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FIXED POINT THEOREMS ON PRODUCT OF b-METRIC
SPACES

Izabella ABRAHAM !

Abstract

The aim of this paper is to extend some fixed point results from [Serban,
M. A., Teoria punctului fix pentru operatori definiti pe produs cartezian, Presa
Universitard Clujeand, Cluj-Napoca, 2002] and [Presi¢, S. B., Sur une classe
d’ inéquations aux différences finite et sur la convergence de certaines suites,

Publ. Inst. Math. (Beograd) (N. S.). 5(19) (1965), 75-78] in the framework
of b-metric spaces.
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1 Introduction

One can observe, in the last decades, a considerable interest for generalizations
of the notion of a metric space and the development of fixed point theory in such

structures.
The notion of b-metric space was introduced by I. A. Bakhtin (1989) [2] and

S. Czerwik (1998) [6], [7].

Definition 1. Given a nonempty set X and a real number s > 1, a function
d: X x X —[0,00) is called a b-metric if it satisfies the following properties:

1. d(z,y) =0 if and only if x =y,
2. d(z,y) = d(y, ),
3. d(z,y) < sld(x,z) + d(z,9)],
for all z,y,z € X. The triplet (X,d,s) is called a b-metric space.

Inequality 3. is called the s-relazed triangle inequality.
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Remark 1. FEvery metric space is a b-metric space (with s = 1), but there exist
b-metric spaces which are not metric spaces (see [3], [11]).

Note that in a b-metric space (X, d, s), the s-relaxed triangle inequality implies
that (see [5]):

d(xo, ) < sd(xo, 1) + sd(x1,z2)
<

sd(xg, z1) + s?d(z1, x2) + s2d(x2, ) < ...
< sd(zo, 1) + ... + s"_ld(xn_g, Tp—1) + s”_ld(:cn_l, Tn), (1)

for all zg,...,z, € X and n € N.
Definition 2. Let (X,d,s) be a b-metric space. A sequence (), C X is called:

e convergent if there exists x € X such that li_}In d(xp,x) =0;
n o

o Cauchy if lm d(zp,xm) =0, i.e. for every € > 0 there exists N. € N
n,m—00
such that d(xp, xm) < €, for alln,m € N, n,m > N¢.

The space (X,d,s) is said to be complete if every Cauchy sequence of elements
from (X,d,s) is convergent.

Remark 2. Let (X, d, s) be a b-metric space, k € N* and dpaz : XF¥x X* = [0, 00)
given by

dmaz (X1, ooy k), (Y1, -, yx)) = max {d(z1,v1), ..., d(Tk, y) } ,

for all (z1,...,x1), (Y1, ..., yx) € X*. Then (X*,dpnaz, s) is a b-metric space.
Indeed, we only need to check the s-relaxed triangle inequality, since the other con-
ditions are trivially satisfied. Let (z1,...,2%), (Y1, ..., k), (21, .., 2x) € X*. Then,
it follows that

dmaw((-rl,-- ) (y 1, 7yk)) :max{d($17y1)7-"7d(xk7yk)} <
< max {sd(21,21) + sd(z1,41), ..., sd(@k, 2k) + sd(2k, y)} <
< SmaX{d(x17zl)’ (xkvzk)} +Smax{d(zlayl) (Zk?>yk)}
= $dmaz (X1, ...y ), (21, s 2k)) + 8dmaz (21, -y 28), (yl, o YE))-
In contrast to a metric space, the distance function in a b-metric space need

not be continuous (see, for example, [1]).
If (yn)n is a sequence of elements from (X,d,s) such that lim y, = y, the
n—oo

following chain of inequalities holds (see [8]):

1
—d(z,y) < liminf d(z,y,) < limsupd(z,y,) < sd(z,y), (2)
S

n—oo n—00

for all z € X.
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Definition 3. Let (X,d,s) and (Y, p,r) be two b-metric spaces. A function f :
X — Y is said to be continuous if for every (x,), C X and x € X such that

lim z, =z we have lim f(z,) = f(z).

