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Abstract

In this paper, we have concentrated on the inquest of warped prod-
uct semi-invariant submanifolds of a nearly (e, d)-trans-Sasakian manifold.
Firstly, some properties of this structure are acquired. Further, we estab-
lished the warped product of the type £ | x,Ep is a usual Riemannian prod-
uct of £, and Ep , where F| and Ep are anti-invariant and invariant sub-
manifolds of a nearly (g, §)-trans-Sasakian manifold M, respectively. Also,
we explored the warped product of the type Epx,E | and acquired a depic-
tion for such type of warped product.
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1 Introduction

Bishop and Neill [10] in 1969 premeditated the concept of warped product
manifolds. After that several papers appeared which dealt with various geometric
aspects of warped product submanifolds [1, 4, 5, 9, 10]. Chen initiated the no-
tion of warped product CR submanifolds and established there exists no warped
product CR-submanifolds of the form M = E| x,Ep such that /| is a real sub-
manifold and Ep is a holomorphic submanifold of a Kaehler manifold M so he
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termed it as warped product CR submanifolds in the form M = Epx,FE, where
Ep and F,| are holomorphic and totally real submanifolds of a Kaehler mani-
fold M [6, 7]. In [13], some kinds of warped products were studied. Bejancu
and Duggal [2] also used the idea of (¢)-Sasakian manifolds. Xufeng and Xiaoli
premeditated that these manifolds are real hypersurfaces of indefinite Kahlerian
manifolds [14]. Kumar et al. in [11] also premeditated the curvature conditions
of these manifolds and Tripathi et al. in [13] investigated (¢)-almost para con-
tact manifolds. De and Sarkar in [8] also initiated (£)-Kenmotsu manifolds and
premeditated conformally flat, Weyl semisymmetric, ¢-recurrent (e)-Kenmotsu
manifolds. In [12], the authors initiated and premeditated CR submanifolds and
CR structure of a CR-submanifold of nearly (e, §)- trans-Sasakian structures and,
thus, those of Sasakian manifolds. In [2, 14, 16 ], some properties of semi-invariant
submanifolds were studied.

The aim of the paper is to inquest the concept of warped product semi-invariant
submanifolds of a nearly (e, §)-trans-Sasakian manifold. We have shown that the
warped product in the form M = FE| x,Ep is simply Riemannian product of
E| and Ep where E | is an anti-invariant submanifold and Ep is an invariant
submanifold of a nearly (e, §)-trans-Sasakian manifold M. Thus we deliberate
the warped product submanifold of the type M = Epx,F| by transposing the
two factors £| and Ep that will simply be called warped product semi-invariant
submanifold. Thus, we deduce the integrability of the involved distributions in
the warped product and acquire a depiction result.

2 Preliminaries

If M is an n-dimensional almost contact metric manifold with structure tensors
(f,&€,m,g) where f is a (1,1) type tensor field, £ is a vector field, n is dual of &
and ¢ is also Riemannian metric tensor on M, then

FU=-U+nU), nE =1, fE=0, n(fU)=0, g(&=c (1)

and
n(U) =eg(U,§), g(fU fV) =gUV)—enUn(V) (2)
where ¢ = g(&,&) = +1, for any vector fields U,V on M, then M is called (g)-

almost contact metric manifold. An (¢)-almost contact metric manifold is called
(e, 6)-trans-Sasakian manifold if

(Vu )V =a{g(U, V)¢ —en(V)U} + B{g(fU,V)E = on(V) fU} (3)

Vué = —eafU — B6f2U (4)

holds for some smooth functions o and 8 on M and € = +1,§ = +1. Further, an
(e)-almost contact metric manifold is called a nearly (g, 0)-trans-Sasakian manifold
if

(Vuf)V + (Vv U = a{29(U, V)§ — en(V)U — en(U)V}
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—B{n(V)fU +n(U)fV} ()

The covariant derivative of the tensor filed f is defined as
(Vuo)V =VufV - fVyV (6)

for all U, VePM.

