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Abstract

A Finsler manifold is said to be geodesically reversible if for every one of
its oriented geodesic paths, the same path traversed in the opposite sense is
also a geodesic. We prove that the compact geodesically reversible harmonic
Finsler manifolds with finite fundamental groups have the Randers metrics.
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1 Introduction

A geodesic in a Finsler manifold (where the Finsler function is positively ho-
mogeneous) should be thought of as an oriented path, that is, an imbedded one
dimensional submanifold with a sense of direction, or an equivalence class of curves
determined up to reparametrization with positive derivative. There is, in general,
no reason why a path which coincides with a geodesic as a point set but is tra-
versed in the opposite direction should be a geodesic. A Finsler metric is said
to be geodesically reversible if every oriented geodesic can be reparametrized as a
geodesic with the reverse orientation. Any reversible Finsler metric is geodesically
reversible. On the other hand, the non-Riemannian Finsler examples constructed
in Section 4 of [4] are geodesically reversible but not reversible, so the reverse
implication does not hold.

A Finsler metric is called the Zoll if all of its geodesics are closed and of
the same length. The canonical round metric on the compact rank one symmetric
spaces is a Zoll Riemannian metric. However, there exist Zoll Riemannian metrics
on spheres which are not round. Contrariwise, a Riemannian metric on the real
projective space is a Zoll metric if and only if it has constant curvature, which
follows from Green’s theorem, cf. [3, Theorem 5.59], since the orientable double
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cover of a real projective space is a canonical Riemannian sphere. However, this
rigidity result fails in the Finsler case (cf. [13, Appendix]).

There are classes of Finsler manifolds related to Zoll manifolds. A Finsler
manifold is called harmonic if the mean curvature of all geodesic spheres is a
function depending only on the radius ([7, 8]). A compact Finsler manifold is
called a Blaschke manifold if its diameter and its injectivity radius conincide. The
result of Allamigeon (see Theorem 3) implies that compact and simply connected
geodesically reversible harmonic Finsler manifolds are Blaschke Finsler manifolds.

The goal of this article is to study the geodesically reversible harmonic Finsler
manifolds.

Theorem. The compact geodesically reversible harmonic Finsler manifolds with
finite fundamental groups have the Randers metrics.

A Finsler manifold is locally symmetric if the geodesic reflection is a local
isometry of the Finsler metric. It is obvious that the geodesic reflection induces
the minus identity on the tangent spaces, therefore, complete locally symmetric
Finsler manifolds have reversible harmonic Finsler metrics. Thus, the following
result is a straightforward consequence of the main theorem (cf. [6]).

Corollary. If (M,F ) is a compact locally symmetric Finsler manifold with finite
fundamental groups, then F is a Riemannian metric. In fact, the universal cov-
ering space of M is isometric to one of compact rank one symmetric Riemannian
spaces.

We do not know whether our results extend to non-reversible Finsler metrics
as several arguments only work in the geodesically reversible case. It would be
interesting to clarify this point.

2 Preliminaries

In this section we recall some basics in Finsler geometry and prove some auxil-
iary facts. We follow the presentation in [14], where most concepts are developed
from the Riemannian point of view. We refer to [15] as more exhaustive refer-
ences in Finsler geometry. Let M be an n-dimensional smooth manifold and TM
denotes its tangent bundle. A Finsler structure on a manifold M is a function
F : TM → [0,∞) which has the following properties:

(1) F is smooth on T̃M := TM \ {0} ;
(2) F (tv) = tF (v), for all t > 0, v ∈ TxM (positively homogeneous);

(3) 1
2F

2 is strongly convex, i.e., gij(x, y) := 1
2
∂2F 2

∂yi∂yj
(x, y) is positive definite

for all (x, y) ∈ T̃M .
A Finsler structure F is called reversible if F (−v) = F (v) for all v ∈ TxM (abso-
lutely homogeneous). For a fixed v ∈ TxM let γv(t) be the geodesic from x with
γ′v(0) = v. Along γy(t), we have the osculating Riemannian metrics

gγ
′
v(t) := g(γv(t), γ

′
v(t))
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in Tγv(t)M. The Chern connection on a Finsler manifold M is defined by the

unique set of local 1-forms {ω i
j }1≤i,j≤n on T̃M such that

dωi = ωj ∧ ω i
j ,

dgij = gkjω
k
i + gikω

k
j + 2Aijkω

k
n , where Aijk =

∂gij
∂yk

.

