b| − 2)) + (β |b| − 1) (1− λ)

]
|an| ≤ β |b| . (14)

Lemma 2. ([3],with n = 1) Let the function f(z) defined by (2). Then f(z) ∈
TS(b, λ, β) if and only if (14) is satisfied.

Lemma 3. ([3], with n = 1)A sufficient condition for a function of the form (1)
to be in the class R(b, λ, β) is that

∞∑
n=2

n
[
λn+ (1− λ)

]
|an| ≤ β |b| . (15)

Lemma 4. ([3], with n = 1) Let the function f(z) defined by (2). Then f(z) ∈
TS(b, λ, β) if and only if (15) is satisfied.

Lemma 5. [14] If f ∈ Rτ (A,B) is of the form (1). Then

|an| ≤
(A−B) |τ |

n
(n ≥ 2). (16)

The result is sharp for the function f(z) given by

f(z) =

z∫
0

(
1 +

(A−B)τtn−1

1 +Btn−1

)
dt ( z ∈ U, n ≥ 2). (17)

Lemma 6. [11] If b, p, c ∈ C and k = 0,−1,−2, · · · , then the function up(z)
satisfies the recursive relations

u′p(z) =

(−c
4

)
k

up+1(z) (z ∈ C),

u′′p(z) =

(−c
4

)2
k(k + 1)

up+2(z) (z ∈ C). (18)
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2 The necessary and sufficient conditions

Unless otherwise mentioned, we shall assume in this paper that b, τ ∈ C∗, 0 <
β ≤ 1, 0 ≤ λ ≤ 1, zup(z) is given by (11) and J(k, c) is given by (13).

We obtain the sufficient condition for zup(z) defined by (11) to be in the classes
S(b, λ, β).

Theorem 1. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
S(b, λ, β) if

β |b|u′′p(1)
(
(1 + λ)(β |b|+ 1)

)
u′p(1) + β |b| (up(1)− 1) ≤ β |b| . (19)

Proof. Since

zup(z) = z +
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
zn, (20)

according to (14), we must show that

∞∑
n=2

[
λn2 + n(1 + λ (β |b| − 2)) + (β |b| − 1) (1− λ)

] (−c/4)n−1

(k)n−1(n− 1)!
≤ β |b| . (21)

Writing n = (n− 1) + 1 and n2 = (n− 1)(n− 2) + 3(n− 1) + 1, we have

λ
∞∑
n=2

(n− 1)(n− 2)
(−c/4)n−1

(k)n−1(n− 1)!
+ 3λ

∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!

+λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
+ (1 + λ (β |b| − 2))

∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!

+(1+λ (β |b|− 2))
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
+(β |b|−1)(1−λ)

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
+ (1 + λ (β |b|+ 1))

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

+β |b|
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ
(−c/4)2

k(k + 1)

∞∑
n=0

(−c/4)n

(k + 2)nn!
+ (1 + λ (β |b|+ 1))

(−c/4)

k

∞∑
n=0

(−c/4)n−1

(k)n(n− 1)!

+β |b|
∞∑
n=0

(−c/4)n+1

(k)n+1(n+ 1)!

= λu′′p(1) + (1 + λ (β |b|+ 1))u′p(1) + β |b| (up(1)− 1).

But this last expression is bounded above by β |b| if (19) holds. This completes
the proof.
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Corollary 1. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then z(2−up(z)) is in the class
TS(b, λ, β) if and only if the condition (19) is satisfied.

Proof. Since

z(2− up(z)) = z −
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
zn. (22)

By using the same techniques given in proof of Theorem 1, we have Corollary
1.

Putting λ = 0, 1 in Theorem 1 and Corollary 1, respectively, we obtain the
following corollaries.

