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SOME RESULTS ON LORENTZIAN PARA-KENMOTSU
MANIFOLDS
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Abstract

In the present paper, we define Lorentzian para-Kenmotsu manifolds
and study Ricci-pseudosymmetric, Ricci-generalized pseudosymmetric and
symmetric conditions to characterize Lorentzian para-Kenmotsu manifolds.
Next, we study Lorentzian para-Kenmotsu manifolds satisfying the curva-
ture condition S - R = 0. Moreover, we study Ricci solitons on Lorentzian
para-Kenmotsu manifolds. Finally, we give an example of a 5-dimensional
Lorentzian para-Kenmotsu manifold to verify some results of the paper.
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1 Introduction

A Riemannian manifold is called semisymmetric if R(X,Y) - R = 0 [14]. R.
Deszcz [8] generalized the concept of semisymmetry and introduced pseudosym-
metric manifolds. Let (M, g) be an n-dimensional (n > 3) differentiable manifold
of class C*°. We denote by V, R, S, @) and r the Levi-Civita connection, the
curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature
of (M, g), respectively. We define endomorphism X A4 Y for an arbitrary vector
field Z and (0, k) tensor T, k > 1 by

(X AAY)Z = A(Y,2)X — A(X, 2)Y, (1)

and

((X AV Y) . T)(Xl,XQ, ...... Xk) = —T((X Na Y)Xl,XQ ..... Xk) (2)
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—T(X1, (X AgY)Xoeri Xi) = oo = T(X1, Xoeo (X Ag Y) Xp),

respectively, where X, Y, Z € x(M); x(M) being the Lie algebra of vector fields on
M and A is the symmetric (0, 2)-tensor. For a (0, k)-tensor field T, the (0, k + 2)
tensor fields R- T and Q(A,T) are defined by [3, 8]

(R(X,Y) -T) (X1, Xa,...... Xi)=-T(R(X,Y)X1, X5....Xk) (3)
—T(X1,R(X,Y)Xo.....Xp) — e —T(X1,Xo....R(X,Y) X}),
and
Q(A, T)(X1, Xa, ... X X,Y)=-T(X A Y) X1, Xo.... X}) (4)
—T(X1,(X AaY)Xoooo. Xg) — e —T(X1,Xo....( X Ny Y) X}),
respectively.

By setting T’ = Ror T =S5, A =g or A =S in the above formulas, we get the
tensors R- R, R- S, Q(g,5) and Q(S, R).

A Riemannian manifold M is said to be Ricci-generalized pseudosymmetric if the
tensors R - R and Q(S, R) are linearly dependent at every point of M, i.e.,

R-R=LgrQ(S,R). (5)
This is equivalent to
(R(X,Y)-R)(U,V,W) = Lg[(X A Y) - R)(U, V,W)] (6)

holding on the set Ug = {x € M : Q(S,R) # 0 at x}, where Lg is some function
on Ug [8]. Particularly, if Lr = 0, then M is a semisymmetric manifold. The
manifold is said to be locally symmetric if VR = 0. Clearly, locally symmetric
spaces are semisymmetric.

If the tensors R - S and Q(g,S) are linearly dependent at every point of M, i.e.,

then M is called Ricci-pseudosymmetric. This is equivalent to
(R(X,Y)-S)(U,V) = Ls[(X Ag Y) - S)(U, V)] (8)

holding on the set Us = {x € M : S—7g # 0 at z}, with some function Lg on Ug
[12]. Particularly, if Lg = 0, then M is a Ricci-semisymmetric manifold. We note
that Ug C Ugr and on 3-dimensional Riemannian manifolds we have Ug = Ug.
Every Ricci-generalized pseudosymmetric manifold is Ricci-pseudosymmetric but
the converse is not true.

Furthermore, tensors R- R and R -S on (M, g) are defined by

(R(X,Y) - R)(U,V)W = R(X,Y)R(U, V)W — R(R(X,Y)U, V)W  (9)

—R(U,R(X,Y) V)W — R(U,V)R(X,Y)W,
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and
(R(X,Y)-S)(U,V)=-S(R(X,Y)U,V) - S(U,R(X,Y)V), (10)

respectively.

Recently, pseudosymmetric and Ricci-pseudosymmetric conditions have been
studied by many authors in several ways to a different extent such as K. K. Baishya
and P. R. Chowdhury [2], U. C. De and D. Tarafdar [7], N. Malekzadeh et al. [11]
and many others.