Define the set of local curvature forms Ω i
j by Ω i

j := dω i
j − ω k

j ∧ ω i
k . Then,

one can write Ω i
j = 1

2R
i
j klω

k ∧ωl +P i
j klω

k ∧ωn+l. Define the curvature tensor R

by R(U, V )W = ukvlwjR i
j klEi, where U = uiEi, V = viEi,W = wiEi are vectors

in the pull-back bundle π∗TM of TM by π : T̃M →M. Define the flag curvature
Rt : Tγv(t)M → Tγv(t)M by

Rt(u(t)) := Rγ̇v(t)(u(t)) := R(U(t), V (t))V (t),

where U(t) = (γ̂v(t);u(t)), V (t) = (γ̂v(t); γv(t)) ∈ π∗TM. We remark that if F is
Riemannian, then the flag curvature coincides with the sectional curvature. Then
the Ricci curvature is defined by

Ric(v) :=
n∑
i=1

gv(Rv(ei), ei)), v ∈ TxM,

where {ei}ni=1 is a gv-orthonormal basis for TxM.
Let { ∂

∂xi
}ni=1 be a local basis for TM and {dxi}ni=1 be its dual basis for T ∗M .

Put Sx(1) := {y ∈ TxM : F (x, y) = 1}. Let α(n − 1) be the volume of the unit
(n− 1)-sphere Sn−1 in Rn. The volume form dv on M is defined by

dv(x) :=
α(n− 1)

vol(Sx(1))
dx1 ∧ · · · ∧ dxn := σ(x)dx,

where vol(A) denotes the volume of a subset A with respect to the standard
Euclidean structure on Rn. Busemann proved that for any bounded open subset
U ⊂ M , vol(U,F ) :=

∫
U dv(x) = HdF (U), where HdF (U) denotes the Hausdorff

measure of U for the metric dF on M induced by the Finsler norm.
For a tangent vector v = (x, y) ∈ T̃M, define the mean distortion ρ by

ρ(v) :=
σ(x)√
det(gvij)

=
α(n− 1)

vol(Sx(1))

1√
det(gvij)

=
α(n− 1)

vol(Sx(1), gv)
,

and the S-curvature S : T̃M → R is defined by

S(v) :=
d

dt

∣∣∣∣
t=0

{
ln ρ(γ̇v(t))

}
.

For a local smooth distance function ϕ, by the volume density σ(x) = ρ(v)
√

det(gvij),

we have ∆ϕ = ∆ϕ+S(gradϕ), where ∆ϕ and ∆ϕ denote the Laplacian of ϕ with
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respect to F and ggradϕ, respectively. An important property is that S = 0 for
Finsler manifolds modeled on a single Minkowski space. In particular, S = 0 for
Berwald spaces. Locally Minkowski spaces and Riemannian spaces are all Berwald
spaces.

By the Chern connection, we obtain the decomposition

T ∗(T̃M) = span{dxi} ⊕ span{δyi},

where δyi is the vertical component dyi and is given by δyi = dyi + N i
jdx

j for
some N s

l determined by the Chern connection. Then there is a naturally induced

Sasaki metric ĝ on T̃M defined by

ĝ(v) = gij(v)dxi ⊗ dxj ⊕ gij(v)δyi ⊗ δyj ,

and the volume form dV of ĝ on T̃M is given by

dV (v) :=
√

det(gij(v))dx1 ∧ · · · ∧ dxn ∧
√

det(gij(v))δy1 ∧ · · · ∧ δyn

= det(gij(v))dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn.

Let ω = ∂F
∂yi
dxi be the Hilbert 1-form on T̃M. In local coordinates,we have dV =

(dω)n/n!.

There is another interpretation of this volume on tangent space. Let SM
be the unit tangent bundle on M and i : SM → T̃M the natural embedding.
Let Xω be the Reeb field of the Hilbert 1-form ω. It is uniquely determined by
the conditions ω(Xω) = 1, iXω(dω) = 0. In particular we have LXωω = 0 and
the geodesic flow of F, i.e., the flow with infinitesimal generator Xω, consists of
contact diffeomorphisms and the volume form i∗(dV ) on SM is

dV =
1

(n− 1)!
ω ∧ (dω)n−1.

Since LXωω = 0, the volume form is invariants under the geodeisc flow of F.
We shall use the same notation dV for the volume forms of TM and SM, so that
no confusion is caused. Let V (SM) be the volume of SM with respect to the
volume form dV. In the case of Riemannian metrics, all unit tangent spaces are
isometric to the Euclidean spheres, and we have V (SM) = α(n − 1) · vol(M,F ).
On the other hand, in a general Finsler metric, unit tangent spaces may not be
isometric to each other, and hence one cannot expect the equality. We instead
have the following.