If M is a submanifold immersed in M and deliberate the induced metric on M
also denoted by g, then the Gauss and Weingarten formulas for a warped product
semi-invariant submanifolds of a nearly (e, §)-trans-Sasakian manifold are given
by

VyV = VyV + WU, V) (7)

VuN = —ANU + VEN (8)

for any U, V in PM and N in PtM, where PM is the Lie algebras of vector
fields in M and P+M is the set of all vector fields normal to M. V< is the
connection on the normal bundle, A is the second fundamental form and Ay is
the Weingarten map associated with IV as,

9g(ANU, V) = g(h(U, V), N). 9)

For any UePM, we write
fU=PU+ SU (10)

where PU is the tangential component and SU is the normal component of fU.
Similarly for any NeP+M, we write

fN =BN+KN (11)

where BN is the tangential component and KN is the normal component of fNN.
The covariant derivatives of the tensor fields P and S are defined as

(VuP)V = VyPV — PVyV (12)

(VuS)V = V§ESY — SV V (13)

for all U,VePM. If M is a Riemannian manifold isometrically immersed in an
almost contact metric manifold M, then for every ueM there exist a maximal in-
variant subspace denoted by D, of the tangent space T, M of M. If the dimension
of D, is the same for all values of ueM, then D, gives an invariant distribution
D on M.

A submanifold M of an almost contact metric manifold M with e PM is called
a semi-invariant submanifold of M if there exists two differentiable distributions
D and D+ on M such that

(i) PM=D&D"a (),

(i)  f(Du) € Dy

(iii)  f(DL) c T.PM.

for any ueM, where P-M denotes the orthogonal space of P,M in P,M. A
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semi-invariant submanifold is called anti-invariant if D, = {0} and invariant if
le = {0}, respectively, for any ueM. It is called the proper semi-invariant sub-
manifold if neither D,, = {0} nor D;- = {0}, for every uelM.

If M is a semi-invariant submanifold of an almost contact metric manifold M,
then, S(P,M) is a subspace of P;-M. Then for every ueM, there exists an invari-
ant subspace z,, of P,M such that

PIM = S(P,M) @ z, (14)

A semi-invariant submanifold M of an almost contact metric manifold M is called
Riemannian product if the invariant distribution D and anti-invariant distribution
D are totally geodesic distributions in M.

If (F,gg) and (F,gr) are two Riemannian manifolds and y is a positive differ-
entiable function on F, then the warped product of £ and F' is the Riemannian
manifold Ex,F' = (ExF,g), where

9=9e+Y9r (15)

A warped product manifold E'x,F' is called trivial if the warping function y is
constant. We recall.

Lemma 1. If M = Ex,F is a warped product manifold with the warping function
y, then

(i) VuyVel'(PE), for each U, VePE,

(ii)) VyW =VwU = (Ulny)W, for each UePE and WePF,

(it) VwX = ViyX — g(W, X)/y)grady,

where V and VT denote the Levi-Civita connections on M and F respectively.

In the above lemma grady is the gradient of function y defined by g(grady, X) =
Xy, for each XePM. From Lemma 1, the warped product manifold M = Ex,F
are in the form
(i) F is totally geodesic in M;

(ii) F is totally geodesic in M;
Now, we denote by pyV and QuV the tangential and normal parts of (Vi f)V,
that is,

(Vuf)V =puV +QuV (16)

for all U,VePM. Making use of (7), (8), and (10) (2.13), the above equation
yields,
puV = (VyP)V — AgyU — Bh(U, V) (17)

QuV = (VuS)V + h(U, PV) — Kh(U, V) (18)

It is quite simple to check the following properties of p and @, which we write
here for later use:

p1(i) pusvX = puX +pvX (i) QuivX =QuX +QvX
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p2(i) pu(V+X)=puV+puX (ii) QuV+X)=QuV +QuX

p3(i) g(puV,X) = —g(V, puX)

for all U, V, XePM. On a submanifold M of a nearly (e, §)-trans-Sasakian mani-
fold M, we deduce from (6) and (16) that

(@) poV +pvU =a{2g(U,V)§ —en(V)U —en(U)V} (19)
—B5{n(V)PU + n(U)PV}

(it) QuV +QvU = —Bo{n(V)SU +n(V)SU}
for any U, VePM.

3 Warped product semi-invariant submanifolds of
nearly (e, §)-trans-Sasakian manifold

In this section we establish the warped product M = Ex,F'is trivial when §
is tangent to F', where F and F' are the Riemannian submanifolds of a nearly
(¢,6)-trans-Sasakian manifold M . Thus, we deliberate the warped product
M = Ex,F, when ¢ is tangent to the submanifold £. We have the following
non-existence theorem.

Theorem 1. If M = Ex,F is a warped product semi invariant submanifold of a
nearly (g,0)-trans-Sasakian manifold M such that E and F are the Riemannian
submanifolds of M then M is a usual Riemannian product if the structure vector
field & is tangent to F.

