SOME RESULTS ON LP-SASAKIAN MANIFOLDS

Uday Chand DE 1 and Arpan SARDAR ${ }^{2}$

Abstract

The object of the present paper is to characterize $L P$-Sasakian manifolds satisfying Ricci pseudosymmetry and Ricci generalized pseudosymmetry. Beside this we prove that if $R(X, \xi) \cdot P=P(X, \xi) \cdot R$ holds, where R and P denote the curvature tensor and projective curvature tensor respectively, then the manifold becomes an Einstein manifold. Then we prove that $\operatorname{div} R=0$ and $\operatorname{div} C=0$ are equivalent if the scalar curvature is invariant under the characteristic vector field ξ, where 'div' denotes divergence. Finally, we characterize 3-dimensional $L P$-Sasakian manifolds admitting Yamabe solitons and prove that the scalar curvature is constant and the potential vector field V is Killing.

2000 Mathematics Subject Classification: 53C15, 53C25.
Key words: LP-Sasakian manifold, Ricci pseudo-symmetric, Ricci generalized pseudo-symmetric, $\operatorname{div} C=0$ and $\operatorname{div} R=0$, Yamabe solitons.

1 Introduction

In 1989, the notion of Lorentzian Para-Sasakian manifold (briefly $L P$-Sasakian manifold) was introduced by Matsumoto[13]. Then Mihai and Rosca[15] introduced the same notion separately and several results on this manifold have been obtained by them. $L P$-Sasakian manifolds have also been studied by Matsumoto and Mihai[14], Matsumoto, Mihai and Rosca[15], De and Saikh([6],[7]), De, AlAqeel and Shaikh[5], Ozgur[17], Ozgur and Murathan[18] and many others.

We define endomorphism $R(X, Y)$ and $X \wedge_{A} Y$ by

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\left(X \wedge_{A} Y\right) Z=A(Y, Z) X-A(X, Z) Y \tag{2}
\end{equation*}
$$

\]

respectively, where $X, Y, Z \in \chi(M), \chi(M)$ is the set of all differentiable vector fields on the manifold M, A is the symmetric (0,2)-type tensor, R is the Riemannian curvature tensor of type $(1,3)$ and ∇ is the Levi-Civita connection.

For the $(0, \mathrm{k})$-tensor field $T, k \geqslant 1$, on (M^{n}, g) we define the tensors $R . T$ and $Q(g, T)$ by

$$
\begin{align*}
& (R(X, Y) \cdot T)\left(X_{1}, X_{2}, \ldots \ldots, X_{k}\right) \\
= & -T\left(R(X, Y) X_{1}, X_{2}, \ldots \ldots, X_{k}\right)-T\left(X_{1}, R(X, Y) X_{2}, \ldots \ldots, X_{k}\right) \\
- & \ldots \ldots \ldots \ldots-T\left(X_{1}, X_{2}, \ldots \ldots ., R(X, Y) X_{k}\right) \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& Q(g, T)\left(X_{1}, X_{2}, \ldots \ldots, X_{k}\right) \\
= & -T\left((X \wedge Y) X_{1}, X_{2}, \ldots \ldots, X_{k}\right)-T\left(X_{1},(X \wedge Y) X_{2}, \ldots \ldots, X_{k}\right) \\
- & \ldots \ldots \ldots \ldots .-T\left(X_{1}, X_{2}, \ldots \ldots .,(X \wedge Y) X_{k}\right) \tag{4}
\end{align*}
$$

respectively[22].
If the tensor R.S and $Q(g, S)$ are linearly dependent then M^{n} is called Ricci pseudo- symmetric[22]. This is equivalent to

$$
\begin{equation*}
R . S=f Q(g, S) \tag{5}
\end{equation*}
$$

holding on the set $U_{s}=\{x \in M: S \neq 0$ at $x\}$, where f is some function on U_{s}. Analogously, if the tensors $R . R$ and $Q(S, R)$ are linearly independent, then M^{n} is called Ricci generalized pseudo-symmetric[22]. This is equivalent to