A Ricci soliton (g, V,A) on a Riemannian manifold (M, g) is a generalization
of an Einstein metric such that [9]

(£vg+25 +2)9)(X,Y) =0, (11)

where S is the Ricci tensor, £y is the Lie derivative operator along the vector field
V on M and X is a real number. The Ricci soliton is said to be shrinking, steady
and expanding according to A being negative, zero and positive, respectively. For
more details we refer to the readers [4 — 6].

Motivated by the above studies, in this paper we characterize Lorentzian para-
Kenmotsu manifolds satisfying certain curvature conditions: R -S = LgQ(g,S),
R-R = LgrQ(S,R), S-R = 0, symmetric Lorentzian para-Kenmotsu manifolds
and Lorentzian para-Kenmotsu manifolds admitting Ricci solitions. The paper
is organized as follows: In Section 2, we give a brief introduction of Lorentzian
para-Kenmotsu manifolds. Sections 3, 4 and 5 are devoted to the study of Ricci-
pseudosymmetric, Ricci-generalized pseudosymmetric and symmetric Lorentzian
para-Kenmotsu manifolds, respectively. In Section 6, we discuss Lorentzian para-
Kenmotsu manifolds satisfying the curvature condition S+ R = 0. In Section 7, we
show that if a Lorentzian para-Kenmotsu manifold admits a Ricci solition, then
the manifold is an n-Einstein manifold and the Ricci solition is always shrinking.

2 Preliminaries
An n-dimensional differentiable manifold M with a structure (¢, £, n, g) is said

to be a Lorentzian almost paracontact metric manifold, if it admits a (1, 1)-tensor
field ¢, a contravariant vector field £, a 1-form 1 and a Lorentzian metric g satis-

fying [1]
n(§) = -1, (12)
»*X = X +n(X)¢, (13)
¢¢ =0, n(¢X)=0, (14)
9(¢X,9Y) = g(X,Y) +n(X)n(Y), (15)
9(X, &) = n(X), (16)
D(X,Y) = 2(Y, X) = g(X, ¢Y) (17)
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for any vector fields X,Y on M.
If ¢ is a killing vector field, the (para) contact structure is called a K-(para)
contact. In such a case, we have

Vxé=¢X. (18)

A Lorentzian almost paracontact manifold M is called a Lorentzian para-Sasakian
manifold if
(Vx@)Y = g(X,Y)E+n(Y)X + 2n(X)n(Y)E (19)

for any vector fields X,Y on M.
Now, we define a new manifold called Lorentzian para-Kenmostu manifold:

Definition 1. A Lorentzian almost paracontact manifold M is called Lorentzian
para-Kenmostu manifold if [10]

(Vx@)Y = —g(¢X,Y)§ —n(Y)oX (20)
for any vector fields X, Y on M.

In a Lorentzian para-Kenmostu manifold, we have
Vx§=-X—n(X)¢, (21)

(Vxn)Y = —g(X,Y) —n(X)n(Y), (22)

where V is the Levi-Civita connection with respect to the Lorentzian metric g.
Furthermore, on a Lorentzian para-Kenmotsu manifold M, the following relations
hold [10]:

9(R(X,Y)Z,€) = n(R(X,Y)Z) = g(Y, Z)n(X) —g(X, Z)n(Y),  (23)
R(E, X)Y = —R(X, Y = g(X,Y)E —n(Y)X, (24)
R(X,Y)§ =n(Y)X —n(X)Y, (25)

R(&, X)§ = X +n(X)8, (26)
S(X,8) = (n—n(X), 5S¢ =—(n-1), (27)

Q¢ = (n—1)¢, (28)

S(@X,0Y) = S(X,Y) + (n — 1)n(X)n(Y) (29)

for any vector fields X,Y, Z € x(M).

Let {e1,e2,e€5....... ,en, = &} be a frame of orthonormal basis of the tangent space
at any point of the manifold. Then the Ricci tensor .S and the scalar curvature r
of the manifold are defined by

n

S(X,Y) = eig(Rei, X)Y, e),
=1
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n

T = Z eiS(ei, ei),
i=1
respectively. Also, we have

9(X,)Y) = Z €9(X,e)g(Y, e;),
=1

7
where X, Y € x(M) and ¢; = g(ej,e;) = +1 or — 1.

Definition 2. A Lorentzian para-Kenmotsu manifold M is said to be an n-
FEinstein manifold if its Ricci tensor S is of the form

S(X,Y) = ag(X,Y) + bn(X)n(Y), (30)
where a and b are scalar functions on M. In particular, if b = 0, then the manifold
is said to be an Finstein manifold.