Proof. Consider any UePE and ¢ tangent to F', then we have
Vi€ = Vué + h(U,¢€) (20)
From (4) and Lemma 1 (ii), we have
—eafU + BoU — Bon(U)§ = (Ulny)§ + h(U,¢) (21)
The tangential component of (21), we conclude that
(Ulny)¢ = —eaPU + B6U — pon(U)E,
for all UePE, that is, y is constant function on FE. Thus, M is the Riemannian

product.
O
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Now, we will explore the other case of warped product M = ExyI" when
¢ePE | where E and F' are the Riemannian submanifolds of M. For any UePF,
we have

Vo = Vot +h(U,¢) (22)
From (4) and Lemma 1 (ii), we get
(i) Elny = —eaP — BOP%,  (ii) h(U,&) =eaSU — B6S*U (23)
Here there are two subcases such as :
(1) M=FE;x,Ep
(i) M =EpxyE|

where Ep and E| are invariant and anti-invariant submanifolds of M, respec-
tively. In the following theorem we prove that the warped product semi-invariant
submanifold of the type (i) is CR-product.

Theorem 2. If M = F| x,Ep is a warped product semi invariant submanifold
of a nearly (g, 0)-trans-Sasakian manifold M such that E, is a anti-invariant and
FEp is a invariant submanifolds of M , then M is a usual Riemannian product.

Proof. When £ePEp, then by Theorem 1, M is a Riemannian product. Thus, we
consider £ePFE, . Consider UePEp and WePE |, then we have

g(h(U, fU), SW) = g(h(U, fU), fW) = g(Vu fU, fW)
g(MU, fU),SW) = g(fVuU, fW) + g(Vu /YU, fWV) (24)

From the structure equation of nearly (g, §)-trans-Sasakian manifold, the sec-
ond term of right hand side vanishes identically. Thus from (2), we derive

g(h(U, fU),SW) = —g(U,VuW) +en(W)g(U, V&)

—aen(U)g(U, fW) — pon(U)g(fU, fW) (25)
Using then from (7), Lemma 1 (ii) , and (4), we obtain

g(h(U,¢U), SW) = (Boen(W) = Winy)||[U|* = Boen(U)g(U, W) (26)
Replacing U by fU in (26) and by use of the fact that £ePE, , we obtain
g(h(U, fU), SW) = (83en(W) — Winy)||U||? (27)

It follows from (26) and (27) that Winy = 0, for all WePE, . Also, from (23) we
have £lny = —eaP — BOP2.

From the above theorem we have seen that the warped product of the type M =
E | xyEp is a usual Riemannian product of an anti-invariant submanifold £, and
an invariant submanifold Ep of a nearly (g, §)-trans-Sasakian manifold M . Since
both E| and Ep are totally geodesic in M , then M is CR-product. Now, we
study the warped product semi-invariant submanifold M = E| x,Ep of a nearly
(g, 0)-trans-Sasakian manifold M. O
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Theorem 3. If M = Epx,E | is a warped product semi-invariant submanifold
of a nearly (g, 6)-trans-Sasakian manifold M , then the invariant distribution D
and the anti-invariant distribution D+ are always integrable.

Proof. Consider U,VeD | then we have
S[U, V] =SVyV — SVyU (28)

From (13), we have

S[U,V] = (VuS)V — (VvS)U (29)
Using (18), we get

SU,V]=QuV —h(U,PV)+ Kh(U,V) — QyvU + h(V,PU) — Kh(U,V) (30)
Then from (19) (ii), we derive
S[U, V] =2QuV + h(V,PU) — h(U, PV) + B5{n(V)SU + n(U)SV'} (31)
Now, analyse U, VeD, then we have
h(U, PV) +VyPV =VyPV =VyfV (32)
By means of the covariant derivative property of V f, we acquire
h(U,PV) +VyPV = (Vuf)V + fVyV (33)
From (7) and (16), we have
hU,PV)+VyPV = puV +QuV + f(VuV + h(U,V)) (34)

Since E'p is totally geodesic in M see Lemma 1 (i), then from (10) and (11), we
get

h(U,PV)+VyPV = pyV +QuV + PVyV + Bh(U,V) + Kh(U,V) (35)
Equating normal parts, we get
hU,PV)=QuV + Kh(U,V) (36)

Similarly,
h(V,PU) = QvU + Kh(U,V) (37)

