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FINSLERIAN GEODESICS ON FRECHET MANIFOLDS

Kaveh EFTEKHARINASAB *! and Valentyna PETRUSENKO?

Abstract

We establish a framework, namely, nuclear bounded Fréchet manifolds en-
dowed with Riemann-Finsler structures to study geodesic curves on certain
infinite dimensional manifolds such as the manifold of Riemannian metrics
on a closed manifold. We prove on these manifolds geodesics exist locally
and they are length minimizing in a sense. Moreover, we show that a curve
on these manifolds is geodesic if and only if it satisfies a collection of Euler-
Lagrange equations. As an application, without much difficulty, we prove
that the solution to the Ricci flow on an Einstein manifold is not geodesic.
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1 Introduction

The Riemannian geometry, including geodesics, of the manifold of all Rieman-
nian metrics on a closed manifold which is a Fréchet manifold was studied in [8, 11].
In these papers the geodesic equation is described explicitly, however, in practice
it would be difficult to check if a curve is geodesic by the obtained formulas.
On the other hand, geodesics of other spaces such as groups of diffeomorphisms
that have the structure of Fréchet manifolds were investigated by viewing Fréchet
manifolds as inverse limits of Hilbert (ILH) manifolds, cf. [2, 16, 7]. Another
recent approach to study geodesics on Fréchet manifolds is by considering these
manifolds as projective limits of Banach manifolds, cf. [9, 10].

The reasons for these difficulties and indirect approaches are because Fréchet
analysis and geometry are rather restrictive. As for Fréchet spaces, there is no
general solvability theory of differential equations and the inverse mapping the-
orem does not hold in general. Hence, for a Riemannian Fréchet manifold the
exponential map may not exist, and even if it exists it is not necessarily a local
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diffeomorphism at the identity. Another concern is that there exist only weak
Riemannian metrics on these manifolds and as shown in [17, 18] a curve connect-
ing two distinct points may have the zero length. Also, a torsion-free covariant
derivative compatible with a weak Riemannian metric does not exist in general.
These deficiencies inhibit the study of geodesics on these manifolds.

The purpose of this paper is to develop a new natural systematic way to study
geodesics on certain Fréchet (bounded or MC*) manifolds including the space of
smooth sections of a fiber bundle on a closed manifold. Our approach is based
on a strengthened notion of differentiability (bounded or M C*-differentiability)
introduced in [19]. The basics of Fréchet geometry is redeveloped under the as-
sumption that transition functions between the coordinate charts possess this type
of differentiability in [4]. Such generalized manifolds seem to extend the geometry
of Fréchet manifolds: for example, an inverse function theorem is obtained for
this class of differentiability [19, Theorem 4.10]. Also, an M C*-vector field on an
M C*-Fréchet manifold M has a unique MC*-integral curve ([4, Theorem 5.1])
and in this paper we prove that it has a local flow too, see Theorem 4. Also,
we prove that this flow is M C*-differentiable and its domain is open in M x R
(Lemma 1). This result is crucial for studying geodesics on manifolds.

To define geodesics we will apply the notion of spray as in the book of Lang [15]
(cf. [22, 13] for other approaches to geodesics on infinite dimensional manifolds).
A reason for this approach is that once we have the existence of integral curves,
we can carry over important results such as the existence of exponential maps
and parallel translation from the Banach case without much difficulty, indeed we
shall face many similarities with the results in Banach geometry. We also prove
that, for these generalized manifolds, exponential maps are local diffeomorphisms
at the identity (Proposition 1).

As mentioned, since Fréchet manifolds are weakly Riemannian, the length of
a curve with distinct endpoints can be zero. On an abstract infinite dimension
Fréchet manifold M there are two ways to deal with this problem: use a graded
weak Riemannian structure or a Finsler structure, see [24]. We use a collection of
weak Riemannian metrics (for a graded weak Riemannian structure) and a collec-
tion of continuous functions on the tangent bundle 7'M (for a Finsler structure) so
that together they are strong enough to induce a topology on the tangent spaces
equivalent to the one induced from the manifold topology. Consequently, in both
cases, a curve possesses a sequence of geodesic lengths.

Herein we will use a Finsler structure (in the sense of Palais [23] which is a
Finsler structure in the sense of Upmeier-Neeb [20]) as it is slightly less technical
than a graded weak Riemannian structure. Roughly speaking a Finsler struc-
ture on an infinite dimensional Fréchet manifold M is a collection of continuous
functions on the tangent bundle T'M such that their restrictions to every tangent
space is a collection of seminorms that generates the same topology as the Fréchet
model space. In addition, they satisfy a certain local compatibility condition. We
should mention that our definition of a Finsler structure differs and it is far more
general than the one in the finite dimensional theory. As pointed out by Neeb [20]
for infinite dimensional manifolds some crucial Finsler geometric results (such as
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the Gauss’s lemma) are not available in general and we cannot expect to have the
usual machinery of Finsler geometry. However, in the case of nuclear bounded
Fréchet manifolds since the topology of a model space is generated by a funda-
mental system of M C®-Hilbertian seminorms || - ||"= +/{:, ), in fact they give
rise to a Riemann-Finsler structure, we can define appropriately the concept of
orthogonality. Moreover, another crucial advantage of nuclear Fréchet manifolds
(even over Banach manifolds) is that for these manifolds smooth vector fields can
be identified with continuous derivations in the space of smooth real-valued func-
tions on manifolds. Using these properties for an M C®- nuclear Fréchet manifold
equipped with a Riemann-Finsler structure we prove the existence of covariant
derivatives compatible with the Riemann-Finsler structure (Proposition 3) and
the Gauss Lemma (Theorem 8).

In view of the arguments above we believe that the category of M C®-nuclear
Fréchet manifolds provide a suitable setting for studying geodesics. On these
manifolds, we prove that geodesics exist locally (Theorem 7) and they are length
minimizing in a sense (Theorem 9). Also, we prove that a curve is geodesic if and
only if it satisfies a collection of Euler-Lagrange equations (Theorem 11). Finally,
we show easily that the solution of the Ricci flow equation on an Einstein manifold
is not geodesic.