Let (X,d,s) be a b-metric space, k € N* and f: X* — X.
Inspired by the results from [10], we consider the sequence (z,,), C X described
as follows:

Tpan = f(Tn, oosy Tpag—1),n € N* (3)

with initial values x1, ...,z € X.
Denote by F; the set of fixed points of f, that is

Fr={z"e X :2" = f(z",...,2")},

and define f: X — X as follows:

for all x € X.
Definition 4. A mapping ¥ : R’j_ — Ry is said to be

e monotonically increasing if:

Y(er, - er) <P(f1s e fi),
for all ey, ...;ex, f1,..., fr € Ry such that e; < f; for every i € {1,...,k};

e positively semihomogenous if:

w()\el,...,)\ek) S )\Lb(el, ...,ek),
foralley,....,ep € Ry and X > 0.

For the proof of the main results we need the following two lemmas given by
M. R. Taskovi¢ and T. Suzuki.

Lemma 1 (see Proposition 2 from [13]). Let ¢ : RX — Ry be a monotonically
increasing, positively semihomogenous and continuous mapping and let (cu,)n be
a sequence of positive real numbers satisfying the following conditions:

An+k S ¢(a1ana ceey akan—l-k—l)v

and
w(ab L) ak) <1,

for all m € N*, where aq, ..., ar are fized positive real constants.
Then there exists 6 € (0,1) such that

a, < LO™,

for all n € N*, where L = max { G, ..., 0‘9‘—,@} eER,.
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Lemma 2 (see Lemma 5 from [12]). Let (X,d,s) be a b-metric space and g :
N* — N given by

g(n) = —[~logyn],
for alln € N*. Then
m—1
d(l‘n,l'm) < Sg(m—n) Z d(l‘lﬂ xiJrl)a

for all ©p, ...,z € X, with n,m € N*, n <m.

2 Main results

In this section we extend some known results regarding the existence and
uniqueness of fixed points for mappings defined on Cartesian products of b-metric
spaces.

Lemma 3. Let (X,d, s) be a b-metric space, k € N*, f : X* — X and let (z,,), be
the sequence given by (3). Suppose that there exists a continuous, monotonically
increasing and positively semihomogenous mapping v : ]Rﬁ_ — Ry such that

d($n+k7 xn+k+1) S w(ald(l‘m xn-&-l)a ceey akd(xn+k717 anrk)) (4)
for all n € N*, where ay, ...,ax are fixed positive real constants such that
(o, ar) < 1. (5)

Then the sequence (zy)n is Cauchy.

Proof. We apply Lemma 1 for the sequence (ay,)n, where a,, = d(xp, Xpi1), n €
N*. In view of (4) and (5), there exists 6 € (0,1) such that

d(xp, Tpy1) < LO™,

for all n € N*, where L = max {<}, ..., 3—,’3} eRy.

Define g : N* — N by g(n) = —[—logyn], for all n € N* and choose nyg € N
satisfying s < 1.

In order to prove that (z,), is a Cauchy sequence, let n,m € N, n < m.

Case 1. If n < m < n+ 2" then, making use of Lemma 2, we see that

m—1 m—1 o)
A(Tpy Tm) < g9(m=—n) Z d(zi, xip1) < 8™ Z LO" < sOLo" Z@i
i=n i=n i=0
_ gt (6)
1-6’

where we used the fact that

n<m<n+2" = g(m—n) < n,
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since ¢ is an increasing function.
Case 2. If n 4 2™ < m, denote u := [”;;U"] > 1. We apply Lemma 2 again, as
well as (1), to obtain

|
—

I
d(Zn, Tm) < Sl+1d($n+i2"0 ) $n+(i+1)2"0) + Sud(xn-w?”o s Tm)

5
Lo

s [d(@npizno s Tppigro11) oo A(Tp (i41)270 -1, Trge(i41)270 )]

™

I
=)

1

+

»

ng(m—n—pa”()) [d($n+u2n0,ajn+u2no+1) “+ ...+ d(ajmfl) xm)] .

Since g is an increasing function, we can assert that

g(m—n—/ﬂ”(’)—g(?"‘) <m_n— [m_nD> < g(2") = no.

