
Bulletin of the Transilvania University of Braşov • Vol 13(62), No. 1 - 2020

Series III: Mathematics, Informatics, Physics, 331-342

https://doi.org/10.31926/but.mif.2020.13.62.1.24

THE EFFECT OF THE STEP-SIZE ON THE NUMERICAL
BEHAVIOR OF A PRIMAL-DUAL INTERIOR-POINT

ALGORITHM APPLIED TO P∗(κ)−LINEAR
COMPLEMENTARY PROBLEM

Chahinez CHENOUF1 and Zakia KEBBICHE∗,2

Abstract

Theoretically, the step-size plays a crucial role in the complexity anal-
ysis of primal-dual interior-point algorithms. In this paper, we would like
to focus on the strategy of how to select the step-size. We propose three
choices applied to P∗(κ)−Linear complementarity problem based on two new
kernel functions. The numerical behavior of the primal-dual interior-point
algorithm is shown to be improved with these step-size choices. We have
significantly reduced the number of the inner iterations and the calculation
time of the large-update algorithm.

2000 Mathematics Subject Classification: 90C05, 90C33.
Key words: P∗(κ)−Linear complementarity problem; kernel functions;

primal-dual interior-point algorithm; step-size; large-update methods; small-
update methods.

1 Introduction

After the appearance of the Karmarkar algorithm in 1984 for linear program-
ming, the interior-point methods experienced a real revolution giving rise to a
radical change in the theoretical and numerical study of linear programs. The
primal-dual path-following methods introduced by Kojima et al. in 1989 [10]
and Monteiro et al. [13] are the most attractive and most of the corresponding
algorithms are based on the logarithmic barrier function. In practice, finding a
strictly feasible initial solution that is close to the central-path is a major difficulty

1Faculty of Sciences, Laboratory of Fundamental and Numerical Mathematics, Departe-
ment of Mathematics, University Ferhat Abbas Setif 1, Setif, Algeria, e-mail: chahinezchenouf-
math@gmail.com

2∗ Corresponding author, Faculty of Sciences, Laboratory of Fundamental and Numerical
Mathematics, Departement of Mathematics, University Ferhat Abbas Setif 1, Setif, Algeria,
e-mail: kebbichez@yahoo.fr

332 Chahinez Chenouf and Zakia Kebbiche

that is the subject of research. To remedy this difficulty, researchers propose the
use of the following alternatives: the weighted path-following method, the path-
following method via a kernel function and the infeasible path-following method.
In this paper we are interested in the path-following method based on kernel func-
tions. These approaches have the advantage of starting the algorithm with any
strictly feasible point and improving the algorithmic complexity of large-update
interior-point methods.

In 2002, Peng et al. [14] introduced new barrier functions ”self-regular func-
tions” for primal-dual interior-point methods applied to linear problems and re-
cently, researchers in [1] and [4] proposed another new class of interior-point meth-
ods always for linear programming based on kernel functions that are not loga-
rithmic and not necessarily self-regular. This helps to improve all the theoretical
results obtained so far and to provide the best algorithmic complexity, especially
for large-update methods.

The success observed in interior-point methods for linear programming has
encouraged researchers to develop interesting extensions to solve other classes of
optimization problems.

In 1991, Kojima et al. [11] demonstrated the existence of the central path for
the linear complementarity problem (LCP), with a P∗(κ)−matrix and gave the
same results of complexity of the case of linear programming. In 1995, Miao [12]
performed an extension of the Mizuno-Todd-Ye method to the case of a P∗(κ)−
(LCP). In 2005, Illés and Nagy [7] gave another version of the Mizuno-Tood-Ye
algorithm and they gave its algorithmic complexity. Afterwards, the results of
complexity continue with the works of El Ghami et al. [3] in 2010, El Ghami [5]
in 2013, El Ghami et al. [6] in 2017, Kheirfman et al. [9] in 2018, ...

In our work, first we present a primal-dual interior-point (central path) method
based on a kernel function with a trigonometric barrier term for P∗(κ)− (LCP).
It is an extension of a method studied for the first time for the case of a linear
program in 2016 [2]. The convergence of the corresponding algorithm is demon-
strated and its complexity is given for both small and large-update methods in [6].
Then, we would like to focus on the strategy of how to select the step-size. Our
aim is to find out the suitable step-size which guarantees not only the iteration
still feasible, but also the decreases of the number of the inner iteration and thus
improving the computational behavior of the algorithm. Theoretically, the step-
size plays a crucial role in the complexity analysis of primal-dual algorithms but
it is very small during each inner iteration, which requires a very large number of
iterations and a large calculation time. In practical computation we discover that
it may accelerate the iteration process by enlarging the step-size. So, we propose
two other choices: dynamic and practical step-sizes. Numerical tests show that
algorithms with practical and dynamic step-size are more efficient than these with
theoretical one.

