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Series III: Mathematics and Computer Science, Vol. 3(65), No. 1 - 2023, 1-12

https://doi.org/10.31926/but.mif.2023.3.65.1.1
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Abstract

The aim of this paper is to extend some fixed point results from [Şerban,
M. A., Teoria punctului fix pentru operatori definiţi pe produs cartezian, Presa
Universitară Clujeană, Cluj–Napoca, 2002] and [Prešić, S. B., Sur une classe
d’ inéquations aux différences finite et sur la convergence de certaines suites,
Publ. Inst. Math. (Beograd) (N. S.). 5(19) (1965), 75-78] in the framework
of b-metric spaces.
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1 Introduction

One can observe, in the last decades, a considerable interest for generalizations
of the notion of a metric space and the development of fixed point theory in such
structures.

The notion of b-metric space was introduced by I. A. Bakhtin (1989) [2] and
S. Czerwik (1998) [6], [7].

Definition 1. Given a nonempty set X and a real number s ≥ 1, a function
d : X ×X → [0,∞) is called a b-metric if it satisfies the following properties:

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ s[d(x, z) + d(z, y)],

for all x, y, z ∈ X. The triplet (X, d, s) is called a b-metric space.

Inequality 3. is called the s-relaxed triangle inequality.
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Remark 1. Every metric space is a b-metric space (with s = 1), but there exist
b-metric spaces which are not metric spaces (see [3], [11]).

Note that in a b-metric space (X, d, s), the s-relaxed triangle inequality implies
that (see [5]):

d(x0, xn) ≤ sd(x0, x1) + sd(x1, x2)

≤ sd(x0, x1) + s2d(x1, x2) + s2d(x2, xn) ≤ ...

≤ sd(x0, x1) + ...+ sn−1d(xn−2, xn−1) + sn−1d(xn−1, xn), (1)

for all x0, ..., xn ∈ X and n ∈ N.

Definition 2. Let (X, d, s) be a b-metric space. A sequence (xn)n ⊆ X is called:

� convergent if there exists x ∈ X such that lim
n→∞

d(xn, x) = 0;

� Cauchy if lim
n,m→∞

d(xn, xm) = 0, i.e. for every ε > 0 there exists Nε ∈ N

such that d(xn, xm) < ε, for all n,m ∈ N, n,m ≥ Nε.

The space (X, d, s) is said to be complete if every Cauchy sequence of elements
from (X, d, s) is convergent.

Remark 2. Let (X, d, s) be a b-metric space, k ∈ N∗ and dmax : Xk×Xk → [0,∞)
given by

dmax((x1, ..., xk), (y1, ..., yk)) = max {d(x1, y1), ..., d(xk, yk)} ,

for all (x1, ..., xk), (y1, ..., yk) ∈ Xk. Then (Xk, dmax, s) is a b-metric space.
Indeed, we only need to check the s-relaxed triangle inequality, since the other con-
ditions are trivially satisfied. Let (x1, ..., xk), (y1, ..., yk), (z1, ..., zk) ∈ Xk. Then,
it follows that

dmax((x1, ..., xk), (y1, ..., yk)) = max {d(x1, y1), ..., d(xk, yk)} ≤
≤ max {sd(x1, z1) + sd(z1, y1), ..., sd(xk, zk) + sd(zk, yk)} ≤
≤ smax {d(x1, z1), ..., d(xk, zk)}+ smax {d(z1, y1), ..., d(zk, yk)} =

= sdmax((x1, ..., xk), (z1, ..., zk)) + sdmax((z1, ..., zk), (y1, ..., yk)).

In contrast to a metric space, the distance function in a b-metric space need
not be continuous (see, for example, [1]).

If (yn)n is a sequence of elements from (X, d, s) such that lim
n→∞

yn = y, the

following chain of inequalities holds (see [8]):

1

s
d(x, y) ≤ lim inf

n→∞
d(x, yn) ≤ lim sup

n→∞
d(x, yn) ≤ sd(x, y), (2)

for all x ∈ X.
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Definition 3. Let (X, d, s) and (Y, ρ, r) be two b-metric spaces. A function f :
X → Y is said to be continuous if for every (xn)n ⊆ X and x ∈ X such that
lim
n→∞

xn = x we have lim
n→∞

f(xn) = f(x).