$$
\begin{equation*}
R \cdot R=f Q(S, R), \tag{6}
\end{equation*}
$$

holding on the set $U_{R}=\{x \in M: R \neq 0$ at $x\}$, where f is some function on U_{R}. A very important subclass of this class of manifolds realizing the condition is

$$
\begin{equation*}
R . R=Q(S, R) . \tag{7}
\end{equation*}
$$

Every three dimensional manifold satisfies the above equation identically. The condition $R . R=Q(S, R)$ also appears in the theory of plane gravitational waves. Further more we define the tensor R.R and R.S on $\left(M^{n}, g\right)$ by

$$
\begin{align*}
(R(X, Y) \cdot R)(U, V) W & =R(X, Y) R(U, V) W-R(R(X, Y) U, V) W \\
& -R(U, R(X, Y) V) W-R(U, V) R(X, Y) W \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
(R(X, Y) \cdot S)(U, V)=-S(R(X, Y) U, V)-S(U, R(X, Y) V) \tag{9}
\end{equation*}
$$

respectively.
Recently, Kowalczyk[12] studied semi-Riemannian manifolds satisfying $Q(S, R)=0$ and $Q(S, g)=0$, where S, R are the Ricci tensor and curvature tensor respectively.

In a Riemannian or semi-Riemannian manifold of dimension n , $\operatorname{div} R$ is obtained from the Bianchi identity and given by

$$
\begin{equation*}
(\operatorname{div} R)(X, Y) Z=\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z) \tag{10}
\end{equation*}
$$

where R denotes the curvature tensor, S is the Ricci tensor, ∇ is the Riemannian connection and 'div' denotes the divergence.

Also it is known that

$$
\begin{align*}
(\operatorname{div} C)(X, Y) Z= & \frac{n-2}{n-3}\left[\left\{\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)\right\}\right. \\
& \left.-\frac{1}{2(n-1)}\{d r(X) g(Y, Z)-d r(Y) g(X, Z)\}\right] \tag{11}
\end{align*}
$$

where C is the Weyl curvature tensor of type (1,3), r is the scalar curvature.
From the above definitions, it follows that $\operatorname{div} R=0$ implies $\operatorname{div} C=0$. However, the converse, is not necessarily true.

In an n-dimensional Riemannian manifold the projective curvature tensor P is defined by [16]

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}\{S(Y, Z) X-S(X, Z) Y\} \tag{12}
\end{equation*}
$$

for $X, Y, Z \in T(M)$, where R is the curvature tensor and S is the Ricci tensor. Infact, M is projectively flat (that is, $P=0$) if and only if the manifold is of constant curvature[24]. Thus, the projective curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

In $1982 \operatorname{Szabo}([20],[21])$ studied Riemannian spaces satisfying $R(X, Y) . R=0$. In [3] De and Samui studied $P . R=0, R . P=0$ and $P . S=0$ in an $L P$-Sasakian manifold.

In [11], Hamilton introduced the notion of Yamabe solition. According to Hamilton, a Riemannian metric g of an n-dimensional Riemannian manifold (M, g) is said to be a Yamabe soliton if it satisfies

$$
\begin{equation*}
\mathcal{L}_{V} g=(\lambda-r) g \tag{13}
\end{equation*}
$$

for a smooth vector field V and a real number λ, where r is the scalar curvature of g and \mathcal{L} denotes the Lie-derivative operator. The vector field is called soliton field of the Yamabe soliton. A Yamabe soliton is said to be shrinking, steady or expanding according to $\lambda>0, \lambda=0$ or $\lambda<0$, respectively. Yamabe solitons have been studied by many authors in different contexts (see, [10], [19], [23], [24]).

On the other hand, Yamabe solitons have been defined in pseudo-Riemannian manifold, in particular in Lorentzian manifold in the same way as in the Riemannian manifolds[2].