It is worth noting that this category of infinite dimensional manifolds would
provide an appropriate framework for studying configuration spaces of physical
field theories. As pointed out in [16], these spaces lead to Fréchet manifolds and
to discuss motions we need paths of minimal lengths.

2 Bounded Fréchet manifolds

In this section, we shall briefly recall the basics of bounded Fréchet manifolds
but in a self-contained way for the convenience of readers, which also allows us
to establish our notations for the rest of the paper. For more studies, we refer
to [3, 4, 6, 19].

As mentioned, we use the notion of bounded or MC*-differentiability. It
is based on Keller’s differentiability but much stronger. Originally, in [19] it is
called bounded differentiability but later on the term M C*-differentiability has
been used equivalently.

Let E, F be Fréchet spaces, U an open subset of £ and ¢ : U — F a con-
tinuous map. Let CL(E, F') be the space of all continuous linear maps from E
to F topologized by the compact-open topology. If the directional (Gateaux)

derivatives
o(x +th) — ¢
dp(z)h = }imo (= t) (=)

exist for all z € U and all h € E, and the induced map dg¢(x) : U — CL(E, F)
is continuous for all x € U, then we say that ¢ is a Keller’s differentiable map of
class C'. The higher directional derivatives and C*-maps, k > 2, are defined in
the obvious inductive fashion.
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To define bounded differentiability, we endow a Fréchet space F with a trans-
lation invariant metric ¢ defining its topology, and then introduce the metric
concepts which strongly depend on the choice of p. We consider only metrics of
the following form
1 f[z—yllF

o\Z,Yy) =8Sup -~ >
D) R T ey I}
where {|| - || }nen is a collection of seminorms generating the topology of F'.

Let (E, o) be another Fréchet space and let L, ,(E, F) be the set of all linear
maps L : E — F which are (globally) Lipschitz continuous as mappings between
metric spaces ¥ and F', that is

L
Lip(L)g,o == sup o(L(z),0) < 0,

zeF\{0} O-('T> O)

where Lip(L) is the (minimal) Lipschitz constant of L.
The translation invariant metric

Ao Lo o(E, F) X Ly o(E, F) — [0,0), (L,H) — Lip(L — H)gs,p, (1)

on L, ,(E, F) turns it into an Abelian topological group. We always topologize
the space L, o(E, F') by the metric (1).

Let U be an open subset of E¥ and let ¢ : U — F be a continuous map. If ¢
is Keller’s differentiable, d p(x) € L, o(E, F)) for all z € U and the induced map
dp(z) : U — L, o(E, F) is continuous, then ¢ is called bounded differentiable
or MC' and we write () = /. We define for (k > 1) maps of class MCF,
recursively. If A(¢) is a curve in a Fréchet space, we denote its derivative by A’ or
d\(t)/dt. For product spaces, we denote by d; (in the case of curves by ¢; ) the
partial derivative with respect to the i-th variable.

An M C*-Fréchet manifold is a Hausdorff second countable topological space
modeled on a Fréchet space with an atlas of coordinate charts such that the
coordinate transition functions are all M C*-maps. We define M C*-maps between
Fréchet manifolds as usual.

We recall the definition of nuclear manifolds as we mainly work with these
manifolds. Let (By,| - |1) and (Bs,| - |2) be Banach spaces. A linear operator
T : By — By is called nuclear or trace class if it can be written in the form

T(x) = Y A, z5);,
j=1

where (-,-) is the duality pairing between By and its dual (By,| - |}), z; € B}
with | z; |1< 1, y; € By with | 91 |2< 1, and \; are complex numbers such that

DNPHERS

If || - ||% is a seminorm on a Fréchet space F, we denote by F; the Banach space
given by completing F using the seminorm || - ||%, there is a natural map from
F to F; whose kernel is ker || - ||%. A Fréchet space F is called nuclear if for any

seminorm | - ||% we can find a larger seminorm || - ||]F so that the natural induced
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map from F} to Fj is nuclear. A nuclear Fréchet manifold is a manifold modeled on
a nuclear Fréchet space. Each nuclear Fréchet space admits a fundamental system
of Hilbertian seminorms, see [14]. There are no infinite dimensional Banach spaces
that are nuclear. A simple example of Fréchet nuclear space is the space of smooth
functions C*(U,R), U < R" is open, with the fundamental system of seminorms

| £ "= sup | ()|,
z€eS;,
|| <3
where S; < S5 < S -+ is an exhaustion by open sets.

A very important example of a Fréchet nuclear (bounded) manifold is the man-
ifold of all smooth sections of a fiber bundle (such as the manifold of Riemannian
metrics) on a closed manifold. For more details on nuclear spaces we refer to [14].

Let M be an MC*-Fréchet manifold modeled on a Fréchet space F. Let
p € M, tangent vectors v € T,M are defined as equivalence classes of smooth
curves passing through p, where the equivalency means that curves have the same
derivative at p. We write TM = Upe v LM for the tangent bundle of M. The
bundle projection 7 : TM — M maps elements of T,,M to p, the tangent bundle
TM carries a natural vector bundle structure, see [4, Thorem 3.1].

An important feature of an MC¥-Fréchet manifold M (which is not true for
Fréchet manifolds in general) is that an MC*-vector field X : M — TM has a
unique integral curve. More precisely,

Theorem 1. [4, Theorem 5.1] Let X : M — TM be a vector field of class MC*,
k = 1. Then there exits an integral curve for X at x € M. Furthermore, any two
such curves are equal on the intersection of their domains.

Another important feature of MCF¥-differentiability (which is not true for
Keller’s differentiability) is that an M C*-vector field on a Fréchet space has an
MC*-local flow.

Theorem 2. [3, Theorem 2.2] Let X be an MC¥-vector field on U  F, k > 1.
There exists a real number a > 0 such that for each x € U there exists a unique
integral curve £, (t) satisfying £, (0) = x for allt € I, = (—a,a). Furthermore, the
mapping F : I, x U — F given by Fy(x) = F(t,x) = £,(t) is of class MC*.

In this paper, we define the local flow of an MC*-vector field X : M — TM
and prove that it has the unique MC*-flow and its domain is open in M x R.
This is indeed a critical result that allows defining exponential maps.