Let (X, d, s) be a b-metric space, k ∈ N∗ and f : Xk → X.
Inspired by the results from [10], we consider the sequence (xn)n ⊆ X described
as follows:

xk+n = f(xn, ..., xn+k−1), n ∈ N∗ (3)

with initial values x1, ..., xk ∈ X.
Denote by Ff the set of fixed points of f , that is

Ff = {x∗ ∈ X : x∗ = f(x∗, ..., x∗)} ,

and define f̃ : X → X as follows:

f̃(x) = f(x, ..., x),

for all x ∈ X.

Definition 4. A mapping ψ : Rk
+ → R+ is said to be

� monotonically increasing if:

ψ(e1, ..., ek) ≤ ψ(f1, ..., fk),

for all e1, ..., ek, f1, ..., fk ∈ R+ such that ei ≤ fi for every i ∈ {1, ..., k};

� positively semihomogenous if:

ψ(λe1, ..., λek) ≤ λψ(e1, ..., ek),

for all e1, ..., ek ∈ R+ and λ ≥ 0.

For the proof of the main results we need the following two lemmas given by
M. R. Tasković and T. Suzuki.

Lemma 1 (see Proposition 2 from [13]). Let ψ : Rk
+ → R+ be a monotonically

increasing, positively semihomogenous and continuous mapping and let (αn)n be
a sequence of positive real numbers satisfying the following conditions:

αn+k ≤ ψ(a1αn, ..., akαn+k−1),

and
ψ(a1, ..., ak) < 1,

for all n ∈ N∗, where a1, ..., ak are fixed positive real constants.
Then there exists θ ∈ (0, 1) such that

αn ≤ Lθn,

for all n ∈ N∗, where L = max
{
α1
θ , ...,

αk

θk

}
∈ R+.
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Lemma 2 (see Lemma 5 from [12]). Let (X, d, s) be a b-metric space and g :
N∗ → N given by

g(n) = − [− log2 n] ,

for all n ∈ N∗. Then

d(xn, xm) ≤ sg(m−n)
m−1∑
i=n

d(xi, xi+1),

for all xn, ..., xm ∈ X, with n,m ∈ N∗, n ≤ m.

2 Main results

In this section we extend some known results regarding the existence and
uniqueness of fixed points for mappings defined on Cartesian products of b-metric
spaces.

Lemma 3. Let (X, d, s) be a b-metric space, k ∈ N∗, f : Xk → X and let (xn)n be
the sequence given by (3). Suppose that there exists a continuous, monotonically
increasing and positively semihomogenous mapping ψ : Rk

+ → R+ such that

d(xn+k, xn+k+1) ≤ ψ(a1d(xn, xn+1), ..., akd(xn+k−1, xn+k)) (4)

for all n ∈ N∗, where a1, ..., ak are fixed positive real constants such that

ψ(a1, ..., ak) < 1. (5)

Then the sequence (xn)n is Cauchy.

Proof. We apply Lemma 1 for the sequence (αn)n, where αn = d(xn, xn+1), n ∈
N∗. In view of (4) and (5), there exists θ ∈ (0, 1) such that

d(xn, xn+1) ≤ Lθn,

for all n ∈ N∗, where L = max
{
α1
θ , ...,

αk

θk

}
∈ R+.

Define g : N∗ → N by g(n) = − [− log2 n], for all n ∈ N∗ and choose n0 ∈ N
satisfying sθ2

n0 < 1.
In order to prove that (xn)n is a Cauchy sequence, let n,m ∈ N, n < m.
Case 1. If n < m ≤ n+ 2n0 , then, making use of Lemma 2, we see that

d(xn, xm) ≤ sg(m−n)
m−1∑
i=n

d(xi, xi+1) ≤ sn0

m−1∑
i=n

Lθi ≤ sn0Lθn
∞∑
i=0

θi

= sn0Lθn
1

1− θ
, (6)

where we used the fact that

n < m ≤ n+ 2n0 ⇒ g(m− n) ≤ n0,
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since g is an increasing function.
Case 2. If n + 2n0 < m, denote µ :=

[
m−n
2n0

]
> 1. We apply Lemma 2 again, as

well as (1), to obtain

d(xn, xm) ≤
µ−1∑
i=0

si+1d(xn+i2n0 , xn+(i+1)2n0 ) + sµd(xn+µ2n0 , xm)

≤
µ−1∑
i=0

si+1sn0
[
d(xn+i2n0 , xn+i2n0+1)+...+d(xn+(i+1)2n0−1, xn+(i+1)2n0 )

]
+ sµsg(m−n−µ2n0 ) [d(xn+µ2n0 , xn+µ2n0+1) + ...+ d(xm−1, xm)] .