210 ono
Consequently,
p—1
d(xn,xm) < an0+i+1L |:6n+i2n0 +o4 9n+(i+1)2”0_1] n
=0
+ IO [T o
p—1 . 1
S Z Sn0+i+1Len+i2”0 - + SH+nO+IL0n+“2nO L
=0 1- —
om koo
— ﬁLSnO+1 ZS’LQ’LQ 0
B =0
0" no+1 - 2m0\ ¢
< ggls™ T 2 (s67)
i=0
hence
0" no+1 1
d(zp, Tm) < mLS T g7 (7)

since ng has been chosen such that s2™° < 1.
In view of the fact that lim ™ = 0, from (6) and (7) we deduce that (x,), is

n—oo

Cauchy. O

Theorem 1. Let (X, d,s) be a complete b-metric space, k € N* and f : X* — X.
Suppose that:

1. there exists ¥ : R’j_ — Ry, a continuous, monotonically increasing and
positively semihomogenous function that satisfies the conditions stated in
Lemma 3;
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2. there exists ¢ : Ri’f — Ry, a continuous and monotonically increasing func-
tion, such that

d(f(z), f(7)) < e(d(z1, f(Z)), ..., d(xk, f(T)),
d(y1, f(9)), - Ak, f()),
d(z1, f(9)), -, d(zx, [(9)),
d(y1, [(2)), ..., d(yk, [(2)),
d(r1,y1), -, ATk, Yk)),

for all & = (1, ...,21), 7 = (Y1, ..., yr) € X*;
1. for any r € Ry, the following implication holds:

r<s-¢0,..,0,7 .7 sr..,sr0/..,0)=r=0.
k k k 2k

Then f has a fized point.

Proof. On account of Lemma 3, 1. implies that the sequence (z,), given by (3)
is Cauchy. X being complete, there is z* € X with

lim d(z,,2") =0.

n—o0

By the s-relaxed triangle inequality, we find that
d(z*, f(z*,...,2")) < sd(z", xpir) + sd(zpik, f(z7, ..., x7)),

for all n € N.
According to 2., we have

d(xn+k7f(x*7 )) = (f(xm <oy Tt k— 1) f(x*v 7‘T*)) <
(d(xna xn+k d(anrkfl, xn+k))a
A T, " Fla")),

k
d(zn, F(27)), ., d(@n i1, F (7)),
d(IL‘*,ZL‘n+k), -"ad($*7$n+k)7

k
d(l’n,l‘*), "'7d($n+k‘—17$*))7

for all n € N.
Taking into account the properties of ¢, from the previous relations we get

d(a*, f(2*)) < 50(0,..., 0, d(@", f(@")), .., d(a", (a")),

k k
limsup d(zn, f(2*)), ..., limsup d(zpip_1, f(x)),0,...,0),
st (i, (5"))s o T sup dz 11, F(0)). 0, 0)
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in view of the fact that

lim sup d(zn, f(z*)) € Ry, ..., limsup d(zps5_1, f(z*)) € Ry,

n— oo n—oo

which follows from (2).
Since ¢ is an increasing function, using (2), we have the following inequalities:

lim sup d(n, f(z*)) < sd(z*, f(z*)), ..., limsup d(zp 51, f (")) < sd(z*, f(z*)).

n—oo n—oo

Therefore, we deduce that

d(a”, (%) < 5p(0, .., 0,d(a", J(2")), .., d(a", [(x")),

——
k k
sd(z*, f(x*)),...,sd(z", f(z¥)),0,...,0).
——
k 2k
Condition 3. now yields B
d(z*, f(z")) =0,
which completes the proof. O

Remark 3. If we take s = 1 in the previous theorem, we get Theorem 4.2.4 from

[10].
Theorem 2. If, in addition to the conditions of Theorem 1, we suppose that:

4. for any r € Ry, the following implication holds

r<¢(0,..,0,r...,r)=7r=0, (8)
—— N —
2k 3k

then f has a unique fized point.

Proof. The existence of a fixed point follows from Theorem 1. Let us prove that
it is unique. Suppose z*,y* € Fy. Then

d(a,y*) = d(f(a*), [(y)) < e(d@*, (@), .., d(@", (@),

k

aly", f(y")), - dly", f(y")),
d(z", f(y")), i d(z*, f(y")),
d(y", f(z")), k d(y", f(z")),
dz*,y"), .., ;(w*, y°)

K




8 Izabella Abraham

hence
d(z*,y") < ©(0,...,0,d(z*,y"), ..., d(z*,y")).
(=", y%) < ¢ (@), - d(z”, y7))
2k 3k
As d(z*,y*) > 0, by (8) we infer that

d(z*,y*) =0,

hence f has a unique fixed point.
O

Remark 4. If we consider s = 1 in the previous theorem, we obtain Theorem
4.2.5 from [10].