A motivation for defining this class of differentiability was to obtain the fol-
lowing inverse function theorem:

Theorem 3. [19, Theorem 4.10] Let g € U < M be open and ¢ : U — N a
MC*-map, k = 2. If ¢'(x0) is an isomorphism. Then there exists r > 0 such that
V = ¢(B(xo,r)) is open in N and ¢ : B(xo,r) — V is a diffeomorphism.

In this theorem a ball is defined with respect to a metric that induces the
same manifold topology, we shall use a Finsler metric. As a consequence of this
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theorem, we shall prove that exponential maps are local diffeomorphisms at the
identity.

We stress again none of the above results and the ones that we shall prove
are true for Fréchet manifolds in general. Most concepts and results from finite
dimensional differential geometry cannot be generalized trivially and without re-
strictive approaches to Fréchet manifolds. Apart from the concepts that depend
on the finite-dimensionality, there are obstructions of intrinsic character which are
mainly related to dual spaces. The dual of a Fréchet space (non-Banachable) is
never a Fréchet space and cotangent bundles do not admit differentiable (in any
sense) manifold structures, see [21]. Therefore, some concepts such as the musical
isomorphism and strong Riemannian metrics are not at hand. Other obstacles are
of analytic nature which are caused by the lack of general solvability of differen-
tial equations and the absence of an inverse function theorem in general, therefore
geometrical objects such as geodesics, exponential maps and parallel translation
may not exist. In this paper we overcome the latter drawbacks by working out in
the category of M C*-manifolds.

3 Geodesics of sprays

Let M be an M C*-Fréchet manifold modeled on F and let 7 : TM — M be
its tangent bundle. Suppose X is an MC¥-vector field X : M — TM, k > 1.
Let U be open, z € U ¢ M and I, = (—a,a), a € (0,0]. A local flow of X at
z is an M C*-function
F:UxI,— M

such that

1. for each x € U, ¥, : I, — M defined by ¢, (t) = F(x,t) is an integral curve of
X at z,

2. if F, : U > M is F(z) = F(x,t) then for t € I, F;(U) is open and F; is an
M C*-diffeomorphism onto its image.

For t + s € I, we have Fiis(x) = Lx(t + s). But Fy(Fg(z)) = Fy(4y(s)) is the
integral curve through ¢,(s), and ¢, (¢ + s) is also an integral curve at £;(s) so by
Theorem 1 they coincide, and on U

Fu(Fy(2)) = o(t + 5) = Frya(a),

therefore, Fs o Fy = Fgyy = Fyys = Fy o Fg. Since £,(t) is a curve at z, £,(0) = z,
so [Fy is the identity. Moreover, F; oF_, = F_; o I, is the identity therefore, if

Vi =F(U) (U # &,

then Fy |y ,: V_y — V4 is a diffeomorphism and its inverse is F_; |y;.
Now we prove that an MC*-vector field X : M — TM has a unique local
flow.
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Theorem 4. Let X be an MC¥-vector field on M. For each x € M there exists
an MC*-local flowof X atx. LetFy : Uy x Iy > M and Fy : Us x Is — M be
two local flows then they are equal on (Up n Us) x (I1 n I3).

Proof. (Uniqueness). For each u € Uy (Uz we have Fy [y, 1= Fa |(yxs, Where
I = I () I5. This follows from Theorem 1 and the definition of local flows. Thus,
Fl = FQ on the set (Ul N U2) x I.

(Existence). In order to prove the existence we use the local representation.
Let (z € U,) be a chart and let F : V x I, — F be the local flow of the local
representative of X at ¢(x) given by Theorem 2 with

I, = (—a,a), VcyU), FV xI,)cy).

Define
F:oy— 1(V) x I, - M
u 1

(u,t) = = (F(¢(u), 1)).

Since F is continuous, there exist an open neighborhood W < ¥~1(V) of x and
0 < b < a such that
FW x I,) c ¢~ 1(V).

The restriction of F to W x I is the local flow of X at z. By the construction, F
is M C*. The first condition of the definition of local flows holds because it is true
for the local representative. To prove the second condition of the deﬁnition, note

that for each t € I, F; has an MC* inverse F_; on v~ (V) NF(W) = F(W). Tt
follows that F;(W) is open. And, since F; and F_; are both of class M C’k F;is a
M C*-diffeomorphism. ]

It follows from Theorem 1 that the union of the domains of all integral curves
of an MC*-vector field X : M — TM(k > 1) through 2 € M is an open interval
which we denote by I, = (T, ,T,"), where T, (resp. T, ) are the sup (resp., inf )
of the times of existence of the integral curves.

Let Dx = (U,eps({z} x 1), then we have a map F : Dx — M defined on
the entire Dx such that F(z,t) is the local flow of X at x. We call this the flow

determined by X, and we call Dx the domain of the flow. We prove that the sets
My ={zxe M| (z,t)e Dx}
are open subsets of M.

Lemma 1. The domain Dx is open in M x R. Moreover, the set My is open in
M for each t € R.

Proof. We follow the idea of [15, Theorem 2.6]. Let x € M and let J, < I, be the
set of points for which U x (t —a,t + a) € D(X) for some positive number a and
an open neighborhood x € U, and such that the restriction of the flow F of X to
this product is an M C¥-map. Then, the interval J, is open in I, and it contains
zero by Theorem 4.
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We show that J, is closed in I, too. Let s belong to its closure J,. By
Theorem 4 we can find a neighborhood V for F(x, s) such that there is a unique
MC*- local flow

E:VxI,— M,

for some positive number b and E(v,0) = v for all v e V.

Let a neighborhood F(z,s) € V3 € V be small enough. By the definition of
Jo, there exist t; € J, close enough to s and a small number a and a small enough
neighborhood x € W such that on this product F is MC* and

F(W x (t1 —a,t1 +a)) < V1.
Define
F(w,t) = E(F(w,t1),t —t1)
for w € W and t belongs to the translation of I, by ¢1, I + t;. Then
Fw, t1) = E(F(w,t1),0) = F(w, t1),
and by the chain rule ([12, Lemma B.1 (f)]

iﬁ"(w,t) = d2 F(w,t) o d2 E(F(w,tl),t - tl,)

dt
= X(E(F(w,t1),t —t1) = X(F(w, ).
Therefore, both F(z,t) and F(x,t) are integral curves of X with
F(z,t1) = F(z, t1).