Let {e1,e2,e3....... ,en—1,6n = £} be a frame of orthonormal basis of the tangent
space at any point of the manifold. If we put X =Y = ¢; in (30) and sum up
with respect to i(1 <1 < n), then we have

r=an —b. (31)

On the other hand, putting X =Y = ¢ in (30) and using (12), (13) and (27), we
also have

—(n—1)=—a+0d. (32)
Hence it follows from (31) and (32) that
o o
S n—-1 7 n—1

So the Ricci tensor S of an n-Einstein Lorentzian para-Kenmotsu manifold is given
by
r r
S(X,Y) = (=~ Dg(X,Y) + (=~ n)n(X)n(Y). (33)
It is known that every 3-dimensional Kenmotsu manifold is an n-Einstein manifold
and its Ricci tensor is given by [13]

S(XY) = (5 + Dg(X.Y) = 3+ 5 m(X)m(Y),

where r is the scalar curvature of the manifold.
Now we can easily prove the following:

Proposition 1. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold.
Then, we have

R(X,Y)Z = (5 —2)[g(Y. 2)X — g(X, Z)Y]+ (5 =3)n(Y)X =n(X)Y]n(2) (34)
+(5 — 3o(Y Z)n(X) - g(X, Zm(Y )¢,
S(X,Y) = (5 = Dg(X.Y) + (5 = 3In(X)n(Y) (35)
for any vector fields X,Y,Z € x(M).
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3 Ricci pseudo-symmetric Lorentzian para-Kenmotsu
manifolds

Let M be a Ricci-pseudosymmetric Lorentzian para-Kenmotsu manifold, that

is, the manifold satisfying the condition R -S = LgQ(g,S). Then from (7) we
have

(R(X,Y)-8)(U,V) = LsQ(g, S)(X,Y;U, V) (36)
for any vector fields X, Y, U,V € x(M). It is equivalent to
(R(X,Y) - S)(U,V) = Ls[((X Ay Y) - S)(U, V). (37)
By virtue of (2) and (10), (37) becomes
—S(R(X,Y)U,V) = S(U,R(X,Y)V)

= Ls[=S((X N\g Y)U,V) = S(U, (X A\ Y)V)]

which by using (1) takes the form
-S(R(X,Y)U,V) - S(U,R(X,Y)V) (38)

= LS[_g(Y7 U)S(X7 V) +9(X7 U)S(K V)
_Q(K V)S(U7X) +9(X7 V)S(va)]

Putting X = U = ¢ in (38) then using (16), (26) and (27), we get
(1= Lg)[SY,V) = (n = 1)g(Y, V)] = 0. (39)

Thus, we have either (i) Lg =1, or (i7) S(Y,V) = (n —1)g(Y,V) from which we
get 7 =n(n — 1). Hence we have the following:

Proposition 2. FEvery n-dimensional Ricci-pseudosymmetric Lorentzian para-
Kenmotsu manifold is of the form R-S = Q(g,S), provided the manifold is an
FEinstein manifold of the form S(Y,V) = (n—1)g(Y,V) with the scalar curvature
n(n—1).

Conversely, if the manifold is an Einstein manifold of the form S(Y,V) = (n —
1)g(Y, V), then it is clear that R -S = LgQ(g,S). This leads to the following

theorem:

Theorem 1. An n-dimensional Lorentzian para-Kenmotsu manifold is Ricci-
pseudosymmetric if and only if the manifold is an Einstein manifold of the form
S(Y,V)=(n—1)g(Y,V) with the scalar curvature n(n — 1), provided Lg # 1.
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4 Ricci-generalized pseudosymmetric Lorentzian para-
Kenmotsu manifolds

Let M be an n-dimensional Ricci-generalized pseudosymmetric Lorentzian
para-Kenmotsu manifold. Then from (5), we have