Theorem 3. Let (X,d,s) be a complete b-metric space, k € N*, f: X¥ — X and
p: Rﬁ — Ry a mapping satisfying the following conditions:

1. ¢ is continuous, monotonically increasing and positively semihomogenous;

2. the following inequality holds:
d(f(x1,...,zr), f(x2, s xht1)) < @ (d(x1,22), ..., d(Tk, Thy1)),  (9)
forall xq,...,xp41 € X
3. o(1,..,1) < 1;
4. ¢(0,...,0) = 0.
Under the above assumptions, f has a fixed point.

Proof. Let x1, ...,z € X and (z,), be the sequence given by (3). Condition (9)
implies that
d(f(l’n, ceey xn—&-k—l)’ f(xn+1a ceey $n+k)) S Qp(d(l‘nv CL'n+1), ceey d(l’n+k_1, 'In-i-k‘))v

for all n € N*. Thus, in view of conditions 1.-3., we can apply Lemma 3 to infer
that (zy,), is Cauchy. Since X is complete, there exists * € X so that

lim d(x,,z") = 0.

n—oo

We will show that 2* € Fy. By the s-relaxed triangle inequality, we have

d(z*, f(z*,...;2")) < sd(z*, Tpig) + sd(Xpik, f(z, ..., x%)), (10)
for all n € N.
From (9) and (1) we deduce that
d(Tpis f(2* oy 2)) = d(f(Xny ooy Tpgr—1), [T,y 2™)) <
< SA(f(@ny oo Tpgke1)s F(@ng 1y ooor Tgioe1, &) + oo + Fd(f(pgnt1, 25, ooy ),
fz*, ..., x"))
< 50(d(Zn, Tpg1)s oos d(Trgh—1, %)) + .. + Fp(d(znph1,2),0, ..., 0), (11)
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for all n € N. But, since ¢ is continuous and (0, ...,0) = 0,

lim (sgo(d(xn, Tri1)y ooy A Trgh1, %)) 4 oo + sP0(d(2p 1, 27),0, ..., O)) =0.

n—o0

Consequently, via (11), we conclude that

lim d(xpqk, f(z,...,2")) = 0.

n—oo

Using (10), it follows that =* € FY. O

Remark 5. If we consider s =1 in the previous theorem, we get Theorem 4.2.6
from [10].

Theorem 4. Let (X,d,s) be a complete b-metric space, k € N*, f : XF = X
and suppose that there exists a function ¢ : Ri — Ry satisfying the following
conditions:

1. ¢ is continuous, monotonically increasing and positively semithomogenous;

2. inequality (9) holds:

d(f(x1, ., zr), (T2, oy xp11)) < @ (d(x1,22), ..., d(Tky Tt 1))

forallxq,...;zp1 € X

4. for any r € R®_, at least one of the following conditions is valid:
e 50(0,...,0,7) + ... + s*71p(0,7,0,...,0) + s¥~Lo(r,0,...,0) < r
o 50(r,0,...,0) + ... + s¥71(0, ..., 0,7,0) + s¥71p(0,...,0,7) < r.
Then f has a unique fixed point.

Proof. Note that 4. assures that ¢(0,...,0) = 0. Therefore, we are in the condi-
tions of Theorem 3, thus f has a fixed point. Let us prove its uniqueness. If it
were true that there exist 2*,y* € Fy and x* # y*, then, based on (9) and 4., we
have

d(a®,y") = d(f (@ ... x"), F(y" - ))

< sd(f(2", . 27), f(2", o2t y")) +
+st 1d(f(93 YY) f *,y s y))
’Hd(f( ey ) YY)
< scp( 0, d(x*y") + .+
+s" (O,d(az ), 0,...,0) + s¥Lo(d(z*, y),0, ..., 0)

< d(z",y"),
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and
d(a*,y") = d(f(a*, ona®), ,y*»
< sd(f(a",..,z"), f( z¥...,2")) +
+ Py, Lyt 2t ab), ( syt x"))
+ Ayt ), (Y ))
< sp(d(z*,y"),0,...,0) + ... + s~ go(O,...,O,d(x*,y*),O)
+ ¥ (0, ..., 0,d(z*, "))
< d(z*,y").
We have arrived at a contradiction, hence f has a unique fixed point. O

Remark 6. If we consider s = 1 in the previous theorem, we obtain Theorem

4.2.7 from [10].