Since g is an increasing function, we can assert that

g (m− n− µ2n0) = g

(
2n0

(
m− n

2n0
−
[
m− n

2n0

]))
< g(2n0) = n0.

Consequently,

d(xn, xm) ≤
µ−1∑
i=0

sn0+i+1L
[
θn+i2n0

+ ...+ θn+(i+1)2n0−1
]
+

+ sµ+n0L
[
θn+µ2n0

+ ...+ θm−1
]

≤
µ−1∑
i=0

sn0+i+1Lθn+i2n0 1

1− θ
+ sµ+n0+1Lθn+µ2n0 1

1− θ

=
θn

1− θ
Lsn0+1

µ∑
i=0

siθi2
n0

≤ θn

1− θ
Lsn0+1

∞∑
i=0

(
sθ2

n0
)i
,

hence

d(xn, xm) ≤ θn

1− θ
Lsn0+1 1

1− sθ2
n0
, (7)

since n0 has been chosen such that sθ2
n0 < 1.

In view of the fact that lim
n→∞

θn = 0, from (6) and (7) we deduce that (xn)n is

Cauchy.

Theorem 1. Let (X, d, s) be a complete b-metric space, k ∈ N∗ and f : Xk → X.
Suppose that:

1. there exists ψ : Rk
+ → R+, a continuous, monotonically increasing and

positively semihomogenous function that satisfies the conditions stated in
Lemma 3;
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2. there exists φ : R5k
+ → R+, a continuous and monotonically increasing func-

tion, such that

d(f(x̄), f(ȳ)) ≤ φ(d(x1, f(x̄)), ..., d(xk, f(x̄)),

d(y1, f(ȳ)), ..., d(yk, f(ȳ)),

d(x1, f(ȳ)), ..., d(xk, f(ȳ)),

d(y1, f(x̄)), ..., d(yk, f(x̄)),

d(x1, y1), ..., d(xk, yk)),

for all x̄ = (x1, ..., xk), ȳ = (y1, ..., yk) ∈ Xk;

1. for any r ∈ R+, the following implication holds:

r ≤ s · φ(0, ..., 0︸ ︷︷ ︸
k

, r, ..., r︸ ︷︷ ︸
k

, sr, ..., sr︸ ︷︷ ︸
k

, 0, ..., 0︸ ︷︷ ︸
2k

) ⇒ r = 0.

Then f has a fixed point.

Proof. On account of Lemma 3, 1. implies that the sequence (xn)n given by (3)
is Cauchy. X being complete, there is x∗ ∈ X with

lim
n→∞

d(xn, x
∗) = 0.

By the s-relaxed triangle inequality, we find that

d(x∗, f(x∗, ..., x∗)) ≤ sd(x∗, xn+k) + sd(xn+k, f(x
∗, ..., x∗)),

for all n ∈ N.
According to 2., we have

d(xn+k, f(x
∗, ..., x∗)) = d(f(xn, ..., xn+k−1), f(x

∗, ..., x∗)) ≤
≤ φ(d(xn, xn+k), ..., d(xn+k−1, xn+k)),

d(x∗, f̃(x∗)), ..., d(x∗, f̃(x∗))︸ ︷︷ ︸
k

,

d(xn, f̃(x
∗)), ..., d(xn+k−1, f̃(x

∗)),

d(x∗, xn+k), ..., d(x
∗, xn+k)︸ ︷︷ ︸

k

,

d(xn, x
∗), ..., d(xn+k−1, x

∗)),

for all n ∈ N.
Taking into account the properties of φ, from the previous relations we get