Let us now briefly review conformal vector fields. A vector field V on an m-dimensional Riemannian manifold (M, g) is said to be conformal if,

$$
\begin{equation*}
\mathcal{L}_{V} g=2 \rho g \tag{14}
\end{equation*}
$$

for a smooth function ρ on M. A conformal vector field satisfies,

$$
\begin{gather*}
\left(\mathcal{L}_{V} S\right)(X, Y)=-(m-2) g\left(\nabla_{X} D \rho, Y\right)+(\Delta \rho) g(X, Y) \tag{15}\\
\mathcal{L}_{V} r=-2 \rho r+2(m-1) \Delta \rho \tag{16}
\end{gather*}
$$

where D is the gradient operator and $\Delta=-\operatorname{div} D$ is the Laplacian operator of g [25].

The present paper is organized as follows :
After preliminaries we characterize Ricci pseudosymmetric and Ricci generalized pseudosymmetric $L P$-Sasakian manifolds in section 3 and 4 respectively. Next, in section 5, we study the curvature condition $R(X, \xi) \cdot P=P(X, \xi) \cdot R$ in an $L P-$ Sasakian manifold. Then we prove that in an $L P$-Sasakian manifold $\operatorname{div} R=0$ and $\operatorname{div} C=0$ are equivalent under certain restriction on the scalar curvature. Finally, we study Yamabe solitons in a 3 -dimensional $L P$-Sasakian manifold.

2 Preliminaries

An n-dimensional differentiable manifold M is called an $L P$-Sasakian manifold $([8],[14])$ if it admits a $(1,1)$ tensor field ϕ, a covariant vector field ξ, a 1 -from η and a Lorentzian metric g satisfying :

$$
\begin{gather*}
\phi^{2}(X)=X+\eta(X) \xi, \eta(\xi)=-1, \tag{17}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{18}\\
g(X, \xi)=\eta(X), \nabla_{X} \xi=\phi X \tag{19}\\
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi+2 \eta(X) \eta(Y) \xi, \tag{20}
\end{gather*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

It can be easily seen that in an $L P$-Sasakian manifold, the following relations hold:

$$
\begin{gather*}
\phi \xi=0, \quad \eta(\phi X)=0 \tag{21}\\
\operatorname{rank}(\phi)=n-1 . \tag{22}
\end{gather*}
$$

Again if we put

$$
\begin{equation*}
\Omega(X, Y)=g(X, \phi Y) \tag{23}
\end{equation*}
$$

for any vector fields X and Y , then the tensor field $\Omega(X, Y)$ is symmetric $(0,2)$ tensor field[13]. Also, since the vector field η is closed in an $L P$-Sasakian manifold, we have $([8],[13])$,

$$
\begin{equation*}
\Omega(X, Y)=\left(\nabla_{X} \eta\right) Y, \quad \Omega(X, \xi)=0 \tag{24}
\end{equation*}
$$

for any vector fields X and Y .
An $L P$-Sasakian manifold M is said to be η-Einstein if its Ricci tensor S is of the from

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{25}
\end{equation*}
$$

for any vector fields X, Y where a, b are smooth functions on M. Let M be an n-dimensional $L P$-Sasakian manifold with the structure (ϕ, ξ, η, g). Then we have([8],[14]):

$$
\begin{gather*}
g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{26}\\
R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \tag{27}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{28}\\
R(\xi, X) \xi=X+\eta(X) \xi \tag{29}\\
S(X, \xi)=(n-1) \eta(X) \tag{30}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{31}
\end{gather*}
$$

for any vector fields X, Y, Z, where R is the curvature tensor and S is the Ricci tensor.