The paper is organized as follows: in section 2, we define the linear complemen-
tarity problem. In section 3, we briefly review the basic concepts of path-following
methods for linear complementarity problem such as the central path and new
search directions. We also present the generic algorithm for P∗(κ) − (LCP).

The effect of the step-size on the numerical behavior of a PD IPA 333

The complexity analysis is performed in section 4. Numerical results based on
P∗(κ) − (LCP) with different choices of the step-size are obtained in section 5.
Finally, section 6 contains some concluding remarks and directions for future re-
search.

Some notations used throughout the paper are as follows. First, Rn,Rn+, Rn++

denote the n−dimensional Euclidean space with the inner product 〈., .〉, the set of
nonnegative vectors and the set of positive vectors, respectively. ‖.‖ denotes the
2-norm for vectors. For x, s ∈ Rn+, xs denote the componentwise (or Hadamard)
product of the vectors x and s. Furthermore, e denotes the all-one vector of length

n, X = diag(x) the n × n diagonal matrix with components of vector x ∈ Rn++

are diagonal entries.

2 Position of the problem

Since its appearance, complementarity has attracted the interest of several
researchers and its importance can be measured by the crucial role it plays in
the resolution of several problems in different fields: linear programming, convex
quadratic programming, variational inequalities, mechanics, ...

The linear complementarity problem noted (LCP), is written in the form:

(LCP)


Find x, s ∈ Rn such that

s = Mx+ q
xts = 0

(x, s) ≥ 0,

(1)

where M ∈ Rn× n is a square matrix of order n and q ∈ Rn.

Existing methods to solve (LCP) are extensions of methods designed for linear
programming.

3 Path-following (Central path) method

This approach is proposed by Kojima, Mizuno and Yoshise in 1991, it is an

extension of the path-following method applied to linear programming.

We consider the (LCP) defined by (1) and we noted by:

S =
{

(x, s) ∈ Rn+ × Rn+ : s = Mx+ q
}

the set of feasible solutions of (LCP).

Sint =
{

(x, s) ∈ Rn++ × Rn++ : s = Mx+ q
}

the set of strictly feasible solutions
of (LCP).

Assumptions: Without loss of generality, it is assumed that there is (x0, s0) >
0, such that s0 = Mx0 + q with M is P∗(κ)−matrix.

Definition 1. : The class P∗(κ) is introduced by Kojima et al. [11] in 1991.

Let Y be an open convex subset of Rn and κ ≥ 0, we say that M is P∗(κ) −
matrix on Y if and only if (1+4κ)

∑
i ∈J+(x) xi(Mx)i +

∑
i ∈J−(x) xi (Mx)i ≥ 0,

334 Chahinez Chenouf and Zakia Kebbiche

for all x ∈ Y , and J+(x) = {i ∈ J : xi (Mx)i ≥ 0} and J−(x) = {i ∈ J : xi
(Mx)i < 0}, in addition, M is called a P∗− matrix if it is P∗(κ) −matrix for
some κ ≥ 0. Note that the class P∗ is the union of all P∗(κ)−matrices for κ ≥ 0
and contains the class of positive semidefinite matrices by choosing κ = 0.

Proposition 1. [11]: If M is a P∗ −matrix, then

M ′ =

(
−M I
S X

)
is a nonsingular matrix for all diagonal and positive

matrices X and S in Rn×n.

Corollary 1. [6]: Let M a P∗ −matrix and x, s ∈ Rn++. Then for all a ∈ Rn
the system{

−M 4 x+4s = 0
S 4 x+X 4 s = a

(2)

has a unique solution (4x,4s).

3.1 Introduction of new directions

The basic idea of these methods is to replace the 2 nd equation in (1) with
the nonlinear equation sx = µe for µ > 0.

So we get the following parametric system
s = Mx+ q,
sx = µe,

(x, s) ≥ 0.
(3)

Since M is a P∗(κ) −matrix and (1) is strictly feasible, then system (3) has
a unique solution (x(µ), s(µ)) for each µ > 0.