Theorem 1. ([5]) Let (M,F) be an n-dimensional compact reversible Finsler
manifold. Then we have

V (SM) ≤ α(n− 1) · vol(M,F ),

with equality if and only if (M,F ) is a Riemannian metric.
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If F is not a reversible Finsler metric, then the volume V (SM) may be greater
than α(n− 1) · vol(M,F ) (see [10]).

For the purposes of this paper, we need only remark that the symplectic char-
acter of the Holmes-Thompson volume makes it the volume of choice to trivially
extend Riemannian results that only depend on the symplectic properties of the
geodesic flow. The notion of symplectic structure came up in Weinstein’s work on
the Blaschke conjecture in [17]. He proved that for an n-dimensional Riemannian
manifold M all of whose geodesics are closed and of the same length 2π, the ratio
vol(M)/((2π)n · α(n)) is an integer.

Let CM be the spaces of oriented geodesic of a Finsler manifold M and p :
SM → CM be the canonical projection which sends a given unit vector to the
geodesic which has this vector as initial condition. Álvarez Paiva [1] proved that if
dw is the standard symplectic form on TM, then there is a unique symplectic form
Ω on CM which satisfies the equation p∗Ω = i∗(dω). Thus the symplectic nature
of Weinstein’s proof implies that they can be extended to Finsler manifolds with
little modification. Since the Riemannian relation V (SM) = α(n− 1) · vol(M,F )
breaks down in the Finsler case, we rewrite Weinstein’s result as follows. For the
sake of completeness we sketch the proof.

Theorem 2. ([9, Theorem 3]) Let (M,F ) be an n-dimensional Finsler manifold
all of whose geodesics are closed and of the same length 2π. Then the ratio

i(M) =
V (SM)

V (SSn)

is an integer, where Sn is the standard Riemannian sphere of constant sectional
curvature one.

Proof. Since the orbits of the geodesic spray are all periodic with 2π, the geodesic
flow on the SM defines a fixed point free S1 = R/Z-action, whose orbits are
identified with closed geodesics of length 2π. Therefore, the orbit space SM/S1

may be considered as a 2(n− 1)-dimensional manifold CM of all closed geodesics
of M. The projection p : SM → CM is a principle bundle with structure group
S1, and we get a symplectic form Ω on CM by the condition p∗Ω = i∗(dω/2π) =
dω/2π.

From the Fubini theorem for fibrations we get

V (SM) =

∫
SM

1

(n− 1)!
ω ∧ (dω)n−1

=
1

(n− 1)!

∫
SM

ω ∧ p∗(2πΩ)n−1

=
(2π)n−1

(n− 1)!

∫
x∈CM

(∫
p−1(x)

ω

)
Ωn−1.

Now we set

j(M) :=

∫
CM

Ωn−1.
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Then j(M) is a topological invariant of the fibration p : SM → CM. We adapt
Weinstein’s argument (see [17]) to see that the integer j(M) is an even integer
2 · i(M). However we know

∫
p−1(x) ω = 2π and

V (SM) =
(2π)n

(n− 1)!

∫
CM

Ωn−1 =
(2π)n

(n− 1)!
2 · i(M).

Since 2 · (2π)n/(n − 1)! = α(n − 1) · α(n) = V (SSn), we obtain the equality as
stated in the theorem.

Remark 1. Under the assumption of Theorem 2, if M is homeomorphic to
one of the compact rank one symmetric spaces (P, g0), i.e., Sn, CPn/2, HPn/4,
CaP 2, Weinstein ([17]), Yang ([18], [19]), and Reznikov ([11], [12]) showed that
V (SM) = V (SP).

3 Harmonic Finsler manifolds

A compact Finsler manifold is called a Blaschke manifold, if every minimal
geodesic of length less than the diameter is the unique shortest path between any
of its points. Equivalently, for which all cut loci are round spheres of constant
radius and dimension. For a reversible Blaschke Finsler manifold the exponential
map restricted to the unit tangent sphere defines a great sphere foliation. Since
every great sphere foliation of sphere is homeomorphic to a Hopf fibration, simply
connected reversible Blaschke Finsler manifolds are actually homeomorphic to
compact rank-one symmetric spaces.