3 Ricci pesudo-symmetric $L P$-Sasakian manifolds

In this section we study Ricci pseudosymmetric $L P$-Sasakian manifolds, that is, the manifold satisfies the condition

$$
R . S=f Q(g, S)
$$

Assume that M is a Ricci pseudo-symmetric $L P$-Sasakian manifold and X, Y, U, V $\in \chi(M)$. We have from (5)

$$
\begin{equation*}
(R(X, Y) \cdot S)(U, V)=f Q(g, S)(X, Y ; U, V) \tag{32}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
(R(X, Y) \cdot S)(U, V)=f\left(\left(X \wedge_{g} Y\right)(U, V) .\right. \tag{33}
\end{equation*}
$$

Using (9) and (4) in the above equation, we get

$$
\begin{aligned}
-S(R(X, Y) U, V)-S(U, R(X, Y) V) & =f[-g(Y, U) S(X, V)+g(X, U) S(Y, V) \\
& -g(Y, V) S(U, X)+g(X, V) S(U, Y)] .34)
\end{aligned}
$$

Putting $X=U=\xi$ in (34) and using (26)-(29) yields

$$
\begin{equation*}
(1-f)[S(Y, V)-(n-1) g(Y, V)]=0 . \tag{35}
\end{equation*}
$$

Then either $f=1$ or, the manifold is an Einstein manifold of the from

$$
\begin{equation*}
S(Y, V)=(n-1) g(Y, V) . \tag{36}
\end{equation*}
$$

By the above discussion we have the following :
Proposition 1. Every n-dimensional Ricci pseudo-symmetric LP-Sasakian manifold is of the from R.S $=Q(g, S)$, provided the manifold is non-Einstein.

Conversely, if the manifold is an Einstein manifold of the from (36), then from (34) it follows that $R . S=f Q(g, S)$. This leads to the following :

Theorem 1. An n-dimensional LP-Sasakian manifold is Ricci pseudo-symmetric if and only if the manifold is an Einstein manifold, provided $f \neq 1$.

4 Ricci generalized pseudo-symmetric $L P$-Sasakian manifolds

This section deals with Ricci generalized pseudosymmetric $L P$-Sasakian manifolds. Let us suppose that M is an n-dimensional Ricci generalized pseudosymmetric $L P$-Sasakian manifolds. Then from (6) we have

$$
\begin{equation*}
R . R=f Q(S, R), \tag{37}
\end{equation*}
$$

that is,

$$
\begin{equation*}
(R(X, Y) \cdot R)(U, V) W=f\left(\left(X \wedge_{S} Y\right) \cdot R\right)(U, V) W \tag{38}
\end{equation*}
$$

Using (8) and (4) we get from (38)

$$
\begin{align*}
& R(X, Y) R(U, V) W-R(R(X, Y) U, V) W \\
- & R(U, R(X, Y) V) W-R(U, V) R(X, Y) W \\
= & f\left[\left(X \wedge_{S} Y\right) R(U, V) W-R\left(\left(X \wedge_{S} Y\right) U, V\right) W\right. \\
- & \left.R\left(U,\left(X \wedge_{S} Y\right) V\right) W-R(U, V)\left(X \wedge_{S} Y\right) W\right] . \tag{39}
\end{align*}
$$

Applying (2) in (39), we get

$$
\begin{align*}
& R(X, Y) R(U, V) W-R(R(X, Y) U, V) W \\
- & R(U, R(X, Y) V) W-R(U, V) R(X, Y) W \\
= & f[S(Y, R(U, V) W) X-S(X, R(U, V) W) Y \\
- & S(Y, U) R(X, V) W+S(X, U) R(X, Y) W \\
- & S(Y, V) R(U, X) W+S(X, V) R(U, Y) W \\
- & S(Y, W) R(U, V) X+S(X, W) R(U, V) Y] . \tag{40}
\end{align*}
$$