Corollary 2. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
S(b, β) if

u′p(1) + β |b| (up(1)− 1) ≤ β |b| . (23)

Corollary 3. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
C(b, β) if

u′′p(1) + (β |b|+ 2)u′p(1) + β |b| (up(1)− 1) ≤ β |b| . (24)

Corollary 4. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then z(2−up(z)) is in the class
TS(b, β) if and only if the condition (23) is satisfied.

Corollary 5. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then z(2−up(z)) is in the class
TC(b, β) if and only if the condition (24) is satisfied.

Theorem 2. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ). Then zup(z) is in the class
R(b, λ, β) if

λu′′p(1) + (1 + 2λ)u′p(1) + (up(1)− 1) ≤ β |b| . (25)

Proof. In view of (15), we must show that

∞∑
n=2

n [λn+ (1− λ)]
(−c/4)n−1

(k)n−1(n− 1)!
≤ β |b| . (26)
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As in the proof of Theorem 1, we have

∞∑
n=2

n [λn+ (1− λ)]
(−c/4)n−1

(k)n−1(n− 1)!

= λ
∞∑
n=2

(n− 1)(n− 2)
(−c/4)n−1

(k)n−1(n− 1)!
+ 3λ

∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!

+(1− λ)
∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!
+ (1− λ)

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

+λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ
∞∑
n=3

(−c/4)n−1

(k)n−1(n− 3)!
+ (1 + 2λ) +

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 2)!
+

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ
(−c/4)2

k(k + 1)

∞∑
n=0

(−c/4)n−1

(k + 2)nn!
+ (1 + 2λ)

(−c/4)

k

∞∑
n=2

(−c/4)n−1

(k + 1)nn!

+
∞∑
n=0

(−c/4)n+1

(k)n+1(n+ 1)!

= λu′′p(1) + (1 + 2λ)u′p(1) + (up(1)− 1).

But this last expression is bounded above by β |b| if (25) holds. This completes
the proof.

By using a similar method as in the proof of Corollary 1, we obtain the fol-
lowing corollary.

Corollary 6. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then z(2−up(z)) is in the class
TR(b, λ, β) if and only if the condition (25) is satisfied.

Putting λ = 0 in Theorem 2 and Corollary 6, respectively, we obtain the
following corollaries.

Corollary 7. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
R(b, β) if

u′p(1) + up(1)− 1 ≤ β |b| . (27)

Corollary 8. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then z(2−up(z)) is in the class
TR(b, β) if and only if (27) is satisfied.

Theorem 3. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
S(b, λ, β) if

e(
−c
4k

)
[ λc2

16k2
+
(
1 + λ(β |b|+ 1)

)(−c

4k

)
+ β |b| (1− e(

c
4k

))
]
≤ β |b| . (28)
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Proof. We note that

(k)n−1 = k(k + 1)(k + 2) · · · (k + n− 2) ≥ k(k + 1)n−2 ≥ kn−1, (n ∈ N). (29)

From (14), (20) and (29), we have

∞∑
n=2

[
λn2 + n(1 + λ(β |b| − 2)) + (β |b| − 1)(1− λ)

] (−c/4)n−1

(k)n−1(n− 1)!

= λ
∞∑
n=2

(n− 1)(n− 2)
(−c/4)n−1

(k)n−1(n− 1)!
+ 3λ

∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!

+λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
+ (1 + λ(β |b| − 2))

∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!

+(1+λ(β |b|−2))
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
+ (β |b|−1)(1−λ)

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ
∞∑
n=3

(−c/4)n−1

(k)n−1(n− 3)!
+ (1 + λ(β |b|+ 1))

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 2)!

+β |b|
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

≤ λ
∞∑
n=3

(−c/4k)n−1

(n− 3)!
+(1+λ(β |b|+1))

∞∑
n=2

(−c/4k)n−1

(n− 2)!
+β |b|

∞∑
n=2

(−c/4k)n−1

(n− 1)!