Using (36) and (38), we get
h(V,PU) — h(U,PV) = QuV — QvU (38)
In view of (19) (ii), we have

h(V,PU) — h(U, PV) = —2QuV — B8{n(V)SU + n(U)SV} (39)
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Then, it shows from (31) and (39) that S[U,V] =0, for all U, VeD. This estab-
lishes the integrability of D. Now, for the integrability of D+, we deliberate any
UeD and W, XeD*, and we have

g((W,X1,U) = g(VwX - VxW,U)
=—g(VwU, X) + g(VxU W) (40)
From Lemma 1 (ii), we acquire
9([W, X],U) = =(Ulny)g(W, X) + (Ulny)g(W, X) = 0 (41)
Then from (41), we conclude that [W, X]eD*, for each W, XeD=. O

Lemma 2. If a nearly (¢, §)-trans-Sasakian manifold M admits a warped product
semi invariant submanifold M = Epx,E |, then

(i)g(pUV7 W) - g(h(Uv V)7 SW) =0

(11)g(puW, X) = g(h(U, W), S 9(AswU, X)
—(fUlny)g(W, X) — g(h(U, W), SX) + 2ag(U, W)n(X) — aeg(U, X)n(W)
—aeg(W, X)n(U) — Bog(fU, X)n(W) — Bég(fW, X)n(U)
(éi0)g(h(fU, W), SZ) = (Ulny)||W|]* + 2ag(fU, W)n(W) + aen(W)g(fU, W)
—Bon(W)g(U, W) + Bon(U)n(W)n(W)
for allU,VePEp and W, XePE | .

X) -
U

Proof. Assume that M = EpxyFE|, is warped product submanifold of a nearly
(e,9)-trans-Sasakian manifold M such that Ep is totally geodesic in M. Then
using (12) and (17) we get

Q(PUV, W) - g<Bh(U7 V),W) - g(h(U7 V),SW) (42)

for any U,VePEp. The left-hand side of (42) is skew symmetric in U and V
whereas the right hand side is and symmetric in U and V', which gives (i). Next
by using (12) and (17), we have

puW = —PVyW — AswU — Bh(U,W) (43)

for any Ue PEp and WePE | . In view of Lemma 1 (ii), the first term of right-hand
side is zero. Thus, taking the product with XePFE |, we obtain

9(puW, X) = —g(AswU, X) — g(Bh(U, W), X) (44)
Using (2) and (9), we get

g(pUVV,X):—g(h(U,X),SW)+g(h(U,W),SX) (45)
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which gives the first equality of (ii). Again, from (12) and (17), we have
pwU = Vi PU — TVwU — Bh(U, W) (46)
Then from Lemma 1(ii), we deduce
pwU = (PUlny)W — Bh(U, W) (47)
Taking inner product with XePFE | and using (2), we acquire
9(pwU, X) = (fUlny)g(W, X) + g(h(U, W), SX) (48)
Using (19) (i), we get
9(pwU, X) = —(¢Ulny)g(W, X) — g(h(U, W), SX) + 2ag9(U, W)n(X)
—aeg(U, X)n(W) — aeg(W, X)n(U) — Bog(fU, X)n(W) — Bog(fW, X)n(U) (49)
which gives the second equality of (ii). Now, from (43) and (47), we have
puW + pwlU = —PVuW — AgwU + (PUlny)W — 2BR(U, W) (50)

Using (19) and Lemma 1 (i), we get left-hand side and the first term of right-hand
side are zero. Thus the above equation takes the form

(PUIny)W = o{29(U, W)§ — en(W)U — en(U)W}
—B6{n(W)PU + n(U)PW + AswU + 2Bh(U, W) (51)
Taking the product with W and using (2) and (9), we get
(@UIny)||WI[* = —g(h(U. W), SW) + (2 = £)ag(U, W)n(W) — aen(U)||W|[*
—pon(W)g(fU,W) — Bon(U)g(fW, W) (52)
Replacing U by fU and using (1), we acqire
{=U +n(U)&}ny|[W|* = —g(h(fU, W), SW) + 2ag(fU, W)n(W)  (53)
—aen(W)g(fU W) + Bén(W)g(U, W) — Bn(U)n(W)n(W)
Then from (23) (i), the above equation reduces to
g(h(fU, W), SW) = (Ulny)[|W||* + 2ag(fU, W)n(W) + aen(W)g(fU, W)

—Bn(W)g(U, W) + Bon(U)n(W)n(W)
O

Theorem 4. If M is a proper semi-invariant submanifold M of a nearly (€,9)-
trans-Sasakian manifold M, then M is locally a semi-invariant warped product if
and only if some function u on M satisfying Y (1) = 0 for each YeD>, then