(x(µ), s(µ)) is called µ−center of (3), the set of µ−centers (µ > 0) defines the
central path of (3). If µ→ 0, the limit of the central path exists and satisfies the
condition of complementarity and belongs to the set of solutions of (1), [11].

Let (x, s) be a strictly feasible point and µ > 0. We define the vector

υ =
√

xs
µ (4)

Note that the pair (x, s) coincides with the µ−center (x(µ), s(µ)) if and only
if υ = e.

The search directions 4x,4s are given by the system{
−M 4 x+4s = 0
s4 x+ x4 s = −µυ5 Φ(υ),

(5)

where Φ(υ) is a regular strictly convex function defined for υ > 0 with Φ(e) = 0
and minimal in υ = e.

Since M is a P∗ −matrix, system (5) defines (4x ,4s) in a unique way for
all x > 0 and s > 0.

We define also the vector p by

The effect of the step-size on the numerical behavior of a PD IPA 335

p =
√

x
s , (6)

and we note by

M = PMP ,P = diag(p) and V = diag(υ) with υ =
√

xs
µ ,

dx = υ4x
x , ds = υ4s

s . (7)

System (5) can be reformulated as follows{
−Mdx + ds = 0
dx + ds = −OΦ(υ).

(8)

From the solution dx and ds, the vectors 4x and 4s can be calculated using
(7).

3.2 The generic primal-dual interior-point algorithm

Data
A proximity function Φ(υ), a threshold parameter τ > 0, a parameter of precision
ε > 0 and an update parameter θ, 0 < θ < 1.

Initialization: k = 0;µ = µ0;x = x0; s = s0; υ0 =
√

x0s0

µ0
.

While nµk > ε do
Start (outer iteration)
µk+1 = (1− θ)µk ;
While Φ(υ) > τ do
Start ((inner iteration)
- Solve system (8) to determine (dx, ds) then (4x,4s) ;

- Calculate the step-size α and let x = x+ α4 x, s = s+ α4 s , υ =
√

xs
µ ;

end (inner iteration),
end (outer iteration).
End.

4 Complexity of the algorithm

Small-update methods: If we take θ = O(1√
n

) as a reduction factor of µ and

τ = O(1), first, we ensure that we stay in a neighborhood of the central path
and, on the other hand, we get an algorithmic complexity of order O(

√
n log n

ε)
for linear optimization. It is the best complexity obtained today. Algorithms that
use a reduction θ depending on n are called small-update algorithms.

336 Chahinez Chenouf and Zakia Kebbiche

Large-update methods: By using τ = O(n) and θ = O(1) we obtain a better
numerical efficiency in practice. The theoretical complexity is however less good,
it is of order O(n log n

ε) for linear optimization. Algorithms that use a reduction

θ independent of n are called large-update algorithms.

The parameters τ and θ and the step-size α must be chosen in such a way
that the number of iterations is as small as possible. This number depends on the
choice of function Φ ” the proximity function”. Recently, researchers are trying to
improve the number of iterations and thus improving the algorithmic complexity,
based on new choices of the kernel function Ψ.

In the following table, we give some examples of kernel functions with complex-
ity results that correspond to large-update methods. For small-update methods,
the complexity results are the same for all functions, namely O((1 + 2κ)

√
n log n

ε)
which is the best complexity until today for this type of methods [6].

i Kernel functions Ψi(t) Large-update methods

1 t2−1
2 − log t O((1 + 2κ)n log n

ε)

2 t2−1
2 + t1−q−1

q(q−1) −
q−1
q (t− 1) O((1 + 2κ)qn

q+1
2q log n

ε)

3 1
2(t− 1

t)
2 O((1 + 2κ)n

2
3 log n

ε)

4 t2−1
2 + e

1
t
−1 − 1 O((1 + 2κ)

√
n log2 n log n

ε)

5 t2−1
2 −

∫ t
1 e

1
ξ
−1
dξ O((1 + 2κ)

√
n log2 n log n

ε)

6 t2−1
2 + t1−q−1

(q−1) , q > 1 O((1 + 2κ)qn
q+1
2q log n

ε)

7 t− 1 + t1−q−1
(q−1) , q > 1 O((1 + 2κ)nq log n

ε)

8 t2−1
2 + 6

π tan(π 1−t
4t+2) O((1 + 2κ)n

3
4 log n

ε)

9 t2−1
2 + 4

pπ (tanp(π
2t +2)− 1), p ≥ 2 O(p(1 + 2κ)n

2+p
2(1+p) log n

ε

5 Numerical results

To prove the efficiency of a new kernel function and evaluate its influence
on the computational behavior of an algorithm, it is necessary to perform some
numerical tests.