R-R = LrQ(S, R). (40)
It is equivalent to
(R(X,Y) - R)(U,V)W = Lg[(X As Y) - R)(U,V)W] (41)
for any X, Y, U, V,W € x(M). By using (2) and (8) in (41), we have
R(X,Y)R(U,V)W — R(R(X,Y)U, V)W (42)
—R(U,R(X,Y)V)W — R(U,V)R(X, Y)W
— Lp[(X As Y)R(U, V)W — R(X As YU, V)W
“R(U,(X As Y)VIW — R(U,V)(X As YIW].
By virtue of (1), (42) takes the form
R(X,Y)R(U, V)W — R(R(X,Y)U, V)W (43)
“R(U,R(X,Y)V)W — R(U,V)R(X, Y)W
— La[S(Y, R(U,VYW)X — S(X, R(U,V)W)Y
~S(Y,U)R(X, V)W + S(X,U)R(Y, V)W
—S(Y,V)R(U, X)W + S(X,V)R(U,Y)W
—S(Y,W)R(U,V)X + S(X,W)R(U,V)Y].
Putting X = U = £ in (43) and making use of (24), (25) and (27), we get

)
)

g(V.,W)Y — R(Y,V)W —g(Y, W)V
= LR[(n - l)g(V7 W>Y - n(W)SO/v V)§
—(n=DRY, V)W + (n—1)g(Y,W)n(V)§
—SY, W)V =S¥, W)n(V)§ + (n — 1)g(V,Y)n(W)¢]
which by taking the inner product with Z becomes
gV, W)g(Y, Z) — g(R(Y, V)W, Z) — g(Y, W)g(V, Z) (44)
= Lg[(n —1)g(V.W)g(Y,Z) = S(Y, V)n(W)n(Z
—(n = 1)g(R(Y, V)W, Z) + (n — 1)g(Y, W)n(V)n(Z)
—SY,W)g(V, Z2)=S, W)n(V)n(Z)+(n=1)g(V,Y)n(W)n(Z)].

)
)
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Let {e1,e2,e5....... ,en—1,&} be a frame of orthonormal basis of the tangent space
at any point of the manifold. If we put V.= W = ¢; in (44) and sum up with
respect to i(1 < ¢ < n), then we have

> eilglei e)g(Y, Z) — g(R(Y, ei)ei, Z) — (Y, ei)g(ei, Z)
=1

= LRZQ’[(” —1)g(ei,ei)g(Y, Z) — S(Y,ei)n(ei)n(Z)
i=1
—(n=1)g(R(Y,e;)e;, Z) + (n — 1)g(Y, e;)n(ei)n(Z)
=S¥, ei)glei, Z) = S(Y, ei)nlei)n(Z) + (n—1)g(es, Y)n(ei)n(Z)]
from which it follows that
S(Y,Z) = (n—1)g(Y.Z) =nLg[S(Y.Z) — (n — 1)g(Y, Z)]. (45)

Thus, we have either (i) Lg = 2 or (ii) S(Y,Z) = (n — 1)g(Y, Z) from which we
get r = n(n — 1). Hence we have the following:

Proposition 3. Every n-dimensional Ricci-generalized pseudosymmetric Lorentzian
para-Kenmotsu manifold is of the form R- R = %Q(g, S), provided the manifold
is an Einstein manifold of the form S(Y,Z) = (n — 1)g(Y,Z) with the scalar
curvature n(n — 1).

Theorem 2. An n-dimensional Ricci-generalized pseudosymmetric Lorentzian
para-Kenmotsu manifold is an Einstein manifold of the form S(Y,Z) = (n —
1)g(Y, Z) with the scalar curvature n(n — 1), provided that Lp # L.

5 Symmetric Lorentzian para-Kenmotsu manifolds
Definition 3. A Lorentzian para-Kenmotsu manifold M is said to be symmetric
if

(VxR)(Y,Z)W =0 (46)

for all vector fields X,Y,Z and W on M, where R is the curvature tensor with
respect to connection V.

Let M be a symmetric Lorentzian para-Kenmotsu manifold, then
(VxR)(Y,Z)W = 0. By a suitable contraction of equation (46), we have

(VxS)Z,W)=VxS(ZW)—-S(VxZ,W)—-S(Z,VxW)=0.
Taking W = £ in the last equation, we have

VxS(Z,§) - S(VxZ,§) — S(Z,Vx§) =0. (47)
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By using (21) and (27), (47) takes the form
(n=1)(Vxn)Z + 5(X, Z) + (n = Dn(X)n(Z) = 0. (48)
In view of (22), (48) gives

S(X,Z) = (n - 1)g(X, Z). (49)
By contracting (49) over X and Z, it follows that
r=n(n—1). (50)

Thus we have the following:

Theorem 3. Let M be an n-dimensional symmetric Lorentzian para-Kenmotsu
manifold. Then the manifold is an Finstein manifold of the form S(X,Z) =
(n —1)g(X, Z) with the scalar curvatutre n(n — 1).