Substituting $X=U=\xi$ and using (27)-(30) in the above equation, we have

$$
\begin{align*}
& g(V, W) Y+g(V, W) \eta(Y) \xi-g(Y, V) \eta(W) \xi+\eta(V) \eta(W) Y \\
- & R(Y, V) W-g(V, W) \eta(Y) \xi+\eta(W) \eta(Y) V+g(Y, W) \eta(V) \xi \\
- & \eta(W) \eta(V) Y-g(Y, W) V-g(Y, W) \eta(V) \xi+g(V, Y) \eta(W) \xi-\eta(Y) \eta(W) V \\
= & f[(n-1) g(V, W) \eta(Y) \xi-S(Y, V) \eta(W) \xi+(n-1) g(V, W) Y \\
+ & (n-1) \eta(W) \eta(V) Y-(n-1) g(V, W) \eta(Y) \xi+(n-1) \eta(W) \eta(Y) V \\
- & (n-1) R(Y, V) W+(n-1) g(Y, W) \eta(V) \xi-(n-1) \eta(W) \eta(V) Y-S(Y, W) V \\
- & \eta(V) S(Y, W) \xi+(n-1) g(V, Y) \eta(W) \xi-(n-1) \eta(Y) \eta(W) V] \tag{41}
\end{align*}
$$

Taking the inner product of (41) with Z we obtain

$$
\begin{align*}
& g(V, W) g(Y, Z)+g(Y, Z) \eta(V) \eta(W)-g(R(Y, V) W, Z) \\
- & g(Y, Z) \eta(W) \eta(V)-g(Y, W) g(V, Z) \\
= & f[(n-1) g(V, W) g(Y, Z)-S(Y, V) \eta(W) \eta(Z) \\
- & (n-1) g(R(Y, V) W, Z)+(n-1) g(Y, W) \eta(V) \eta(Z) \\
- & S(Y, W) g(V, Z)-S(Y, W) \eta(V) \eta(Z)+(n-1) g(V, Y) \eta(W) \eta(Z)] . \tag{42}
\end{align*}
$$

Putting $Y=Z=e_{i}$ in (42), where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at each point of the manifold and taking summation over ' i ' $(1 \leq i \leq n)$, we get

$$
(1-n f)[S(V, W)-(n-1) g(V, W)]=0
$$

Then either $f=\frac{1}{n}$ or, the manifold is an Einstein manifold of the from

$$
S(V, W)=(n-1) g(V, W)
$$

This leads the following :
Theorem 2. An n-dimensional Ricci generalized pseudo-symmetric LP-Sasakian manifold is an Einstein manifold, provided $n f \neq 1$.

By the above discussion we have the following :
Proposition 2. Every n-dimensional Ricci generalized pseudo-symmetric LPSasakian manifold is of the from R.R $=\frac{1}{n} Q(S, R)$, provided the manifold is nonEinstein.

$5 L P$-Sasakian manifolds satisfying $R(X, \xi) \cdot P=P(X, \xi) \cdot R$

This section is devoted to characterizing $L P$-Sasakian manifolds satisfying the curvature condition $R(X, \xi) \cdot P=P(X, \xi) \cdot R$.
Suppose

$$
(R(X, \xi) \cdot P)(U, V) W=(P(X, \xi) \cdot R)(U, V) W
$$

Then we get

$$
\begin{align*}
& R(X, \xi) P(U, V) W-P(R(X, \xi) U, V) W \\
- & P(U, R(X, \xi) V) W-P(U, V) R(X, \xi) W \\
= & P(X, \xi) R(U, V) W-R(P(X, \xi) U, V) W \\
- & R(U, P(X, \xi) V) W-R(U, V) P(X, \xi) W . \tag{43}
\end{align*}
$$

Substituting $U=W=\xi$ and using (27)-(30) in the above equation, we get

$$
S(X, V)=(n-1) g(X, V) .
$$

Hence, we have
Theorem 3. An LP-Sasakian manifold satisfying the curvature condition $R(X, \xi) \cdot P=P(X, \xi) \cdot R$, is an Einstein manifold.