In this part, we consider a kernel function studied recently in 2017 defined in
[6] by: Ψ1(t) = (t

2−1
2 + 4

πp [tanp(π
2t +2)− 1], p ≥ 2).

To solve the problem numerically, we used the software MATLAB. We have
taken ε = 10−6, θ = 0, 99, p = 2 and τ = 10 as examples of fixed size and τ = n
as examples with a variable size corresponding to large-update methods.

Step-size α is chosen in two different ways:

1 /The theoretical choice: We take the default step-size defined in [6] by:
α = 1

(1+2κ)(9+4πp)(8δ+2)
p+2
p+1

= 1

(1+2κ)(9+8π)(8δ+2)
4
3
.

2/The dynamic choice: Due to the fact that the theoretical value of the
step-size α is very small in each iteration, we choose a dynamic step proposed in
[16] in order to enlarge the step-size and improve the computational behavior of

The effect of the step-size on the numerical behavior of a PD IPA 337

the algorithm, so we put:α =


2α̃ if ‖4x‖ ≥ n

5α̃ if 1 ≤ ‖4x‖ < n
10α̃ if ‖4x‖ < 1,

where n is the size of the problem and α̃ is the theoretical value of the step-size.

5.1 Examples of fixed size

We consider the following p∗(0)− LCP :

Example 1. M =

 2 1 1
1 2 1
1 1 2

 and q =

 −4
−5
−1

 .

The starting point is:

x0 =
(

0.9918 2.0082 0.0475
)t

and s0 =
(

0.0395 0.0558 2.0952
)t
.

The solution is: x∗ =
(

1 2 0
)t
.

Example 2. M =


2 1 1 1
1 2 0 1
1 0 1 2
−1 −1 −2 0

 and q =


−8
−6
−4
3

 .

The starting point is:

x0 =
(

2.4742 0.4992 0.0073 2.5639
)t

s0 =
(

0.0187 0.0365 3.6093 0.0120
)t
.

The solution is: x∗ =
(

2.5 0.5 0 2.5
)t
.

Example 3. M =



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


and q =



−1
−1
−1
−1
−1
−1
−1


The starting point is:

x0 =
(

3.6563 6.2520 7.8097 8.3347 7.8253 6.2743 3.6722
)t
,

s0 =
(

0.0597 0.0400 0.0321 0.0347 0.0415 0.0512 0.0703
)t
.

The solution is: x∗ =
(

3.5 6 7.5 8 7.5 6 3.5
)t
.

Example 4. We consider the following matrix

338 Chahinez Chenouf and Zakia Kebbiche

M =



1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 1 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 1 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 1 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 1 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 1 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 1 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 1 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 1 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



and q =



−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1



.

The starting point is:

(x0)t =

(
0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 1.0009

)
,

(s0)t =

(
1.0261 1.0243 1.0225 1.0198 1.0189 1.0171 1.0153 1.0135

1.0108 1.0099 1.0081 1.0063 1.0045 1.0027 0.0009

)
.

The solution is:

x∗ =
(

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
)t
.

In the tables of results, n represents the size of the example, (Outer) represents
the number of outer iterations, (Inner) represents the number of inner iterations
and (T(s)) represents the calculation time in seconds. We summarize our results
in the following table:

Theoretical choice Dynamic choice
Examples Outer Inner T (s) Outer Inner T (s)

Example 1 5 58375 42.891960 5 6028 6.299861

Example 2 5 25459 36.219801 5 2542 4.553663

Example 3 5 39594 47.917731 5 3959 5.763560

Example 4 5 61277 114.108174 5 6123 14.543124

Table1: Choice of the step-size for kernel function 1 with fixed size.

5.2 Examples of variable size

Example 5. We consider the following p∗(0)− LCP with

mij =


4 if i = j

−1 if |i− j| = 1
0 if not

and q =


−1
.
.
−1

 for

{
1 ≤ i ≤ n.
1 ≤ j ≤ n.