Thus, they coincide on the intersection of their domains and F (¢, z) is an exten-
sion of F(x,t) to a bigger interval containing s, therefore, J, is closed in I, and
consequently J, = I,. Since F is MC* on W x (t; — a,t; + a) it follows that J is
MC* on W x (I 4 t1). Whence, D(X) is open in M x R and consequently M; is
open in M, and F is of class MC* on the whole domain D(X). O

The double tangent bundle T'(T'M) over T'M has two vector bundle structure,
one determined by the natural projection wrps : T(TM) — TM (see [4, Theorem
3.1]) and the other by the tangent map m, = Tw : T(T'M) — T'M. Indeed, the
tangent map is a vector bundle morphism (the arguments for Banach manifolds
are valid for M, see [15, Page 52]).

Suppose M is of class MC¥, k = 3. Let a: I — M be an MC'(I = 2)-curve,
a lift of o into T'M is a curve & : I — T'M such that 7& = «. The derivative
o : I — TM is called the canonical lift. A second order vector field over M is a
vector field F : TM — T(TM) such that

Ty O F = IdTM
An integral curve ¢ : I — T'M of F is equal to the canonical lift of 7z, that is

(m) = 1.
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A geodesic with respect to F is a curve g : I — M such that its derivative
g’ : I — TM is an integral curve of F, that is g” = F(g’).
Let s # 0 € R be fixed, define the mapping

Ly:TM —TM
vV — SV,

A second order vector filed S : TM — T(T'M) is said to be spray if
1. .8 (v) = v,
2. S(sv) = (Ls)«(sS(v)) for all se R and v € TM.

If a manifold admits a partition of unity, then there exists a spray over M,
cf. [15, Theorem 3.1]. Let U x F be a chart for TM and let ¢ : U x F — F x F
with ¢ = (¢1,¢2) be a map. By repeating the arguments of [15, Proposition
3.2] and the remarks after it we obtain that ¢ represents a spray S if and only if
¢1(z,v) = v and

ba(ar,v) = 5 Ba(a, 0)(v,v).

Thus, at « € U in the chart the spray is determined by a symmetric bilinear map

S(2) = 5 B a(a,0). &)

Let S be a spray over M. If + : I — T'M is an integral curve of S, then ¢ is the
canonical lift of the curve £ == mo1: 1 — M, that is, 2 = ¢'. Thus, £ is a geodesic
of S because ¢/ =1 = So1=8o/. If {: I — M is a geodesic of S, then its
canonical lift + = ¢’ is an integral curve of S. Therefore, a curve £ : I — M is a
geodesic of S if, and only if, ¢ is an integral curve of S.

Lemma 2. Let S be a spray of class MC*, k=2, over M. Ifx € M and v is a
tangent vector in T, M, then there exists the unique integral curve v: 1 — TM of
S such that +(0) = v.

Proof. The spray S is a vector field on TM so by Theorem 1 it has a unique
integral curve v : I — T'M such that ¢(0) = v. The integral curve ¢ is the
canonical lift of the geodesic £ = 7o and £/(0) = ¢(0) = v.

If ¢4 : J — M is another geodesic with ¢(0) = v, then 2; = ¢ is also an
integral curve of S such that 1(0) = v and so 1; = 1. O

Let v € TM. By the previous lemma there exists a unique integral curve
1y : Iy = T'M of S such that 2,(0) = v. For v € TM we have the following result:

Lemma 3. Let s,t € R, then for a fized s and all t such st € I, we have

Loy (t) = sby(st).
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Proof. Let a fixed s be given and ¢t € R be such that st € I,,, then the curve £,(st)
is defined and

d

a(sfv(st)) = (Lg)«sll(st) = (Ls)x8S(£y(st)) = S(sly(st)). (3)
Therefore, the curve s, (st) is a unique integral curve of S such that s¢,(0) = sv
and the uniqueness of the integral curve implies that s, (t) = sf,(st). O

Let S be a spray on M of class MC*, k > 2. Let £, be the integral curve of
S with the initial condition v € TM. Let

D :={veTM |, is defined at least on [0, 1]}.

By Lemma 1, D is an open set in TM and v — £,(1) is an M C*-map.
We define the exponential map by

exp: D> M

exp(v) = mly(1). )

We denote by exp, : T, M — M the restriction to the tangent space T,M for
x € M. By the definition of spray for s = 0 at the zero vector 0, in T, M we have
S(0z) = 0 so exp(0z) = =.

Proposition 1. Let M be an M C*-Fréchet manifold, k = 3, and letexp : D — M
be the exponential map. Then for each x € M, exp, : TuM — M s a local
diffeomorphism at 0.

Proof. Let v € T,M and let I, be an interval containing zero. Consider the
parameterized straight line
1 Ly > TM
t— tv.

In view of Lemma 3 for s = 1 we obtain exp(tv) = mly, (1) = wl,(t). Thereby,

(exp(tv))/ = (ﬂ-gv(t))/ = Ev(t)7

but

(exp(tv))" = exp, iy, (t).
Then, by evaluating at ¢t = 0 we get (exp,)(0;) = Id. Thus, the map (exp,)(0,) is
a linear isomorphism and hence the inverse mapping theorem, Theorem 3, implies
that exp,, is a local diffeomorphism at 0. ]

Given a point x € M, by the preceding proposition and the inverse mapping
theorem there exists a star-shaped open neighborhood W of 0, € T, M and an
open neighborhood U of x such that exp, : W — U is a diffeomorphism. The pair
(U, W) is called a normal neighborhood of = in M.

We should note that our notion of a normal neighborhood differs from the
normal coordinates in the classical sense. We shall give normal neighborhoods in
terms of the so-called injectivity radius later on.
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Proposition 2. Let x € M, v € T,M and a,(t) = exp,(tv). Then a,(t) is a
geodesic. Conwversely, if a : I — M is an MC? geodesic with o(0) = x and
a/(0) = v. Then a(t) = exp,(tv).