If the function ¢ : Rﬁ_ — R4 from Theorem 4 is given by

@(Tla ...,Tk) =qr1+ ... + gk,

for all r1,...,rx € Ry, where qq,...,qx € Ry with ¢1 + ... + g < 1, we obtain the
following consequence of Theorem 4.

Theorem 5. Let (X,d,s) be a complete b-metric space, k € N* and f: X* — X
such that

d(f(@1, s 2), f(w2, 0 Tq1)) < ud(w1,22) + oo+ qrd (T, Thg1), (12)

forall x1,...,xp11 € X, where qq,...,qx € Ry with q1 + ... +qr < 1. Then f has a
fixed point.
If, in addition, at least one of the following conditions is also satisfied

® sqr+ ... + sk_1q2 + sk_lql <1
® Sq1 + ... + Sk_lqk_l + Sk_lqk <1
then f has a unique fized point.

Remark 7. If s = 1, the previous theorem yields the generalization of the Banach-
Picard-Caccioppoli Contraction Mapping Principle for mappings defined on prod-
ucts of metric spaces, obtained by S. B. Presi¢ in [9].

If, for A € (0,1), we consider ¢ : R — R, given by
o(r1y ey ) = Ao max {ry, ..., g},

for all rq, ..., € R, then we obtain the following consequence of Theorem 3.
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Theorem 6. Let (X,d,s) be a complete b-metric space, k € N*; A € (0,1) and
f: Xk = X such that

d(f(z1, ..., z), f(x2, oy xpr1)) < A - max {d(z1,z2), ..., d(xg, Tpt1)}, (13)

for all x1,...,x541 € X. Then f has a fized point.
If the following condition is also satisfied

A(f(, . x), [y, ) < d(z,y), (14)

for all x,y € X, with x # y, then f has a unique fized point.

Example 1. Let X = [0,1], k =2 and d : [0,1]x[0,1] — [0,1], d(z,y) = (z — y)?,
for all x,y € [0,1]. Then (X,d,2) is a complete b-metric space. Consider f :
[0,1] x [0,1] — [0,1] a mapping such that f(x,y) = 5, for all x,y € [0,1]. We
have

1
52 jen s

d(f(331,$2)af($27$3))=d< 1 <
mazx {(:cl —x9)?, (xg — :133)2} = %maaz {d(x1,x2),d(x2,23)},

for all x1,x9,x3 € [0,1]. Therefore, (13) holds for \ = % € (0,1). Since

1

d(f(z.). f,y) =d (5. 5) = (@ = 9)* < (@~ )’ = d(a.y).

for all z,y € [0,1], with © # y, it follows that f admits a unique fized point
z*=0¢€[0,1].

Remark 8. Theorem 6 is a generalization of Theorem 5.
Indeed, let x1,...,xx+1 € X be arbitrary points. From (12) we see that
d(f(z1, . k), f(22, s Th11)) < qud(21,22) + oo + Qed(Tk, Thet 1)
<(q1+ ...+ qr) - max {d(x1,z2), ..., d(Tk, Th+1)} -

If we denote ¢ + ... + ¢ =: A, then A € (0,1) and consequently, (13) is fulfilled.
As for (14),

d(f(z,....x), f(Yy,...,y)) < sd(f(x,...x), f(z,....x,y)) + ..+
+ PN f(z, 2y, o ), F2, Y, )+
+ "N d(f (2, Y, ), (s )
< sqrd(z,y) + ... + 8" Lgud(z, y) + F Lqrd(x, y)
= (sqk o+ g+ Sk_1q1> d(z,y)
< d(z,y),
for all z,y € X with z # y.
Remark 9. Theorem 6 for s = 1 yields Theorem 2 from [4].
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