$6 \quad L P$-Sasakian manifolds with $\operatorname{div} C=0$

From the definition of $\operatorname{div} R$ and $\operatorname{div} C$, it follows that $\operatorname{div} R=0$ implies $\operatorname{div} C=0$. But the converse, is not generally, true. In this section we prove that $\operatorname{div} C=0$ implies $\operatorname{div} R=0$.
Let us assume that $\operatorname{div} C=0$. Then from (11) we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)=\frac{1}{2(n-1)}[d r(X) g(Y, Z)-d r(Y) g(X, Z)] \tag{44}
\end{equation*}
$$

Using (30) we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \xi)-\left(\nabla_{Y} S\right)(X, \xi)=2(n-1) d \eta(X, Y) \tag{45}
\end{equation*}
$$

But in an $L P$-Sasakian manifold $d \eta=0[11]$. Then (45) yields

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \xi)-\left(\nabla_{Y} S\right)(X, \xi)=0 \tag{46}
\end{equation*}
$$

Substituting $Z=\xi$ in (44) and using (46), we have

$$
d r(X) \eta(Y)-d r(Y) \eta(X)=0
$$

Replacing X by ξ in the above equation, it follows

$$
d r(Y)=-d r(\xi) \eta(Y) .
$$

Suppose the scalar is invariant under the characteristic vector ξ, then from the above expression we get r is constant.
Hence from (44) we get

$$
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)=0
$$

which implies

$$
\operatorname{div} R=0
$$

Conversely, let us suppose $\operatorname{div} R=0$. This implies $r=$ constant.
Hence $\operatorname{div} R=0$ implies $\operatorname{div} C=0$.
Thus, we state the following :
Theorem 4. In an LP-Sasakian manifold $\operatorname{div} R=0$ and div $C=0$ are equivalent, provided the scalar curvature r is invariant under the characteristic vector filed ξ.

7 A 3-dimensional LP-Sasakian metric as a Yamabe soliton

Before proving the main theorem, we state and prove the following lemma.
Lemma 1. For an LP-Sasakian manifold, equation (13) implies

$$
\text { (i) }\left(\mathcal{L}_{V} \eta\right)(\xi)=\frac{r-\lambda}{2}
$$

and

$$
\text { (ii) } \eta\left(\mathcal{L}_{V} \xi\right)=\frac{\lambda-r}{2} \text {. }
$$

Proof. In an LP-Sasakian manifold

$$
\begin{equation*}
g(\xi, \xi)=-1 \tag{47}
\end{equation*}
$$

Lie-differentiating (13) along V and using (47) we obtain (ii).
Next, Lie-differentiating $\eta(\xi)=-1$ along V gives (i). This completes the proof.

Let us consider a Yamabe soliton that is of type (g, ξ) on an $L P$-Sasakian manifold, that is, $V=\xi$.
From (13) we have

$$
\begin{equation*}
\mathcal{L}_{V} g=(\lambda-r) g . \tag{48}
\end{equation*}
$$

Substituting $V=\xi$ in (48), we obtain

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} g\right)(X, Y)=(\lambda-r) g(X, Y) \tag{49}
\end{equation*}
$$

Now putting $X=Y=\xi$ in (49), we get $\lambda=r$, since $\nabla_{\xi} \xi=0$.
Now using $\lambda=r$ in (49), we get ξ is a Killing vector field.
In view of the above, we can state the following theorem :

Theorem 5. If an LP-Sasakian manifold admits Yamabe soliton (g, ξ), then ξ is a Killing vector field.

Recalling that the Ricci tensor S of a 3-dimensional $L P$-Sasakian manifold is given by[4]

$$
\begin{equation*}
S(X, Y)=\frac{1}{2}\{(r-2) g(X, Y)+(6-r) \eta(X) \eta(Y)\} \tag{50}
\end{equation*}
$$

As V is a conformal vector field with $\rho=\frac{r-\lambda}{2}$, equations (15) and (16) can be rewritten as,

$$
\begin{gather*}
\left(\mathcal{L}_{V} S\right)(X, Y)=\frac{1}{2}\left[g\left(\nabla_{X} D r, Y\right)-(\Delta r) g(X, Y)\right], \tag{51}\\
\mathcal{L}_{V} r=-2 \Delta r-r(\lambda-r) . \tag{52}
\end{gather*}
$$