Proof. The proof is standard so we omit it. O

4 Covariant derivatives

In this section, we work in the category of M C®-Fréchet manifolds.

Let M be an M C*-Fréchet manifold modeled on a Fréchet space F' and &(M)
the set of smooth real-valued maps on M. Let V(M) = MC®(M — TM) be the
set of all M C®-vector fields and X,Y € V(M).

The Lie derivative of ¢ € E(M) with respect to a vector field X with the flow
F is defined as usual by

o(F(,1) - plz)
t

Lxo(x) =lim,o

It is easily seen that £x¢ = X (p) belongs to E(M).

Let (U;,v;) be an atlas of M. We endow &(¢;(U;)) = E(1:(U;), R) with the
topology of uniform convergence on compact sets, for the function and all its
derivatives, that is, the weakest topology for which the maps

¢ —d"pe C(Yi(Us;) x F",R)

are continuous, where C'(¢;(U;) x F™,R) is the space of continuous linear functions
endowed with the compact-open topology.
Then, we equip (M) with the weakest topology for which the maps

@ o !

from (M) to E(3;(U;)) are continuous. The topology of £(M) can also be viewed
as the weakest topology for which the restrictions E(M) — £(U;)) are continuous.
This topology is independent of the choice of atlas, see [25, Lemma 2].

We identify V(U;) with E(U;,U; x F'), then we similarly define the topology
of V(M) to be the weakest topology for which the restrictions V(M) — V(U;) are
continuous, see [25, Page 280].

The following theorem is proved for Fréchet manifolds in [25] for smoothness in
the sense of Keller. Careful analysis of the proof of the theorem shows that it has
a topological nature and since M C*-differentiable maps are Keller’s differentiable
so the theorem is also valid for the subcategory of MC*-Fréchet manifolds.

Theorem 5. [25, Theorem] Let M be a regular smooth nuclear Fréchet manifold.
Then the map X — Lx is a linear topological isomorphism of the space V(M)
onto the space of continuous derivations in E(M).
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In [6] a covariant derivative for M C*-Fréchet manifolds is defined by means
of a connection map and Christoffel symbols. However, that definition is not
consistent with our context here as we need that a covariant derivative comes
from a spray. Herein, we adapt the definition of a covariant derivative in the
sense of Lang [15].

If pe E(M) and X € V(M), then we obtain an MC®-function on M via

Xp:=dpoX: M —R.

For XY € V(M), there exists a unique a vector field [X,Y] € V(M) determined
by the property that on each open subset U < M we have

[X,Y].p=X.(Y.p) = Y.(X.0)

for all ¢ € MC®(U,R), see [3]. If we again denote the local representatives of
X,Y in an open set U c F by themselves, then the local representation of [ X, Y]
is given by

[X,Y](z) = X'(2)Y(2) - Y'(2) X (2).

By the definition we see that [X,Y] is bilinear in both arguments and
[X,Y] =-[Y, X],
and
(X, [V, Z]) = [[X, Y], Z] + [V, [X, Z]].

Definition 1. Let w : TM — M be the tangent bundle. A covariant derivative V
is an R-bilinear map

V V(M) x V(M) — V(M)
(X,Y) > VyxY

such that for all p € E(M) and X,Y € V(M) the following hold
1. VoxY = oVxY,
2. Vx(¢Y) = (£x@)Y + ¢VxY,
3. VyY — VyX = [X,Y].

In a chart U we index objects by U to show their representatives. Let S be a
spray on M and let Sy7(z) as in (2) be the symmetric function associated with S
in U. In a chart U, define

(VxY)u(z) = Y (2) Xy (x) — Su(x)(Xu (2), Yy (z)). ()

It is a covariant derivative over U and it does not depend on the choice of a local
chart, the proof is straightforward and similar to [15, Theorem 2.1].

Now, we define a covariant derivative along a curve. Let I be an open interval
in R, A\: I > M acurve and X\ : I — TM its lift. Let Lift(\) be the vector space
of lifts of A. In a chart U, define the operator

Vi Lift(k) — Lift(\) (6)
(V7)) = v5(t) = Su(A(©) (A (8), 70 (8)).-
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This defines a covariant derivative and it does not depend on the choice of a local
chart and for a mapping ¢ it satisfies the derivation property

(Va(em) (@) = &' (O (Y (M)(E) + o) (Va)(@),

the proof is standard so we omit it, cf. [15, Theorem 3.1]. Let X be a vector
field such that v(t) = X(A(t)) for t € I and let Y be a vector field such that
Y (A(tg)) = N (to) for some ty € I. Then by the chain rule and (6) we have

(Vam)(to) = (Vy X)(Alto)).

Let J be an open interval in R, p : J — M a MC¥-curve (k > 2),and vy : J — TM
a lift of 1. We say that +y is p-parallel if Vv = 0. By (6) in a local chart we have

Y0 (t) = Su () (up (1), v (1),

and hence p is a geodesic for the spray S if and only if V,/u’ = 0.

5 Finsler structures and geodesics

As mentioned on a Fréchet manifold there exist only weak Riemannian metrics
with unsatisfactory properties. Thus, we use a graded weak Riemannian structure
or a Finsler structure instead. The idea behind a graded weak Riemannian metric
structure is considering not one weak metric but a collection of weak metrics
such that the family of induced seminorms generates the same topology as the
Fréchet model space. Nevertheless, this is not enough to produce a strong enough
topology on the tangent spaces, in addition, the induced seminorms need to satisfy
an estimation of a tame type.

In the finite dimensional theory of Finsler manifolds, a Finsler structure is a
function F : TM — R™ which is smooth on the complement of the zero section
and positively homogeneous and strongly convex on each tangent space. This def-
inition is too restrictive and insufficient for infinite dimensional Fréchet manifolds.
By contrast, in the infinite dimensional theory there are two definitions of Finsler
structures: one in the sense of Palais and another in the sense of Upmeier-Neeb
which are different by their local compatibility conditions. Roughly speaking a
Finsler structure is a collection of continuous functions on the tangent bundle
such that their restrictions to every tangent space is a collection of seminorms
that generates the same topology as the Fréchet model space. In addition, this
family of seminorms needs to satisfy a certain local compatibility condition. The
infinite dimensional theory of Finsler manifolds is much less general than the finite
dimensional theory and analogue notions and results may not be available.