d(x∗, f̃(x∗)) ≤ sφ( 0, ..., 0︸ ︷︷ ︸
k

, d(x∗, f̃(x∗)), ..., d(x∗, f̃(x∗))︸ ︷︷ ︸
k

,

lim sup
n→∞

d(xn, f̃(x
∗)), ..., lim sup

n→∞
d(xn+k−1, f̃(x

∗)), 0, ..., 0︸ ︷︷ ︸
2k

),
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in view of the fact that

lim sup
n→∞

d(xn, f̃(x
∗)) ∈ R+, ..., lim sup

n→∞
d(xn+k−1, f̃(x

∗)) ∈ R+,

which follows from (2).
Since φ is an increasing function, using (2), we have the following inequalities:

lim sup
n→∞

d(xn, f̃(x
∗)) ≤ sd(x∗, f̃(x∗)), ..., lim sup

n→∞
d(xn+k−1, f̃(x

∗)) ≤ sd(x∗, f̃(x∗)).

Therefore, we deduce that

d(x∗, f̃(x∗)) ≤ sφ(0, ..., 0︸ ︷︷ ︸
k

, d(x∗, f̃(x∗)), ..., d(x∗, f̃(x∗))︸ ︷︷ ︸
k

,

sd(x∗, f̃(x∗)), ..., sd(x∗, f̃(x∗))︸ ︷︷ ︸
k

, 0, ..., 0︸ ︷︷ ︸
2k

).

Condition 3. now yields
d(x∗, f̃(x∗)) = 0,

which completes the proof.

Remark 3. If we take s = 1 in the previous theorem, we get Theorem 4.2.4 from
[10].

Theorem 2. If, in addition to the conditions of Theorem 1, we suppose that:

4. for any r ∈ R+, the following implication holds

r ≤ φ(0, ..., 0︸ ︷︷ ︸
2k

, r, ..., r︸ ︷︷ ︸
3k

) ⇒ r = 0, (8)

then f has a unique fixed point.

Proof. The existence of a fixed point follows from Theorem 1. Let us prove that
it is unique. Suppose x∗, y∗ ∈ Ff . Then

d(x∗, y∗) = d(f̃(x∗), f̃(y∗)) ≤ φ( d(x∗, f̃(x∗)), ..., d(x∗, f̃(x∗))︸ ︷︷ ︸
k

,

d(y∗, f̃(y∗)), ..., d(y∗, f̃(y∗))︸ ︷︷ ︸
k

,

d(x∗, f̃(y∗)), ..., d(x∗, f̃(y∗))︸ ︷︷ ︸
k

,

d(y∗, f̃(x∗)), ..., d(y∗, f̃(x∗))︸ ︷︷ ︸
k

,

d(x∗, y∗), ..., d(x∗, y∗)︸ ︷︷ ︸
k

),
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hence
d(x∗, y∗) ≤ φ(0, ..., 0︸ ︷︷ ︸

2k

, d(x∗, y∗), ..., d(x∗, y∗)︸ ︷︷ ︸
3k

).

As d(x∗, y∗) ≥ 0, by (8) we infer that

d(x∗, y∗) = 0,

hence f has a unique fixed point.

Remark 4. If we consider s = 1 in the previous theorem, we obtain Theorem
4.2.5 from [10].

Theorem 3. Let (X, d, s) be a complete b-metric space, k ∈ N∗, f : Xk → X and
φ : Rk

+ → R+ a mapping satisfying the following conditions:

1. φ is continuous, monotonically increasing and positively semihomogenous;

2. the following inequality holds:

d(f(x1, ..., xk), f(x2, ..., xk+1)) ≤ φ (d(x1, x2), ..., d(xk, xk+1)) , (9)

for all x1, ..., xk+1 ∈ X;

3. φ(1, ..., 1) < 1;

4. φ(0, ..., 0) = 0.

Under the above assumptions, f has a fixed point.

Proof. Let x1, ..., xk ∈ X and (xn)n be the sequence given by (3). Condition (9)
implies that

d(f(xn, ..., xn+k−1), f(xn+1, ..., xn+k)) ≤ φ(d(xn, xn+1), ..., d(xn+k−1, xn+k)),

for all n ∈ N∗. Thus, in view of conditions 1.–3., we can apply Lemma 3 to infer
that (xn)n is Cauchy. Since X is complete, there exists x∗ ∈ X so that

lim
n→∞

d(xn, x
∗) = 0.