= λ

(
λc2

16k2
e(

−c
4k

)

)
+ (1 + λ(β |b|+ 1))

(
−c

4k

)
e(

−c
4k

) + β |b|
(
e(

−c
4k

) − 1
)

= e(
−c
4k

)
[ λc2

16k2
+
(
1 + λ(β |b|+ 1)

)(−c

4k

)
+ β |b| (1− e(

c
4k

))
]
.

Therefore, we see that the last expression is bounded above by β |b| if (28)
holds. This completes the proof.

Putting λ = 0 and λ = 0, respectively in Theorem 3, we obtain the following
corollaries.

Corollary 9. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
S(b, β) if

e(
−c
4k

)
[−c

4k
+ β |b| (1− e(

c
4k

))
]
≤ β |b| . (30)

Corollary 10. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then z(2 − up(z)) is in the
class C(b, β) if

e(
−c
4k

)
[ c2

16k2
+ (β |b|+ 2)

(−c

4k

)
+ β |b| (1− e(

c
4k

))
]
≤ β |b| . (31)

Theorem 4. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
R(b, λ, β) if

e(
−c
4k

)
[ λc2

16k2
+ 3λ

(−c

4k

)
+ (1− e(

c
4k

))
]
≤ β |b| . (32)
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Proof. From (15), (20) and (29), we have

∞∑
n=2

n
[
λn+ (1− λ)

] (−c/4)n−1

(k)n−1(n− 1)!

= λ
∞∑
n=2

(n− 1)(n− 2)
(−c/4)n−1

(k)n−1(n− 1)!
+ 3λ

∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!

+λ
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!
+ (1− λ)

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ

∞∑
n=3

(−c/4)n−1

(k)n−1(n− 3)!
+ 3λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 2)!
+

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

≤ λ
∞∑
n=0

(−c/4k)n−1

(n− 3)!
+ 3λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 2)!
+

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ

(
c2

16k2
e(

−c
4k

)

)
+ 3λ

(
−c

4k

)
e(

−c
4k

) +
(
e(

−c
4k

) − 1
)

= e(
−c
4k

)
[ λc2

16k2
+ 3λ

(−c

4k

)
+ (1− e(

c
4k

))
]
.

Therefore, we see that the last expression is bounded above by β |b| if (32) satisfied.
This completes the proof.

Putting λ = 0 and λ = 0, respectively in Theorem 4, we obtain the following
corollaries.

Corollary 11. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
S(b, β) if

e(
−c
4k

) − 1 ≤ β |b| .

Corollary 12. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then zup(z) is in the class
C(b, β) if

e(
−c
4k

)
[ c2

16k2
+ 3

(−c

4k

)
+ (1− e(

c
4k

))
]
≤ β |b| .

The proof of Theorems 5 and 6 (below) is much akin to that of Theorems 3
and 4, therefore the details may be omitted.

Theorem 5. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then z(2− up(z)) is in the class
TS(b, λ, β) if

e(
−c
4k

)
[ λc2

16k2
+ (1 + λ(β |b|+ 1))

(−c

4k

)
+ β |b| (1− e(

c
4k

))
]
≤ β |b| . (33)

Theorem 6. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then z(2− up(z)) is in the class
TR(b, λ, β) if

e(
−c
4k

)
[ λc2

16k2
+ 3λ

(−c

4k

)
+ (1− e(

c
4k

))
]
≤ β |b| . (34)
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3 Inclusion Properties

Making use of Lemma 5, we will study the action of the Bessel function on
the class TR(b, λ, β).

Theorem 7. Let c < 0, k > 0(k ̸= 0,−1,−2, · · · ). If f ∈ Rτ (A,B), then J(k, c)f
is in the class TR(b, λ, β) if and only if

(A−B) |τ |
[
λu′p(1) + up(1)− 1

]
≤ β |b| . (35)

Proof. In view of (15), it suffices to show that

∞∑
n=2

n
[
λn+ (1− λ)

] (−c/4)n−1

(k)n−1(n− 1)!
|an| ≤ β |b| . (36)

Since f ∈ Rτ (A,B), then by Lemma 5, we get

|an| ≤
(A−B) |τ |

n
(n ≥ 1). (37)

Thus we must show that
∞∑
n=2

n[λn+ (1− λ))]
(−c/4)n−1

(k)n−1(n− 1)!