In this paper we use the definition of a Finslear structure in the sense of
Palais [23].

Definition 2. [6, Definition 4.2] Let F be a Fréchet space T a topological space,
and V =T x F the trivial bundle with fiber F over T'. A Finsler structure for V
is a collection of continuous functions || - ||*: V — R*, n e N, such that
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1. ForbeT fized, || (b, f) ||"=|| f |I} is a collection of seminorms on F which
gives the topology of F'.

2. Given k > 1 and tg € T, there exists a neighborhood U of ty such that

1 n n n
PR A (7)
forallueU, neN, feF.

Suppose M is a bounded Fréchet manifold modeled on F. Let mwps : TM — M
be the tangent bundle and let || - |*: TM — R* be a collection of functions,
n € N. We say {|| - ||"}nen is a Finsler structure for T'M if for a given x € M,
there exists a bundle chart ¢ : U x F ~TM |y with x € U such that

{1 1" o™ nen

is a Finsler structure for U x F.

A bounded Fréchet Finsler manifold is a bounded Fréchet manifold together
with a Finsler structure on its tangent bundle. If {|| - ||"},en is a Finsler structure
for M, then eventually we can obtain a graded Finsler structure, (|| - ||")nen, for
M, that is || - ||’<] - |**! for all 4.

We define the length of an M C!-curve v : [a,b] — M with respect to the n-th

component by
b
= [ 17 1y

The length of a piecewise path with respect to the n-th component is the sum over
the curves constituting the path. So, a curve v possesses a sequence of geodesic
lengths L, (7). By abuse of language, we say that the length of a curve 7 is
minimal if for all other such curves A, we have L, () < L, (\) for all n. On each
connected component of M, the distance is defined by

pn(T,y) = igf Ln(v),

where infimum is taken over all continuous piecewise MC'-curve connecting z
to y. Thus, we obtain an increasing sequence of metrics p,(x,y) and define the
distance p by

v 1 pa(z,y)
ple.y) 2:227 1+ pp(z,y) (8)

Theorem 6. [6, Theorem 4.6] Suppose M is connected and endowed with a
Finsler structure (|| - ||")nen. Then the distance p defined by (8) is a metric for
M, called the Finsler metric. Furthermore, the topology induced by this metric
coincides with the original topology of M .

If a manifold admits a partition of unity, then it possesses a Finsler structure,
in particular, nuclear Fréchet manifolds can be equipped with Finsler structures,
cf. [6, Proposition 4.4].
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Definition 3. Let F' be a Fréchet space. A continuous function | - |: F — RT is
said to be the pre-Finsler norm on F if

1. it is positive homogeneous of order 1,
2. it is sub-additive.

Definition 4. Let (F,| - |) be a pre-Finsler space, a function < -,- »: Fx F - R
is said to be the Finslerian product if

1. it is positive homogeneous of order 1 in its first argument,
2. it is linear in its second variable.

We say that a vector v € F' is F-orthogonal to v € F' if €« u,v »,=0,Yn € N.

Let M be a nuclear Fréchet manifold of class MC*® with a Finsler structure
(I - I")nen. Let x € M and u,v € T, M. The tangent space T, M admits semi-inner
products by Hilbertian seminorms || v ||Z= /{v,v)pn . We define the Finslerin
products on T, M simply by

L UV Py = (U, V)p g, VN € N. 9)

For the sake of brevity we write « w,v », instead of « u,v »,, where the
confusion may not occur.

In local charts, mappings « -, - >, are linear so smooth in the sense of Keller.
Also, in local charts, the Cauchy-Schwartz inequality yields that they are globally
Lipschitz and so of class M C® by Lemma B.1(a) [12].

Remark 1. For nuclear Féchet manifolds a Finsler structure (|| - ||")nen in fact is
given by semi-inner products and the products (9) are Riemannian. Therefore, on
each tangent space the topology is induced by a family of weak Riemannian metrics
that satisfy the Finsler condition. In such a case, we call (|| - ||")nen a Riemann-
Finsler structure. It is to be observed that we cannot use an arbitrary collection
of weak metrics they need to satisfy the Finsler condition (Definition (2)); this
justifies the terminology “Riemann-Finsler structure”.

If X,Y are vector fields, then « X,Y >», is a function on M with the value
« X(z),Y(x) », at a point x € M.

Proposition 3. Let M be an MC®-nuclear Fréchet manifold with a Riemann-
Finsler structure (|| - ||")nen. Then for each n € N there exists a unique covariant
derivative V™ such that

7 XY >, =< VXY >», +< X, VY »,; X,Y,ZeV(M). (10)

Proof. (Uniqueness). Suppose there exists such a covariant derivative. If for all
X,Y and Z we compute V7, « XY »,, Vi «Y,Z », and V§ « Z,X »,
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by (10), then by subtracting the sum of the first two from the last one and applying
the torsion-free property of a covariant derivative we obtain

K, X, Y, Z2)=Lz; <« X,)Y > +Lx <Y, Z >, Ly <« Z, X »,
— < X, Y, Z]»n+ <Y, [Z,X] »n + < Z,[X,Y] »,
=2« V%Y, Z », . (11)

Let V" be the other covariant derivatives satisfying (10). The right-hand side
of (11) does not depend on the covariant derivatives, therefore, for all n € N we

have R
<« V%Y — V%Y, Z »,=0.

Since Z is arbitrary, the Hausdorffness implies that
VLY = V&Y.

(Existence). Fix XY, the function K,(X,Y,Z) is smooth since it is the
sum of smooth functions. The mapping K,(X,Y,Z) — LzK,(X,Y,Z) is a
continuous derivation so by Theorem 5 for each n there is a uniquely defined
vector field which we call V'Y such that

1
<« V%Y, Z »,= iKn(X,Y,Z).

Showing that V'iY satisfies the properties (1) — (3) in Definition 1 is standard.
Therefore, it is omitted. O

The preceding theorem and the ones we shall prove strongly depend on the nu-
clearness property of manifolds and the M C*-differentiability. They are not true
for Fréchet manifolds even for Banach manifolds with weak Riemannian metrics
in general.