We will show that x∗ ∈ Ff . By the s-relaxed triangle inequality, we have

d(x∗, f(x∗, ..., x∗)) ≤ sd(x∗, xn+k) + sd(xn+k, f(x
∗, ..., x∗)), (10)

for all n ∈ N.
From (9) and (1) we deduce that

d(xn+k, f(x
∗, ..., x∗)) = d(f(xn, ..., xn+k−1), f(x

∗, ..., x∗)) ≤
≤ sd(f(xn, ..., xn+k−1), f(xn+1, ..., xn+k−1, x

∗) + ...+ skd(f(xn+k−1, x
∗, ..., x∗),

f(x∗, ..., x∗))

≤ sφ(d(xn, xn+1), ..., d(xn+k−1, x
∗)) + ...+ skφ(d(xn+k−1, x

∗), 0, ..., 0), (11)
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for all n ∈ N. But, since φ is continuous and φ(0, ..., 0) = 0,

lim
n→∞

(
sφ(d(xn, xn+1), ..., d(xn+k−1, x

∗)) + ...+ skφ(d(xn+k−1, x
∗), 0, ..., 0)

)
= 0.

Consequently, via (11), we conclude that

lim
n→∞

d(xn+k, f(x
∗, ..., x∗)) = 0.

Using (10), it follows that x∗ ∈ Ff .

Remark 5. If we consider s = 1 in the previous theorem, we get Theorem 4.2.6
from [10].

Theorem 4. Let (X, d, s) be a complete b-metric space, k ∈ N∗, f : Xk → X
and suppose that there exists a function φ : Rk

+ → R+ satisfying the following
conditions:

1. φ is continuous, monotonically increasing and positively semihomogenous;

2. inequality (9) holds:

d(f(x1, ..., xk), f(x2, ..., xk+1)) ≤ φ (d(x1, x2), ..., d(xk, xk+1)) ,

for all x1, ..., xk+1 ∈ X;

3. φ(1, ..., 1) < 1;

4. for any r ∈ R∗
+, at least one of the following conditions is valid:

� sφ(0, ..., 0, r) + ...+ sk−1φ(0, r, 0, ..., 0) + sk−1φ(r, 0, ..., 0) < r

� sφ(r, 0, ..., 0) + ...+ sk−1φ(0, ..., 0, r, 0) + sk−1φ(0, ..., 0, r) < r.

Then f has a unique fixed point.

Proof. Note that 4. assures that φ(0, ..., 0) = 0. Therefore, we are in the condi-
tions of Theorem 3, thus f has a fixed point. Let us prove its uniqueness. If it
were true that there exist x∗, y∗ ∈ Ff and x∗ ̸= y∗, then, based on (9) and 4., we
have

d(x∗, y∗) = d(f(x∗, ..., x∗), f(y∗, ..., y∗))

≤ sd(f(x∗, .., x∗), f(x∗, ..., x∗, y∗)) + ...+

+sk−1d(f(x∗, x∗, y∗, ..., y∗), f(x∗, y∗, ..., y∗))

+sk−1d(f(x∗, y∗, ..., y∗), f(y∗, ..., y∗))

≤ sφ(0, ..., 0, d(x∗, y∗)) + ...+

+sk−1φ(0, d(x∗, y∗), 0, ..., 0) + sk−1φ(d(x∗, y∗), 0, ..., 0)

< d(x∗, y∗),
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and

d(x∗, y∗) = d(f(x∗, ..., x∗), f(y∗, ..., y∗)) ≤
≤ sd(f(x∗, .., x∗), f(y∗, x∗..., x∗)) + ...+

+ sk−1d(f(y∗, ..., y∗, x∗, x∗), f(y∗, ..., y∗, x∗))

+ sk−1d(f(y∗, ..., y∗, x∗), f(y∗, ..., y∗))

≤ sφ(d(x∗, y∗), 0, ..., 0) + ...+ sk−1φ(0, ..., 0, d(x∗, y∗), 0)

+ sk−1φ(0, ..., 0, d(x∗, y∗))

< d(x∗, y∗).

We have arrived at a contradiction, hence f has a unique fixed point.

Remark 6. If we consider s = 1 in the previous theorem, we obtain Theorem
4.2.7 from [10].

