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MAXIMUM FLOW IN BUFFER-LIMITED DELAY
TOLERANT NETWORKS. THE STATIC APPROACH
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Abstract

Delay Tolerant Networks (DTNs), such as Internet, ad hoc networks,
satellite networks and sensor networks, have attracted considerable atten-
tion. The maximum flow problem has a vital importance for routing and
service scheduling in networks. For delay tolerant networks there are no
permanent end-to-end paths since the topology and links characteristics are
time-varying. In these instances, to account properly for the evolution of the
underlying system over time, we need to use dynamic network flow models.
When time is considered as a discrete variable, these problems can be solved
by constructing an equivalent static time expanded network. This is a static
approach. In this paper we study the maximum flow in a buffer-limited delay
tolerant network, with static approach.
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1 Introduction

The graph theory has been widely utilized to study DTNs in many works.
The maximum flow problem poses a crucial issue in network flow theory, which
is also the basis for routing and service scheduling in networks. When time is
considered as a variable discrete value, this problem can be solved by constructing
an equivalent static time expanded network [1, 4].

Static time expanded network has more nodes and arcs than the dynamic
network. Time Aggregated Graph (TAG) allows the properties of arcs to be
modeled as time series [6, 9].

Since the model does not need to replicate the entire graph for each time
interval, the algorithms for common operation are computationally more efficient
than those for static time expanded network. In this paper we describe the solution
of maximum flow in buffer-limited delay tolerant network, with static approach.
In many cases this approach is preferable.
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The remainder of this paper is organized as follows. In Section 2, the maximum
flow in static networks and dynamic networks are presented. Following it, Section
3 provides the maximum flow in buffer-limited delay tolerant network. In Section
4 there is an example.

2 Maximum flow in static networks and dynamic net-
works

In this section some notations and results used throughout the paper are dis-
cussed.

It is considered a connected, antisymmetric graph G = (N, A) without loops,
with the set of nodes N = {1, ...,4, ..., j, ...,n}, the set of arcs A = {aq, ..., ak, ..., am },ax =
(i,7),i,7 € N. Let S = (N, A, u) be a static network with the upper bound (
capacity) function u : A — N, N the natural number set, 1 the source node and n
the sink node.

For a given pair of subset X, Y of the nodes set N of a network S, the notation
is:

(X, Y) ={@,5)I(,j) € Aie X,jeY}
and for a given function f on arcs set A, the notation is:
(z.y)

If X ={i} or Y ={j}, the notation (i, Y) respectively (X, j) can be used.
A flow is a function f: A — N satisfying the next conditions:

v ifi=1

f(@i,N)— f(N,i)=<0 ifi#£1,n (1a)
—v ifi=n

0 < f(i,5) <ul(i,j),(i,5) € A (1b)

for some v > 0. We refer to v as the value of the flow f.
The maximum flow problem is to determine a flow f for which v is maximum.
Many algorithms for the maximum flow problem are based on the concept of
flow augmenting paths. A flow f is considered and the residual network R =
(N, A,r) is defined with nodes set N and

A=At UA- (2a)
AT ={(i,4)|(i,5) € A and f(i,7) < u(i,j)} (2b)
A™ ={(i,5)|(i,§) € A and f(i,5) > 0} (2c)

The residual capacity r : A — N with respect to f is

G ) = {u(@j) — f(i,) for (i,j) € AT
’ [, for (j,i) € A~



Maximum flow in D'TN. The static approach 365

A flow augmenting path related to f is a path P in R from 1 to n.

Theorem 1. [1] A flow f* is a mazimum flow if and only if the residual network
R contains no augmenting path.

Some additional notions and results are introduced. A distance function in
the residual network R is a function d : N — N. We say that a distance function
is valid if it satisfies the following two conditions:

din)=0 (4a)

d(i) <d(j)+1,i€ N, (i,7) € A (4b)

The distance labels have the following two properties [1].

Property 1. If the distance labels are valid, the distance label d(7) is a lower
bound on the length of the shortest path from node 7 to node n in the residual
network R.

Property 2. If d(1) > n, the residual network R contains no path from the
source node 1 to the sink node n.

We say that the distance labels are exact for each node ¢ if d(i) equals the
length of the shortest path from node i to node n in the residual network R. Also,
we say that an arc (i,j) in the residual network is admissible if it satisfies the
condition that d(i) = d(j) + 1 and we refer to all other arcs as inadmissible. A
path from node 1 to node n consisting entirely of admissible arcs is an admissible
path. An admissible path has the following property [1].

Property 3. An admissible path from the source node 1 to the sink node n
is a shortest augmenting path.