Henceforth, we assume that M is a connected nuclear Fréchet manifold of class
MC® with a Riemann-Finsler structure (|| - ||”)nen. Let z € M and let B(0,,7)
be the open ball in T, M centered at 0, with radius r with respect to the Finsler
metric p (8). The injectivity radius of M at x, i(x), is the least upper bound of
numbers r > 0, such that exp, is a diffeomorphism on B(0,, 7).

Theorem 7. Let x € M, and let € > 0 be such that U = exp,(B(0y,¢)) is a
normal neighborhood of x. Then for any y € U there exists a unique geodesic
0:]0,1] — M joining x and y such that for alln e N

L,({) L e.

Proof. Let x € M and let 0, € T, M be the zero vector. On an open neighborhood
N of 0, in T, M define the mapping ¢(v) = (z, exp,(v)). By virtue of Proposition 1
in local charts, the Jacobin matrix of ¢ at 0, is

[id 0
YT id|
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which is invertible. Thus, by the inverse function theorem (3) ¢ is a diffeomor-
phism from some neighborhood W of 0, onto its image. We can shrink W and
assume that W = (i, B(0y, ) for some open neighborhood V' of z. Then, for
y € U there exists a unique v € W such that ¢(v) = (z,y). That is, there exists
a unique v € B(0,,¢) such that exp,v = y. Now define ¢(t) : [0,1] — M by
0(t) = exp,(tv), this is a geodesic connecting x to y and ¢ (0) = v and entirely
is contained in U, since B(0g,¢) is star-shaped and so tv € B(0,,¢) for t € [0, 1].
Since /¢ is contained in U then for all n € N we have

1) 7= e,

and so L, (/) < e.

To prove the uniqueness let o be another geodesic in U connecting x,y. We
may assume that a(0) = 1 and «(1) = y after an appropriate reparameterization.
Then by Proposition 2 we have «a(t) = exp(ta/(0)) for all ¢t € [0,1]. Let

I = exp; ! (Img(a)).

It is a line segment contained in B(0,,¢) and its endpoints are 0, and aca’(0) for
some a > 0, because Img(a) € U and the map exp, is a diffeomorphism so I is a
connect closed subset in

A= {td/(0) e T,M |t € (0,00)}.

Now, we show that a > 1. If a < 1, then, the openness of U yields there exists
b € (0, 1] such that ba’(0) € U. But

exp,(ba’(0)) ¢ Img(a),

since exp,, is bijective on A (U and exp,(I) = Img(a). This is a contradiction
because the image of the line segment connecting 0, and o/(0) under exp, is
Img(c). Thus, a > 1 and so o/(0) € U. Therefore, exp,(a/(0)) = (1) = y and
a'(0) = exp, *(y) = v, whence a = /.

O

Let I, Iy be open intervals in R and let ¢ : Iy x Iy — M, (t,s) — £(t,s) be an
MC®-curve. Let 0,4, i = 1,2, denote the ordinary partial derivative with respect
to the i-th variable. Since the curves t — ;¢ and s+ ;¢ are lifts in TM we can
consider their covariant derivatives.

For each n € N, let V] 02/ be the covariant derivative of 02¢ along the curve
ls(t) = L(t, s) for a fixed s. Similarly, let V5014 be the covariant derivative of d1¢
along the curve l(s) = £(t, s) for each fixed ¢t. By Formula (5) in a local chart U

V'02by = 01020y — Su(ly) (014, 2lyr),
and symmetry of Sy implies that

Vool = VIyL. (12)
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therefore, for all n € N

02 K 014,010 »p=2 < V514,010 >p, (13)
o (12) follows that

02 L 014,01l »p=2 <K VT02l, 010 >, . (14)

Let ¢ > 0 and z € M. Define a set Sy = {v e T, M |< v,v »,= ?(¥n € N)}.

The following result generalizes the classical Gauss’s lemma to the context
of infinite dimensional M C®-nuclear Fréchet manifolds equipped with Riemann-
Finsler structures.

Theorem 8 (Gauss’s lemma). Let o € M and let (U, W) be a normal neighbor-
hood of xg. Then the geodesics through x € U are F-orthogonal to the image of
Sg.e under exp,, for small enough € > 0.

Proof. For € > 0 small enough, the map exp, is defined on an open ball in 7, M
of radius slightly larger than . The proof is equivalent to prove that for any
MC®-curve y: I — S;1,and 0 < s < ¢, if we define

1(s,t) = exp(sy(t))

then for any arbitrary sg,tg the following curves

t — exp,(sos(t)), s— exp,(si(to))

are F-orthogonal. By proposition 2 for each ¢, the map # : s — (s, t) is a geodesic
so for all n e N
V?al’b = O,

and
01 < 011,011 »p=2 K V011,011 »p,= 0, Vn e N.

Thus, the functions
s —>& 011(8,t), 012(s,t) >n (15)

are constant for each ¢. Since 012(0,t) = y(¢) and « (t),(t) »p= 1(Vn € N) it
follows that
& 012,011 »p= 1(Vn € N).

Therefore, by (14)

1
01 < (912, 091 »p=« Vlall, 021 >, +§82 < 512, 011 »p= 0, VneN.

Thereby, the functions s —« 011(s,t), d21(s,t) >, are constant for each fixed t¢.
Let s = 0, then #(0,¢) = exp,(0) = x and therefore 022(0,¢) = 0 for all ¢. Thus,

& 011,021 »p=0(VYn € N),

that is 012 and 092 are F-orthogonal. This concludes the proof. O
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Theorem 9. Let x € M and U = exp,(B(0,i(x)) be a normal neighborhood of
x. Let £ :[0,1] — M be the unique geodesic in U joining x to y € W. Then, for
any other piecewise MC"- path 1 : [0,1] — M joining ,y, we have

L,(¢) < L,(x), YneN.
If the equality holds, then 53 must coincide with £, up to reparametrization.