ApwU = —(fUlny)W + 2ag(U, W)§ — a(2 + e)n(U)n(W)§E
+aen(W)U + Bén(W) fU (54)
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Proof. Direct part shows from Lemma 2 (iii). For the converse, assume that
M is a semi-invariant submanifold of a nearly (e, d)-trans-Sasakian manifold M
satisfying (54) then we have

h(U, V), fW) = g(ApwU, V) = =(fUn)g(V, W) + 2an(V)g(U, W)
—a2+e)nU)n(V)n(W) + aen(W)g(U, V) + Bon(W)g(fU, V) (55)

Now, from (7) and the property of covariant derivative of V, we have
WU, V), fW) = g(VuV, fW) = —g(fVuV, W)

= —g9(VufV.W) +g(Vu )V, W) (56)
Using (7), (16), and (55), we get

9(VuPV,W) = g(puV, W) = 2an(V)g(U, W) + a(2 + &)n(U)n(V )n(W)

—aen(W)g(U, V) — 8on(W)g(fU, V) (57)
Using (12) and (17), we acquire

g(VuPV,W) = g(VuyPV,W) —g(PVyV,W)—g(Bh(U, V), W) —2an(V)g(U,W)

+a2+e)nU)n(V)n(W) — aen(W)g(U,V) = Bon(W)g(fU, V) (58)

Then from (2), the above equation reduces to

+a2+e)nU)n(V)n(W) — aen(W)g(U,V) — Bon(W)g(fU, V) (59)
Hence using (9) and (54), we get

g(PVyV,W) = g(AswU, V) (60)

which indicates ViyVeD @ {{}, that is, D & {{} is integrable and its leaves are
totally geodesic in M. Now, for any W, XeD* and UeD @ {¢}, we have

= g(Vw )X, U) —g(Vw fX,U) (61)
Using (8) and (16), we acquire

9(VwX, fU) = g(pw X, U) + g(Asx W, U) (62)
Then from (9) and the property ps, we arrive at
9(VwX, fU) = —g(X, pwU) + g(h(W.U), fX) (63)
Again from (9) and (19) (i), we get

g(VwX, fU) = g(puW, X) — 2ag(U, W)n(X) + asn(W)g(U, X)
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+aen(U)g(W, X) + Bon(W)g(PU, X) + Bon(U)g(PW, X) + g(A;xU, W) (64)
On the other hand, from (12) and (17), we get

puW = —PVyW — AgwU — Bh(U, W) (65)
Taking the product with XeD+ and using (54), we acquire
9(puW, X) = —g(PVuW, X) + (fUp)g(W, X) + (2 + &)n(U)n(W)n(X)

—Bn(W)g(fU, X) — 2ag(U, W)n(X) — aen(W)g(U, X) + g(AsxU, W)  (66)

The first term of right-hand side of the above equation is zero using the fact that
PX =0, for any XeD'. Again using (9), we get

g(puW, X) = (fUr)g(W, X) + (2 + &)n(U)n(W)n(X)

—2ag(U, W)n(X) — aen(W)g(U, X) + g(AyxU, W) (67)

Then from (54), we deduce
g(puW, X) =0 (68)

Using (54), (64), and (68), we get
g(VwX, fU) = 3aen(U)g(W, X) + 38in(W)g(PU, X)

—a(24)n(U)n(X)n(W) = (fUR)g(X, W) (69)

If M+ is aleaf of D1, and let h' be the second fundamental form of the immersion
of M+ into M, then for any W, XeD", we have

g(h* (W, X), fU) = g(VwX, fU) (70)
Thus, from (69) and (70), we conclude that
g(h* (W, X), fU) = 3aen(U)g(W, X) + 385n(W)g(PU, X)

—a(24)n(U)n(X)n(W) = (fUR)g(X, W) (71)

The above relation shows that integral manifold M| of D™ is totally umbilical in
M . Since the anti-invariant distribution D of a semi-invariant submanifold M is
always integrable Theorem 3 and Y i = 0 for each YeD*, which indicates that the
integral manifold of D= is an extrinsic sphere in M ; that is, it is totally umbilical
and its mean curvature vector field is nonzero and parallel along M. Hence by
virtue of results acquired in [9] , M is locally a warped product Epx,E |, where
Ep and E| denote the integral manifolds of the distributions D @ (¢) and D+,
respectively and y is the warping function. O
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