Applying Lie-derivative of (50) and using (13), (51) and (52) yields

$$
\begin{align*}
g\left(\nabla_{X} D r, Y\right) & =-[\Delta r+2(\lambda-r)] g(X, Y) \\
& +[2 \Delta r+r(\lambda-r)] \eta(X) \eta(Y) \\
& +(6-r)\left[\left(\mathcal{L}_{V} \eta\right) X \eta(Y)+\left(\mathcal{L}_{V} \eta\right) Y \eta(X)\right] . \tag{53}
\end{align*}
$$

In a 3 -dimensional $L P$-Sasakian manifold, holds[9]

$$
\begin{equation*}
\xi r=-(r-6) \operatorname{trace}(\phi) . \tag{54}
\end{equation*}
$$

Let us suppose that

$$
\begin{equation*}
\operatorname{trace}(\phi)=0, \tag{55}
\end{equation*}
$$

that is, the characteristic vector field ξ is harmonic[1].
Differentiating (54) along an arbitrary vector field X and using (55),(17)-(19), we infer

$$
\begin{equation*}
g\left(\nabla_{X} D r, \xi\right)=-(\phi X) r . \tag{56}
\end{equation*}
$$

Substituting ξ for Y in (53), using (56) and Lemma 7.1 provided the equation :

$$
\begin{equation*}
-(\phi X) r=\left[-3 \Delta r-\frac{(\lambda-r)(10+r)}{2}\right] \eta(X)-(6-r)\left(\mathcal{L}_{V} \eta\right) X . \tag{57}
\end{equation*}
$$

Putting $X=\xi$ in the above equation, using (17),(19) and Lemma 7.1, we get

$$
\begin{equation*}
\Delta r=-\frac{8}{3}(\lambda-r) \tag{58}
\end{equation*}
$$

Using (58) in (57) gives

$$
\begin{equation*}
(6-r)\left(\mathcal{L}_{V} \eta\right) X=(\phi X) r+\frac{(\lambda-r)(6-r)}{2} \eta(X) . \tag{59}
\end{equation*}
$$

Equations (58) and (59) transform equation (53) as

$$
\begin{equation*}
\nabla_{X} D r=\frac{2}{3}(\lambda-r)[X+\eta(X) \xi]+g(X, \phi D r) \xi+\eta(X) \phi D r . \tag{60}
\end{equation*}
$$

At this point, we assume $\left\{e_{i}\right\}(\mathrm{i}=1,2,3)$ to be a local orthonormal frame on M. Using (60) we compute $S(X, D r)=g\left(R\left(e_{i}, X\right) D r, e_{i}\right)$, and then using (17),(19), skew-symmetry of ϕ and equation (20) we obtain,

$$
S(X, D r)=-\eta(X) g\left(\phi \nabla_{e i} D r, e_{i}\right),
$$

where ' i ' is summed over $1,2,3$. Then use of (60) in the right hand side of the foregoing equation shows that $S(X, D r)=0$. Using this in (50) immediately yields $(X r)(r-2)=0$, which implies $r=$ constant. Hence from (58) we obtain $r=\lambda$. Thus equation (13) implies the potential vector field V is Killing.
This leads to the following :
Theorem 6. If a 3-dimensional LP-Sasakian manifold admits Yamabe soliton, then the scalar curvature is constant and the potential vector field V is Killing, provided the characteristic vector field ξ is harmonic.