An shortest augmenting path from the source node 1 to the sink node n in
residual network R can be determined by performing a backward breath-first
search of the network R, starting at the sink node n with d(n) = 0.

The shortest augmenting path algorithm is presented in Algorithm 1, which
appeals three procedures presented in Algorithm 2, Algorithm 3 and Algorithm 4

1].
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Algorithm 1 Shortest Augmenting Path Algorithm.
: f +0
obtain the exact distance labels d(7)
141
while d(1) < n do
if i has an admissible arc then
Advance(i)
if i =n then
Augment and set i = 1
end if
else
Retreat(i)
end if
: end while

—_ = s
Wy 72

Algorithm 2 Advance Procedure.
1: procedure ADVANCE(%)

2: let (i,7) be an admissible arc in A
3: pred(j) < i
4: 14

5: end procedure

Algorithm 3 Retreat Procedure.
1: procedure RETREAT(7)

2 d(i) « min{d(j) +1|(i, ) € A}
3 if i # s then

4: i < pred(i)
5
6:

end if
end procedure

Algorithm 4 Augment Procedure.
1: procedure AUGMENT

2: using the predecessor indices identify an augmenting path P from 1 to n
3: mr < min{r(i,j)|(i,j) € P}
4: augment mr units of flow along path P

5: end procedure

There are the following two theorems [1].

Theorem 2. The shortest augmenting path algorithm correctly computes a maz-
imum flow in network S = (N, A, u).
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Theorem 3. The shortest augmenting path algorithm runs in O(n?m) time.

Further, there are some notations and notions for dynamic flow.

The static network models have many applications. In other applications, time
is an essential ingredient. In these instances, we need to use dynamic network flow
models.

Obviously, the problem of finding a maximum flow in dynamic network D =
(N, A, u,h), with time function h : A — N, is more complex than the problem of
finding a maximum flow in static network S = (N, A,u). Fortunately, this issue
can be solved by rephrasing the problem in dynamic network D into a problem in
the expanded static network Se = (Ne, Ae, ue). This is a static approach.

Let H = {0,1,...,T} be the set of time periods. There is N, = {i;|i € N,t €
H}, A, = {(it, 30)|(i,§) € At 0 € I{},y;(i}g,jg) = u(i,j), (i, jo) € A,. Thus
the expanded static network S, = (N,, 4., u,) is obtained with multiple sources
11, ..., 17 and multiple sinks nq,..np. It can further be reduced the multiple
sources, multiple sink problems in the time expanded network S, = (N., A, u,)
to the single source, single sink problem by introducing a super source node 0 and
a super sink node n 4+ 1. Thus the time expanded network S, = (Ne, Ac, ), is
obtained with N, = N, U{0,n+ 1}, A = A, U{(0,1))|t € H} U {(ny,n + 1)|t €
H}, ue(0,14) = ue(ng,n+ 1) = oo,t € H.

For more details see [1, 2, 4, 8]. Another dynamic networks were studied and
detailed in [3, 7].

3 Maximum flow in buffer-limited delay tolerant net-
works

The DTN network is a special case of dynamic network [6], [9]. Assuming a
time period H = [tg,T"), where ¢ty and T represent the start time and respectively
the terminal time. H is partitioned into ¢ small time intervals 74, = [tx_1, k), k =
1,2,....q.

Let D = (N, A, H,ur,cr,b;) be the dynamic network with the set of nodes
N = {1,...,n}, the set of arcs A = {ay,...,an}, the time period H = [ty,T),
the upper bound (capacity) u-(i,5) = (ur, (4,7), ..., ur,(4,7)), (4,7) € A, the cache
transfer series ¢; = (cry 7y (4), ..y Cry_y,7,(4)),7 € N, where c;,_, -, (i) describes
the data transferred from 7,_7 to 75 time interval in node ¢. The initial val-
ues of ¢, (i) for all i € N are initialized to zero and the node buffers b, (i) =
(bry (1) ey bry_y 1y ()5 € N = {1,n},bry | 1 (1) = brp_ 7 (n) =00,k =1,...,q.

The maximum flow problem of buffer-limited DTN is to send as much flow as
possible from source node 1 to sink node n, without violating the arcs capacity
and the nodes constraints. In this paper the static approach is used.