The effect of the step-size on the numerical behavior of a PD IPA 339

Theoretical choice Dynamic choice
n Outer Inner T (s) Outer Inner T (s)

7 5 39558 44.563197 5 3841 5.466096

15 5 61272 135.943155 5 6118 13.859415

25 5 83043 338.890412 5 8301 30.255119

50 5 127377 1226.104891 5 12720 102.328240

75 −− −− −− 5 18166 318.978979
Table 2 : Choice of the step-size for kernel function 1 with the variable size.

5.3 Example of a nonmonotonic (LCP)

Example 6. We consider a P∗(κ)− LCP, with

M =

 0 1 + 4κ 0
−1 0 0
0 0 c

 and q =

 0.01
0.501
−0.49

 with c ≥ 0 and κ ≥ 0.

We have the table:
Theoretical choice Dynamic choice

κ Outer Inner T (s) Outer Inner T (s)
0 5 62837 51.851148 5 6278 4.372369

0.2 5 84248 59.693772 5 8407 5.834019
0.25 5 89093 62.967999 5 8909 6.427401
0.9 5 113218 88.492977 5 11262 8.627475

Table 3 : Choice of the step-size for the kernel function 1 with differents values
of κ .

5.4 A practical choice of the step size

It is a less expensive procedure than the linear search introduced in [8]. We
have the conditions: {

x+ α+
x dx > 0

s+ α+
s ds > 0

Which give: α+
x = βαx and α+

s = βαs such as 0 < β < 1, or

αx =

{
min
i∈I

(− xi
dxi

) with I = {i : dxi < 0}
1 elsewhere.

αs =

{
min
i∈I

(− si
dsi

) with I = {i : dsi < 0}
1 elsewhere.

We take αk = min(α+
x , α

+
s). So the new iterate is: (x+, s+) = (x, s) +

αk(dx, ds).

For this choice, we consider two kernel functions defined by:
- Kernel function 1 [6], (2017) : Ψ1(t) = (t

2−1
2 + 4

πp [tanp(π
2t +2)−1], p ≥ 2).

- Kernel function 2 [9], (2018): Ψ2(t) = t2−1
2 + 4

π cot(πt
1+t).

340 Chahinez Chenouf and Zakia Kebbiche

Applying this procedure, we obtain the results summarized in the following
tables:

Kernel function 1 Kernel function 2

Examples Outer Inner T (s) Outer Inner T (s)

Example 1 5 8 0.058775 5 10 0.058207

Example 2 5 6 0.049446 5 72 0.108315

Example 3 5 8 0.056408 5 25 0.083541

Example 4 5 8 0.055684 5 108 0.194179
Table 4: A practical choice of the step-size α for examples with fixed size.

Kernel function 1 Kernel function 2

n Outer Inner T (s) Outer Inner T (s)

7 5 8 0.109394 5 107 0.051988

25 5 8 0.432846 5 59 0.633441

50 5 8 1.422137 5 77 0.940066

150 6 8 13.619962 6 629 26.217568

250 6 8 68.230574 6 117 30.151152
Table 5: A practical choice of the step-size α for examples with variable size.

Kernel function 1 Kernel function 2

κ Outer Inner T (s) Outer Inner T (s)

0 5 11 0.040181 5 6 0.062437

1/5 5 10 0.055514 5 11 0.076077

1/4 5 10 0.061765 5 11 0.077246

0.9 5 6 0.059457 5 11 0.044084

Table 6: A practical choice of the step-size α with a P∗(κ)− (LCP).

6 Conclusion

In this paper, we have presented a primal-dual interior-point algorithm for
P∗(κ) − LCP based on two recent kernel functions and we have given numerical
results for this algorithm with different choices of the step-size. We have reached
the following conclusions:

- Kernel functions play a very important role in the analysis of interior-point
algorithms since they improve their complexities.

- The complexity of the primal-dual interior-point methods for linear pro-
gramming based on the logarithmic barrier function is of order O(n log n

ε) for
the large-update algorithms, whereas, with these new features, the complexity
is getting better at O(

√
n log n log n

ε). However, the complexity of small-update
algorithm is always of order O(

√
n log n

ε).

- The best result of complexity for the large-update and small-update methods
applied to P∗(κ)− LCP , can be achieved, namely: O((1 + 2κ)

√
n log n log n

ε) for
large-update methods and O((1 + 2κ)

√
n log n

ε) for small-update methods.

The effect of the step-size on the numerical behavior of a PD IPA 341

- For k = 0, we find the same results of complexity obtained in the case of
linear programming.