References

[1] Adati, T. and Miyazawa, T., On para contact Riemannian manifolds, TRU MATH., 13 (1977), 27-39.
[2] Calvino-Louza, E., Seoane-Bascoy, J., Vazqnez-Abal, M.E. and VazqnezLorenzo, R., Three-dimensional homogeneous Lorentzian Yamabe solitons, Abh. Math. Semin. Univ. Hambg., 82 (2012), 193-203.
[3] De, K. and Samui, S., On a class of LP-Sasakian manifolds, Bull. Transilvania University of Braşov, Math., Inform, 56 (2014), 45-58.
[4] De, K. and De, U.C., LP-Sakian manifolds with quasi-conformal curvature tensor, SUT, J. Math., 49 (2013),33-46.
[5] De, U.C., Al-Aqeel and Shaikh, A. A., Submanifolds of a Lorentzian paraSasakian manifolds, Bull. Malays. Math. Sci. Soc., 2 (2005), 223-227.
[6] De, U.C. and Shaikh, A. A., Non-existence of proper semi-invariant submanifolds of Lorentzian para-Sasakian manifold, Bull. Malaysian Math. Sci. Soc., 22 (1999), 179-183.
[7] De, U.C. and Shaikh, A.A., On 3-dimensional LP-Sasakian manifolds, Soochow J. Math. 26 (2000), 359-368.
[8] De, U. C., Matsumoto, K. and Shaikh, A.A., On Lorentzian para-Sasakian manifolds, Rendicontidel seminario Matematico di Messina, Series II, Supplemento 3 (1999), 149-158.
[9] De, U.C. and Dey, C., Almost Ricci soliton and gradient almost Ricci soliton on 3-dimensional LP-Sasakian manifold, Bull. Tran. University of Braşov, Series III, 11(60) (2018), 99-108.
[10] Desmukh, S. and Chen, B Y., A note on Yamabe solitons, Balkan J. Geo. Appl. 23 (2018),37-43.
[11] Hamilton, R.S., The Ricci flow on surfaces, mathematics and general relativity, Contemp. Math. American Math. Soc. 71 (1988), 237-262.
[12] Kowalczyk, D., On some subclass of semi-symmetric manifolds, Soochow J. Math. 27 (2001), 445-461.
[13] Matsumoto, K., On Lorentzian para contact manifolds, Bull. of Yamagata Univ., Nat. Sci. 12 (1989), 151-156.
[14] Matsumoto, K. and Mihai, I., On a certain transformation in Lorentzian para-Sasakian manifold, Tensor, M.S. 47 (1988), 189-197.
[15] Mihai, I. and Roşca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis, Worlds Scientific Publi., (1992), 155-169.
[16] Mishra, R.S., Structures on differentiable manifolds and their applications, Chandrama Prakasana, Allahabad, 1984.
[17] Özgür, C., ϕ-conformally flat Lorentzian para-Sasakian manifolds, Radovi matematicki 12 (2003), 99-106.
[18] Özgür, C. and Murathan, C., On invariant submanifolds of Lorentzian paraSasakian manifolds, The Arab. J. Sci. Eng. 34(2008), 177-185.
[19] Suh, Y.J. and De, U. C., Yamabe solitons and Ricci solitons on almost CoKähler manifolds, Canad. Math. Bull., (2019), 1-9.
[20] Szabo, Z.I., Structure theorems on Riemannian spaces satisfying $R(X, Y) . R=0, I$, The local Version, J. Diff. Geom. 17 (1982), 531582.
[21] Szabo, Z.I., Structure theorems on Riemannian spaces satisfying $R(X, Y) . R=0$, II, Global version, Geom. Dedicata 19 (1983), 65-108.
[22] Verstraelen, L., Comments on pseudo-symmetry in sense of R. Deszcz, in: Geometry and Topology of submanifolds, World Sci. Publishing 6 (1994), 199-209.
[23] Venkatesha, V. and Naik, D.M., Yamabe solitons on three dimensional contact metric manifolds with $Q \phi=\phi Q$, Int. J. Geom. Math. Modern Phy. 16 (2019), Id- 1950039-401.
[24] Wang, Y., Yamabe solitons on three dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. 23 (2016), 345-355.
[25] Yano, K., Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.

[^0]: ${ }^{1}$ Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India, e-mail: uc_de@yahoo.com
 ${ }^{2}$ Department of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India, e-mail: arpansardar51@gmail.com