For maximum flow in buffer-limited DTN problem the time extended network
Se = (Ne, Ae, ue) is used here with the following modifications and completions:
Nt; = {Zk|Z €N, k=1, ""Q}7A/e = {(Zka]k)|(7“a]) €A k=1, ...,q}U{(ik,ik+1)’k =
1, s — 1},ue(ik,jk) = Up, (Z,j), k = 1, ...,q,ue(ik, ik+1> = ka:Tk-o—l (Z,j), k =
1,....q — 1.
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In this network the shortest augmenting path algorithm is used, which has been
presented in Section 2, to obtain the maximum flow in static extended network
Se = (Ne, A¢, ue), which is equivalent with a maximal flow in dynamic network
D = (N,A,H,ur,c;,b;). The residual network R, = (Ne,fle,re) is built as the
residual network R = (N, A, r) which has been described in Section 2.

The following two theorems are presented.

Theorem 4. The shortest augmenting path algorithm correctly computes a maz-
imum flow in static extended network Se = (Ne, Ae, Ue).

Proof. This theorem results from Theorem 2. O

Theorem 5. The shortest augmenting path algorithm applied in static extended
network Se = (Ne, Ae,ue) Tuns in O(T3n?(n +m)) time.

Proof. From Theorem 3 results that the shortest augmenting path algorithm ap-
plies in static extended network S, = (Ne, Ae,ue) Tuns in O(n?m,) time. There
isne=Tn+2and O(Tn+2) = O(Tn), me = (T —1)(n —2)+Tm + 2T =
T(n+m)—n+2 < T(n+m). Thus, the algorithm runs in O(T3n%(n + m))
time. O

4 Example

In the example from paper [9] a maximum flow with dynamic approach is
obtained. In this paper, that example is taken again in order to obtain a maximum
flow with static approach.

The support graph G = (N, A) is presented in Figure 1, where the source node
is 1, the sink node is 4 and the given time period is H = [tg,T) = [0,5). Note here
that T is partitioned into 5 time intervals, for instance 71 = [0,1), 70 = [1,2), 73 =
[2,3),74 = [3,4), 75 = [4,5). Assume that the initial feasible flow is equal to zero.

Figure 1: The support graph G=(N,A)

The capacities u,, (4, 7),k =1,2,3,4,5 and (4, j) € A are indicated in Table 1.
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—

(4,9)/ur (i, 5) | un (i,5) | ury(4,5) | ury(i5) | ury(is7) | urg(d,59)

= OO Ol
OO N

Table 1: The capacities ur, (4,7),k =1,2,3,4,5 and (i,j) € A

The nodes buffers b, (i) = (bry ry,bry.rs5 Orgras brars), 4 € N are indicated in
Table 2.

i/br (i) | briry(2) | Oryry (4) | brayry(2) | bryrs ()
1 00 00 00 00
2 ) ) ) )
3 5) ) ) )
4 00 'e) 00 00

Table 2: The node buffers b,(i),i € N

The time extended network S, = (Ne, A, ue) is presented in Figure 2 and on
each arc the capacity is passed. In this network the shortest augmenting path
algorithm is used to obtain the path P, = (0,1y,21,31,41,5) is obtained with
path flow f(P;) = 1. After flow enlarging the residual network R, = (N, Ac, 1)
which is presented in Figure 3. Further the augmenting paths is determined:

o P, =(0,1y,21,29,49,5) with path flow f(P) =

. = (0,13, 23, 24,44,5) with path flow f(Ps) =

° = (0,13, 33, 34,44, 5) with path flow f(Py) =

° = (0, 19, 32, 33, 34,44, 5) with path flow f(P5) =

. = (0, 13,23, 24, 25,45, 5) with path flow f(Ps) =

° = (0, 13,23, 33,34,44,5) with path flow f(Pr) =1

e Py =(0,11,21,31,392,33,34,45,5) with path flow f(Ps) =1

In residual network R, = (Ne,fle,re) there is not an augmenting path and
from Theorem 1 results that the flow is a maximum flow. The value of maximum
flow is v = F(P1) + f(Pe) + f(Py) + F(Py) + F(P5) + F(Py) + F(Pr) + F(Ps) =
1+5+44+24+14+1+1+1=16.

The time extended network S, = (NN, A, ue), is presented in Figure 4, where
on each arc the capacity and the flow are passed.
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Figure 3: The residual network R, = (N, A, Te)
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Figure 4: The network S, = (N, Ae, ue) and the maximum flow

5 Conclusions

In this paper, we have presented a solution of maximum flow in buffer-limited
delay tolerant networks with static approach. In many cases this approach is
preferable. We have succeed in adapting the time expanded network
Se = (Ne, A¢, ue) for the classic dynamic network D = (N, A, H,u) to the time
expanded network S, = (N, A¢, u,) for the buffer-limited delay tolerant network
D= (N,A H urcr,b;).

We have studied only the maximum flow problem from single source to single
sink node in a network. The multiple sources and multiple sinks flow problems
have many applications in practice, and will be further studied.
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