6 Lorentzian para-Kenmotsu manifolds satisfying the
curvature condition S-R =0
Let M be a Lorentzian para-Kenmotsu manifold satisfying the curvature con-
dition (S(X,Y) - R)(U,V)W = 0. This implies that
(XAsY)R(U, V)W + R(XA\sY)U, V)W (51)
+R(U, (XAsY)V)W + R(U,V)(XAsY)W =0
for any vector fields X, Y, U, V,W € x(M). By virtue of (1), (51) takes the form
SY,R(U, VW)X — S(X,R(U VW)Y +S(Y,U)R(X,V)W (52)
—-S(X,U)RY, V)W + S, V)R(U, X)W — S(X,V)R(U, Y)W
+S(Y,W)R(U, V)X — S(X,W)R(U,V)Y = 0.
Taking U = W = ¢ in (52) then using (24) and (25), we have
28(Y, V)X —25(X, V)Y +2(n — 1)n(Y)n(V)X
—2(n = Dn(X)n(V)Y +n(X)S(Y, V) —n(Y)S(X,V)§
+(n=1)g(V, X)n(Y)€ = (n = 1)g(V,Y)n(X)§ = 0
which by taking the inner product with £ and using (12) and (16) reduces to
SOV, VIn(X) = S(X,VIn(Y) + (n — Dg(¥, V)i(X) — (n — Dg(X, V)(¥). (53)
Now putting X = ¢ in (53) and using (12) and (27) to get
SY,V)=-(n-1)g(V,Y) =2(n—1)n(Y)n(V). (54)
Thus we have the following:

Theorem 4. If an n-dimensional Lorentzian para-Kenmotsu manifold satisfying
the curvature condition S - R = 0, then the manifold is an n-Einstein manifold of

the form (54).

Remark. If we take r = —2 in a 3-dimensional Lorentzian para-Kenmotsu man-
ifold, then (35) verifies (54).
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7 Ricci solitons

Suppose that a Lorentzian para-Kenmotsu manifold admits a Ricci soliton
(9,€,2). Then we have

(£eg+25 +2X9)(X,Y) =0 (55)
which implies that
g(VxE&Y) 4+ g(X, Vy€) +25(X,Y) + 20g(X,Y) = 0. (56)
Using (21) in (56), we get
S(X,Y)+ (A =1g(X,Y) =n(X)n(Y) =0 (57)
which by taking Y = ¢ yields
S(X, &) =-nmX) = A=—(n—-1). (58)
Putting this value of A in (57), we get
S(X,Y) =ng(X,Y) +n(X)n(Y). (59)
Thus in view of (58) and (59), we have the following:

Theorem 5. If an n-dimensional Lorentzian para-Kenmotsu manifold admits a
Ricci soliton, then the manifold is an n-Einstein manifold of the form (59) and
the Ricci soliton is always shrinking.

Now, let (g, V, A) be a Ricci soliton on a Lorentzian para-Kenmotsu manifold
such that V is pointwise collinear with &, i.e., V' = b€, where b is a function. Then
(11) holds and thus, we have

bg(Vx&,Y) + (Xb)n(Y) + bg(X, Vy€)

F(YD)n(X) +28(X,Y) + 20g(X,Y) =0

which in view of (21) takes the form
—2bg(X,Y) = 2bn(X)n(Y) + (Xb)n(Y) (60)

HYB)(X) +28(X,Y) + 20g(X,Y) = 0.
Putting Y = £ in (60) then using (12), (16) and (27), we have

—(Xb) + (&b)n(X) +2(n — 1)n(X) + 2An(X) = 0. (61)
Again taking X = ¢ in (61) and using (12), we get

(€b) + (n— 1)+ A =0. (62)
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Combining the equations (61) and (62) it follows that
db=[A+ (n—1)n. (63)
Now applying d on (63), we have
AN+ (n—1))dn=0 = AX=—-(n—-1), dn#0. (64)

Thus from (63) and (64), we find db = 0, i.e., b is constant. Hence (60) takes the
form
S(X,Y) = (b= Ng(X,Y) + bn(X)n(Y). (65)

Thus in view of (64) and (65), we have the following theorem:

Theorem 6. If (g,V,\) is a Ricci soliton on a Lorentzian para-Kenmotsu man-
ifold such that V is pointwise collinear with &, then V is a constant multiple of €
and the manifold is an n-Einstein manifold of the form (65) and the Ricci soliton
is always shrinking.