If the function φ : Rk
+ → R+ from Theorem 4 is given by

φ(r1, ..., rk) = q1r1 + ...+ qkrk,

for all r1, ..., rk ∈ R+, where q1, ..., qk ∈ R+ with q1 + ... + qk < 1, we obtain the
following consequence of Theorem 4.

Theorem 5. Let (X, d, s) be a complete b-metric space, k ∈ N∗ and f : Xk → X
such that

d(f(x1, ..., xk), f(x2, ..., xk+1)) ≤ q1d(x1, x2) + ...+ qkd(xk, xk+1), (12)

for all x1, ..., xk+1 ∈ X, where q1, ..., qk ∈ R+ with q1 + ...+ qk < 1. Then f has a
fixed point.
If, in addition, at least one of the following conditions is also satisfied

� sqk + ...+ sk−1q2 + sk−1q1 < 1

� sq1 + ...+ sk−1qk−1 + sk−1qk < 1

then f has a unique fixed point.

Remark 7. If s = 1, the previous theorem yields the generalization of the Banach-
Picard-Caccioppoli Contraction Mapping Principle for mappings defined on prod-
ucts of metric spaces, obtained by S. B. Prešić in [9].

If, for λ ∈ (0, 1), we consider φ : Rk
+ → R+ given by

φ(r1, ..., rk) = λ ·max {r1, ..., rk} ,

for all r1, ..., rk ∈ R+, then we obtain the following consequence of Theorem 3.
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Theorem 6. Let (X, d, s) be a complete b-metric space, k ∈ N∗, λ ∈ (0, 1) and
f : Xk → X such that

d(f(x1, ..., xk), f(x2, ..., xk+1)) ≤ λ ·max {d(x1, x2), ..., d(xk, xk+1)} , (13)

for all x1, ..., xk+1 ∈ X. Then f has a fixed point.
If the following condition is also satisfied

d(f(x, ..., x), f(y, ..., y)) < d(x, y), (14)

for all x, y ∈ X, with x ̸= y, then f has a unique fixed point.

Example 1. Let X = [0, 1], k = 2 and d : [0, 1]×[0, 1] → [0, 1], d(x, y) = (x− y)2,
for all x, y ∈ [0, 1]. Then (X, d, 2) is a complete b-metric space. Consider f :
[0, 1] × [0, 1] → [0, 1] a mapping such that f(x, y) = x

2 , for all x, y ∈ [0, 1]. We
have

d (f(x1, x2), f(x2, x3)) = d
(x1
2
,
x2
2

)
=

1

4
(x1 − x2)

2 ≤

≤ 1

4
max

{
(x1 − x2)

2 , (x2 − x3)
2
}
=

1

4
max {d(x1, x2), d(x2, x3)} ,

for all x1, x2, x3 ∈ [0, 1]. Therefore, (13) holds for λ = 1
4 ∈ (0, 1). Since

d(f(x, x), f(y, y)) = d
(x
2
,
y

2

)
=

1

4
(x− y)2 < (x− y)2 = d(x, y),

for all x, y ∈ [0, 1], with x ̸= y, it follows that f admits a unique fixed point
x∗ = 0 ∈ [0, 1].

Remark 8. Theorem 6 is a generalization of Theorem 5.

Indeed, let x1, ..., xk+1 ∈ X be arbitrary points. From (12) we see that

d(f(x1, ..., xk), f(x2, ..., xk+1)) ≤ q1d(x1, x2) + ...+ qkd(xk, xk+1)

≤ (q1 + ...+ qk) ·max {d(x1, x2), ..., d(xk, xk+1)} .

If we denote q1 + ...+ qk =: λ, then λ ∈ (0, 1) and consequently, (13) is fulfilled.
As for (14),

d(f(x, ..., x), f(y, ..., y)) ≤ sd(f(x, .., x), f(x, ..., x, y)) + ...+

+ sk−1d(f(x, x, y, ..., y), f(x, y, ..., y))+

+ sk−1d(f(x, y, ..., y), f(y, ..., y))

≤ sqkd(x, y) + ...+ sk−1q2d(x, y) + sk−1q1d(x, y)

=
(
sqk + ...+ sk−1q2 + sk−1q1

)
d(x, y)

< d(x, y),

for all x, y ∈ X with x ̸= y.

Remark 9. Theorem 6 for s = 1 yields Theorem 2 from [4].
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