≤ (A−B) |τ |

[ ∞∑
n=2

n
[
λn+ (1− λ)

] (−c/4)n−1

(k)n−1(n− 1)!

]
. (38)

We have

(A−B) |τ | ×[
λ

∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!
+ λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

+(1− λ)
∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

]

= (A−B) |τ |

[
λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 2)!
+

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

]

= (A−B) |τ |

[
λ

∞∑
n=0

(−c/4)n+1

(k)n+1n!
+

∞∑
n=0

(−c/4)n+1

(k)n+1(n+ 1)!

]
= (A−B) |τ |

[
λu′p(1) + up(1)− 1

]
.

Therefore, we see that the last expression is bounded above by β |b| if (35)
satisfied. This completes the proof.

Putting λ = 0 in Theorem 7, we obtain the following corollary.

Corollary 13. Let c < 0, k > 0(k ̸= 0,−1,−2, · · · ). If f ∈ Rτ (A,B), then
J(k, c)f is in the class TR(b, β) if and only if

(A−B) |τ | [up(1)− 1] ≤ β |b| .
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4 An integral operator

In this section, we obtain the necessary and sufficient condition for the integral
operator G(k, c, z) defined by

G(k, c, z) =

z∫
0

(2− up(t))dt, (39)

to be in the class TR(b, λ, β).

Theorem 8. If c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then the integral operator
G(k, c, z) is in the class TR(b, λ, β) if and only if

λu′p(1) + up(1)− 1 ≤ β |b| . (40)

Proof. Since

G(k, c, z) = z −
∞∑
n=2

(−c/4)n−1

(k)n−1

zn

n!
, (41)

then in view of (15), we need only to show that

∞∑
n=2

n [λn+ (1− λ)]
(−c/4)n−1

(k)n−1n!
≤ β |b| (42)

or, equivalently

∞∑
n=2

[λn+ (1− λ)]
(−c/4)n−1

(k)n−1(n− 1)!
≤ β |b| . (43)

We have

∞∑
n=2

[λn+ (1− λ)]
(−c/4)n−1

(k)n−1(n− 1)!

= λ

∞∑
n=2

(n− 1)
(−c/4)n−1

(k)n−1(n− 1)!
+ λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

+(1− λ)

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 2)!
+

∞∑
n=2

(−c/4)n−1

(k)n−1(n− 1)!

= λ
∞∑
n=0

(−c/4)n+1

(k)n+1n!
+

∞∑
n=0

(−c/4)n+1

(k)n+1(n+ 1)!

= λu′p(1) + up(1)− 1.

Therefore, we see that the last expression is bounded above by β |b| if (39)
satisfied. This completes the proof.
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Putting λ = 0 in Theorem 8, we obtain the following corollary.

Let c < 0, k > 0(k ̸= 0,−1,−2, · · · ), then the integral operator G(k, c, z)
defined by (39) is in the class TR(b, β) if and only if

up(1)− 1 ≤ β |b| . (44)

5 Conclusion

Necessary and sufficient conditions for generalized Bessel functions of the first
kind zup(z) to be in the classes S(b, λ, β) and R(b, λ, β) of analytic functions with
complex order were obtained. Also we give the necessary and sufficient conditions
for z(2− up(z)) to be in the classes TS(b, λ, β) and TR(b, λ, β). Furthermore, we
give the necessary and sufficient conditions for J(k, c) to be in the class TR(b, λ, β)
provided that the function f is in the class Rτ (A,B). Finally, we give conditions

for the integral operator G(k, c, z) =
z∫
0

(2−up(t))dt to be in the class TR(b, λ, β).
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