- In practice, the theoretical value of step-size α is very small in each iteration,
which requires a very large number of iterations and calculation time.

- Algorithm with dynamic step-size work faster than the algorithm with the
theoretical one during the inner iterations.

- The practical choice has significantly reduced the number of iterations and
the calculation time of the algorithm than the dynamic choice.

In our future study,

- We intend to generalize these results to other classes of optimization prob-
lems.

- Finding new kernel functions will be of a great importance.

- It is necessary to insist on the analytic structure of the kernel function in
order to reduce the number of inner iterations and thus improve the algorithmic
complexity.

References

[1] Bai, Y.Q., El Ghami, M. and Roos, C., A comparative study of kernel func-
tions for primal-dual interior-point algorithms in linear optimization, SIAM
Journal on Optimization 15 (2004), no. 1, 101–128.

[2] Bouafia, M, Benterki, D. and Yassine, A. An efficient primal-dual interior
point method for linear programing problems based on a new kernel function
with a trigonometric barrier term, J. of Optimization Theory and Applica-
tions 170 (2016), no. 2, 528–545; doi: 10.1007/s10957-016-0895-0.

[3] El Ghami, M. and Steihaug, T., Kernel-function based primal-dual algo-
rithms for P∗(κ)− linear complementarity problems, International J. RAIRO-
Operations Research 44 (2010), no. 3, 185–205.

[4] El Ghami, M., Guennoun, Z. A., Bouali S. and Steihaug, T., Primal-dual
interior-point methods for linear optimization based on a kernel function with
trigonometric barrier term, J. of Computational and Applied Mathematics,
236 (2012), no. 15, 3613–3623.

[5] El Ghami, M., Primal-dual algorithms for P∗(κ)− linear complementarity
problems based on kernel function with trigonometric barrier term, Optimiza-
tion Theory, Decision Making, and Operations Research Applications 2013
(2013), 331–349.

[6] El Ghami, M. and Wang, G.Q., Interior-point methods for P∗(κ)− linear
complementarity problem based on generalized trigonometric barrier function,
Shanghai University of Engineering Science Shanghai, 201620, P.R. China,
(2017).

342 Chahinez Chenouf and Zakia Kebbiche

[7] Illés, T. and Nagy, M., The Mizuno-Todd-Ye predictor-corrector algorithm
for sufficient matrix linear complementarity problem, Alkalmaz. Mat. Lapok
22 (2005), no. 1, 41–61.

[8] Keraghel, A., Etude adaptative et comparative des principales variantes dans
l’algorithme de Karmarkar, Thèse de Doctorat, Université Joseph Fourier
–Grenoble I, France, 1989.

[9] Kheirfam, B. and Haghighi M., An infeasible interior-point method for the
P-matrix linear complementarity problem based on a trigonometric kernel
function with full-Newton step, Communication in Combinatorics and Opti-
mization, 3 (2018), no. 1, 51-70.

[10] Kojima, M., Megiddo, N., Noma, T. and Yoshise, A., A primal-dual interior
point algorithm for linear programming, In: N. Megiddo (Ed), Progress in
Mathematical programming, Interior-Point Related Methods, 10 Springer
Verlag, New York, 1989, 29–47.

[11] Kojima, M., Megiddo, N., Noma, T. and Yoshise, A., A unified approach to
interior point algorithms for linear complementarity problems, Volume 538
of Lecture Notes in Computer Science, Springer Verlag, Berlin, 1991.

[12] Miao, J., A quadratically convergent O((1 + κ)
√
n l-iteration algorithm for

the P ∗(κ)−matrix linear complementarity problem, Mathematical Program-
ming, 69 (1995), 355–368.

[13] Monteiro, R.D.C. and Adler, I., Interior path-following primal-dual algo-
rithms. Part I: Linear programming, Mathematical Programming, 44 (1989),
27–41.

[14] Peng, J. Roos, C. and Terlaky, T., Self-regularity : a new paradigm for
primal-dual interior-point algorithms, Princeton University Press, Princeton,
NJ, 2002.

[15] Peng, J., Roos, C. and Terlaky, T., Self-regular functions and new search
directions for linear and semidefinite optimization, Mathematical Program-
ming, 93 (2002), 129–171.

[16] Qian, Z.G. and Bai, Y.Q., Primal-dual interior-point algorithms with dy-
namic step-size based on kernel fonctions for linear programming, Journal of
Shanghai University 9 (2005), no. 5, 391-396.