Proof. Consider an MC'-path ¢ : [0,1] — U connecting z to y. Since exp, on
B(04,i(x)) is a difftomorphism we may find a unique curve

t—v(t): [0,1] — T, M
with || v(t) Hg(t): 1(Vn e N) and a curve r(t) : (0,1] — (0,i(z)) such that
1(t) = exp,(r(t)v(t)) = k(r(t),t).

Locally, r(t) and v(t) are obtained by the inverse of the exponential map after a
smooth projection so r(t) and v(t) are piecewise MC'. We may assume r(t) # 0,
that is o(t) # x for all ¢t € (0, 1] since otherwise we may define ¢y to be the last
value such that (t9) = = and exchange ¢ with 2 |, ;). Now we have

2 (t) = o1 k(r(t),t)r' (t) + Ook(r(t),t). (16)
Also,
01k = (T exp, ) (v(t)) and Ok = (T, exp, ) (10 (t)).
By Theorem 8, d1k and d-k are F-orthogonal. By the same arguments for prov-

ing (15) we have
I ok [[5y=1(¥n e N),

and by (16) we obtain

() 1) =10 2+ (1 S e )2 2 0002

\%

Therefore,

J Il o( J | r'(t) | dt = r(1) — (hmr(e) =9). (17)

Let y = exp, (rv) such that 0 < r < i(z) with v e T, M and || v ||}= 1(Vn € N).
For 5,0 < s < r, the path #(t) contains a segment joining S; s and Sy, and
remains between them. By (17) we have L,(z) > r — ¢ and so if § — 0 then
L,(2) = r. Theorem 7 implies that there exists ro < i(x) such that L, (a) < 79
(we may find u € T, M such that y = exp(rou)) but L, (z) = ro, therefore for all n

Ly(a) < Ly(2).

If Lp(a) = Ly(2) then in (17) we must have the equality as well and this
happens if and only if ¢ — v(t) is constant and ¢t — r(t) is monotone. Thus, by
a suitable reparametrization 2 becomes a geodesic. Suppose this is the case, so
v :[0,7] — M is the curve t — exp,(tvg) and exp,(rvg) = y for some vy € T, M
with || v ||2= 1(Vn € N), but exp, is a diffeomorphism so v = vy and therefore
o =1. O
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Let M be an M C®-nuclear Fréchet manifold modeled on F' with a Riemann-
Finsler structure (|| - ||")nen. Let a curve ¢ : [a,b] — M be an MC®-curve. We
denote the local representatives of £ again by £. In a local chart U, the coordinate

of its canonical lift is (£(t),¢'(t)). For each n € N we define the energy functional
E, by

E,(0) = ;Jb < A(t), 0 (t) »p dt.

Take an M C®-proper variation H : (—¢,¢) x [a,b] — M of ¢ such that
H(07 S) = E(s), H(ta a) = K(a% H(ta b) = g(b)a

for all t € (—¢,¢).
Let Hy(s) = H(¢, s), a curve £ is called a critical point for E,, if

d

E (En(Ht)) |t=0: 0, Vn € N.

The partial derivative of local representative of F,, : U x F' — R are

dl En(uve>(f) = }Ll_{%%(En(u + hf7e) - En<uve)>7

dQEAu&Mf)=%§B%@%&he+hfy—Edu&».

We will need the following result.

Theorem 10. /26, Theorem 6.3] Let £ € C*(TM,R) be a Lagrangian. Then a
smooth curve J(t) is critical for £ if and only if it satisfies the FEuler-Lagrange
equation

(@ L)), 7(8)) ~ = e (2 L)(B). /(1)) = 0, (18)

in a local chart where L and j(t) are, respectively, the local expressions of L and
J(t), and d; L(i € 1,2) are the partial derivatives of L.

We should mention that in the preceding theorem the used differentiability is
equivalent to the Keller’s differentiability, as we have seen functions « -,- »,, are
Keller’s differentiable so we can apply it.

Theorem 11. An MC®-curve £ : [a,b] — M is geodesic if and and only if in a
local chart it satisfies the Euler-Lagrange equations

(A B0, 1) — e (da B)(UR),(R) = 0, e N, (19)

Proof. For an M C®-variation H : (¢, s) — H(t, s), along H define the vector fields

Y = dH(9/ot), X = dH(3/ds).
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For all n € N we have

d 1,(°d
—(Ep(Hy)) ==(] — <« X, X »,)d
T BE) =5 (| 5« X.X > )ds
b
=J <« Vy X, X »,ds since V" is compatible
a
b
:f <« V%Y, X », ds since V" is torsion-free
a

b
J (di Y, X »p— <Y, V5X », )ds
S

a
b

<Y, X »,° —J <Y, V%X »,ds

a

Since the variation is proper we have

Moreover, X (0,s) = 0H/0s(0,s) = ¢'(s), therefore,

d b
S (B(HL) |omo= _f <Y (0,5), (V3)(s) »n ds.

a
The right side is zero if and only if ¢ is geodesic. That is, the critical points
are geodesic and hence by Theorem 10 they need to satisfy the Euler-Lagrange
equations (19). O

Let N be a closed Einstein manifold of dimension n. The manifold of Rieman-
nian metrics on N, M, is a nuclear Fréchet manifold, it is also M C™ (see [5, 19]).
The solution to the Ricci flow equation

dg(t

9 _ aRic(g(r)
is g(t) = (1 —2\)tgo, where go is a Riemannian metric and Ric(go) = Ago, see [1].
This is a curve on M. In local charts, obviously g(t) is C'! and

g/(t) = _2)‘90 € LU,Q([O7T]7F)7

where o is the standard metric on R, T is a time less than the finite singular time

and
g/ : [O?T] - LU,Q([OvT]vF)

is constant and hence a continuous map into Ly ,([0, 7], F). Thus, g(t) is MC*!
and by induction it follows that g(t) is MC* with

g®) =0, (k=2).
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Simple calculations show that for all n we have

(di En)(g(t),4'(t)) # O, % |h=t (d2 En)(g(h), g'(h)) = 0.

So, the Euler-Lagrange equations do not hold, therefore, g(t) is not geodesic. This
result is proved in [9] by using the geodesic equation on the manifold of Rieman-
nian metrics which is considered as the projective limit of Banach manifolds.
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