For a nonzero v ∈ TM the mean curvature mt(v) of geodesic sphere S(γv(0), t)
of radius t about geodesic γv(t) has the following Taylor expansion

mt(v) =
n− 1

t
− S(v)− 1

3

(
Ric(v) + 3Ṡ(v)

)
t+O(t),

where S is S-curvature. Let m̂t(v) denotes the mean curvature of geodesic sphere
S(γv(0), t) in gγv with respect to normal vector γ′v(t). Then we have

mt(v) = m̂t(v)− S
(
γ′v(t)

)
=

d

dt

[
ln ηt(v)

]
,

where ηt(v) is the Busemann-Hausdorff volume density of geodesic sphere S(γv(0), t)
around γv(t).

A complete Finsler manifold is called harmonic if the mean curvature of all
geodesic spheres is a function depending only on the radius. Then S-curvature
is zero. A historical break in the theory of harmonic Riemannian manifolds was
made by Allamigeon when he proved the following: A simply connected harmonic
Riemannian manifold is either diffeomorphic to Euclidean space or is a Blaschke
manifold. The following theorem is to put them in a Finsler-geometric setting.

Theorem 3. A simply connected geodesically reversible harmonic Finsler mani-
fold M is either diffeomorphic to Euclidean space or is a Blaschke manifold.
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Proof. Suppose there is no conjugate points. Then the exponential map is a
covering map and since M is simply connected, a diffeomorphism. So take a
0 6= v0 ∈ TxM and an r0 ∈ R such that the first conjugate point along γv0 is
γv0(r0). Then the first conjugate point along γv is γv(r0) for all v ∈ TxM, since
the mean curvature is radial. Note that r0 is the same for every point in M. This
means that M is a Blaschke manifold by the Allamigeon-Warner theorem (cf. [3,
Corollary 5.31]).

Let a : TM → TM be the map that sends each tangent vector v to its opposite
−v and the symmetrization F := (F +F ◦ a)/2 of Finsler metric F. The following
theorem is the final ingredient needed for the main theorem.

Theorem 4. ([2, Main Result]) Let M be a manifold diffeomorphic to a compact
rank one symmetric space. If F is a geodesically reversible Zoll metric on M, then
F is the sum of a reversible Zoll metric F and an exact one-form β.

Remark 2. Since β is exact, the time change does not modify the lengths of closed
geodesics. In fact, (M,F ) and (M,F ) have the geodesic conjugacy.

Now we are ready to prove the main theorem using Theorem 2 and Remark
1.

Theorem 5. If (M,F ) is a compact geodesically reversible harmonic Finsler man-
ifold with finite fundamental group, then F is a Randers metric.

Proof. Let M̃ be the universal covering space of M. By Theorem 3, we know M̃
is a Blaschke manifold all of whose geodesics are closed and of the same length
2π, up to a scaling of the metric, and then we have that M̃ is diffeomorphic to
one of the compact rank one symmetric spaces P. Hence applying Theorem 2 and
Remark 1 gives V (S(P, g0)) = V (S(M̃, F )).

Since (M̃, F ) is a harmonic Finsler manifold, for all nonzero v ∈ TM̃, for all
t > 0, we obtain S

(
γ′v(t)

)
= m̂t(v) −mt(v) = 0, and the osculating Riemannian

metric gγ
′
v on M̃ \ {γv(0)} is a harmonic Riemannian metric. On the other hand,

in the case of rank one symmetric Riemannian manifolds, we have Sn : ηt =

sinn−1 t; CPn : ηt = sin t(1 − cos t)
n−2
2 ; HPn : ηt = sin3 t(1 − cos t)

n−4
2 ; CaP 2 :

ηt = sin7 t(1− cos t)4. Szabò ([16]) remarked that these are only possibilities for a
compact harmonic Riemannian manifold. Since

d

dt

[
ln ηt(v)

]
= mt(v) = m̂t(v) =

d

dt

[
ln η̂t(v)

]
,

we have ηt(v) = η̂t(v). By the co-area formula, we obtain

vol(M̃, F ) = vol(M̃ \ {γv(0)}, gγ′v) = vol(P, g0).

Let F be the symmetrization of F. Then by Theorem 4 and Remark 2, we
have V (S(M̃, F )) = V (S(M̃, F )). Therefore, we conclude

α(n− 1) · vol(M̃, F ) = α(n− 1) · vol(P, g0) = V (S(M̃, F ))

= V (S(M̃, F )) ≤ α(n− 1) · vol(M̃, F ).
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We note that the second line is obtained from Theorem 1, and hence we obtain

vol(M̃, F ) ≤ vol(M̃, F ).

Then by the equality case of Theorem 1, F is a Riemannian metric and F is
Randers metric.

Remark 3. In the Riemannian case, Theorem 5 becomes the Szabò’s result in
Riemannian geometry ([16]).
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