Example. We consider the 5-dimensional manifold M = {(z1, z2,y1,y2,2) €
€ R : z > 0}, where (1, 72,91, %2, 2) are the standard coordinates in R°. Let eq,
e2, €3, e4 and e5 be the vector fields on M defined by

0 0 0 0 0
e1 =25, €@=25—, €3=25—, €4=25—, €5 =2— =2¢,

0x1 0xy oy Oys’ 0z

which are linearly independent at each point p of M. Let g be the Lorentzian
metric defined by

gles,e;) =1, for 1<i<4 and g(es e;5)=—1,

gleiej) =0, for i#j 1<i,j<5.

Let 1 be the 1-form defined by n(X) = g(X,e5) = g(X,§) for all X € x(M), and
let ¢ be the (1,1)-tensor field defined by

per = —eg, dex = —e1, Qez = —eyq, ¢eq = —e3, ¢e5 =0.
By applying linearity of ¢ and g, we have
n(€) =g(&€) =—1, ¢°X =X +n(X)¢ and g(¢X,¢Y) = g(X,Y) +n(X)n(Y)

for all X, Y € x(M). Thus for e5 = &, the structure (¢, &, n, g) defines a Lorentzian
almost paracontact metric structure on M. Then we have

i) =0, if i#j,  and 1<i,j<4,
[ei,e5] = —e;,  for 1 <i<d4.
The Levi-Civita connection V of the Lorentzian metric g is given by

29(VxY, Z)
= Xg(}/a Z) JrYg(Z, X) - Zg(Xv Y) *g(X7 [K Z]) +9(Y7 [ZvX]) +g(Z, [X’Y])’
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which is known as Koszul’s formula. Using Koszul’s formula, we find
Velel = —é€s, veleQ = 07 V6163 = 07 v6164 - 07 v6165 = —é€1,
vezel = 07 v6262 = —¢€s, Veze?) - 07 v6264 = 07 v62€5 = —e€g,
Veger =0, Vegea =0, Vegez = —e5, Vezes =0, Veges = —es,
v€4€1 - 07 Ve462 = 07 v6463 = 07 v€4€4 = —¢€s, v6465 = —é4,
VeSel = 0, Ve562 = 0, V65€3 = O, Ve5€4 = 0, Ve5e5 = 0.
Now let ;
X =) X'e=X'er+ X%+ X3+ Xes+ XVes,
i=1

5
Y =) Yiej=Y'es + Y%+ Yes+ Yy + Yes,
j=1
5
Z = Z ZFer = Z'ey + Z%eq + Z3e5 + Z'ey + Zoes
k=1
for all X|Y,Z € x(M). Also, one can easily verify that

Vx{=—-X-—n(X)¢ and (Vx¢)V =—g(¢X,Y){—n(Y)pX.

Therefore, the manifold is a Lorentzian para-Kenmotsu manifold.
From the above results, we can easily obtain the non-vanishing components of the
curvature tensor as follows:

R(e1,e2)er = —e2, R(er,e2)ea =e1, R(ei,e3)er = —e3, R(er,e3)es = ey,
R(eb 64)61 = —¢€4, R(el, 64)64 = eq, R(@h 65)61 = —es, R(ela 65)65 = —eq,
R(egz,e3)ea = —e3, R(ez,e3)es =ea, R(ea,eq)ea = —es, R(ez,eq)es = e,
R(eg,e5)es = —e5, R(eg,es)es = —ea, R(es,eq)es = —eq, R(es, eq)es = e3,
R(es,e5)e3 = —es, Rles,es)es = —e3, R(es,e5)es = —e5, R(es,e5)es = —ey

from which it is clear that
RX,Y)Z =9V, Z)X —g(X, Z)Y. (66)

Thus, the manifold is of constant curvature. Also, we calculate the Ricci tensors
as follows:

5(61,61) = S(eg,eg) = 5(63,63) = 5(64764) = 4, 5(65,65) = —4.
Hence we find

r = S(e1,e1) + S(ez, e2) + S(es, e3) + S(eq, e4) — S(es, e5) = 20.
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By contracting (66), it follows that
S(Y,Z) = 4g(Y, Z), r =20, (67)

which are same as the values of Ricci tensor and scalar curvature obtained in
sections 3, 4 and 5. Now taking Z = £ in (67), we get

S(Y,€) = 4n(Y). (68)

Thus from (58) and (68) we obtain A = —4, i.e., the Ricci soliton is shrinking
which verifies Section 7.
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