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SOME RESULTS ON LP -SASAKIAN MANIFOLDS
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Abstract

The object of the present paper is to characterize LP -Sasakian manifolds
satisfying Ricci pseudosymmetry and Ricci generalized pseudosymmetry. Be-
side this we prove that ifR(X, ξ).P = P (X, ξ).R holds, whereR and P denote
the curvature tensor and projective curvature tensor respectively, then the
manifold becomes an Einstein manifold. Then we prove that divR = 0 and
divC = 0 are equivalent if the scalar curvature is invariant under the char-
acteristic vector field ξ, where ‘div’ denotes divergence. Finally, we charac-
terize 3-dimensional LP -Sasakian manifolds admitting Yamabe solitons and
prove that the scalar curvature is constant and the potential vector field V
is Killing.
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1 Introduction

In 1989, the notion of Lorentzian Para-Sasakian manifold ( briefly LP -Sasakian
manifold) was introduced by Matsumoto[13]. Then Mihai and Rosca[15] intro-
duced the same notion separately and several results on this manifold have been
obtained by them. LP -Sasakian manifolds have also been studied by Matsumoto
and Mihai[14], Matsumoto, Mihai and Rosca[15], De and Saikh([6],[7]), De, Al-
Aqeel and Shaikh[5], Ozgur[17], Ozgur and Murathan[18] and many others.

We define endomorphism R(X,Y ) and X ∧A Y by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (1)
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and
(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y (2)

respectively, where X,Y, Z ∈ χ(M), χ(M) is the set of all differentiable vector
fields on the manifold M , A is the symmetric (0,2)-type tensor, R is the Rieman-
nian curvature tensor of type (1,3) and ∇ is the Levi-Civita connection.

For the (0,k)-tensor field T, k > 1, on (Mn, g) we define the tensors R.T and
Q(g, T ) by

(R(X,Y ).T )(X1, X2, ......, Xk)

= −T (R(X,Y )X1, X2, ......, Xk)− T (X1, R(X,Y )X2, ....., Xk)

− .............− T (X1, X2, ........, R(X,Y )Xk) (3)

and

Q(g, T )(X1, X2, ......, Xk)

= −T ((X ∧ Y )X1, X2, ......, Xk)− T (X1, (X ∧ Y )X2, ....., Xk)

− .............− T (X1, X2, ......., (X ∧ Y )Xk) (4)

respectively[22].

If the tensor R.S and Q(g, S) are linearly dependent then Mn is called Ricci
pseudo- symmetric[22]. This is equivalent to

R.S = fQ(g, S), (5)

holding on the set Us = {x ∈ M : S 6= 0 at x}, where f is some function on Us.
Analogously, if the tensors R.R and Q(S,R) are linearly independent, then Mn

is called Ricci generalized pseudo-symmetric[22]. This is equivalent to

R.R = fQ(S,R), (6)

holding on the set UR = {x ∈M : R 6= 0 at x} , where f is some function on UR.
A very important subclass of this class of manifolds realizing the condition is

R.R = Q(S,R). (7)

Every three dimensional manifold satisfies the above equation identically. The
condition R.R = Q(S,R) also appears in the theory of plane gravitational waves.
Further more we define the tensor R.R and R.S on (Mn, g) by

(R(X,Y ).R)(U, V )W = R(X,Y )R(U, V )W −R(R(X,Y )U, V )W

− R(U,R(X,Y )V )W −R(U, V )R(X,Y )W (8)
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and

(R(X,Y ).S)(U, V ) = −S(R(X,Y )U, V )− S(U,R(X,Y )V ) (9)

respectively.

Recently, Kowalczyk[12] studied semi-Riemannian manifolds satisfying
Q(S,R) = 0 and Q(S, g) = 0, where S,R are the Ricci tensor and curvature
tensor respectively.

In a Riemannian or semi-Riemannian manifold of dimension n, divR is ob-
tained from the Bianchi identity and given by

(divR)(X,Y )Z = (∇XS)(Y, Z)− (∇Y S)(X,Z), (10)

where R denotes the curvature tensor, S is the Ricci tensor, ∇ is the Riemannian
connection and ‘div’ denotes the divergence.

Also it is known that

(divC)(X,Y )Z =
n− 2

n− 3
[{(∇XS)(Y, Z)− (∇Y S)(X,Z)}

− 1

2(n− 1)
{dr(X)g(Y,Z)− dr(Y )g(X,Z)}], (11)

where C is the Weyl curvature tensor of type (1,3), r is the scalar curvature.

From the above definitions, it follows that divR = 0 implies divC = 0. How-
ever, the converse, is not necessarily true.

In an n-dimensional Riemannian manifold the projective curvature tensor P
is defined by [16]

P (X,Y )Z = R(X,Y )Z − 1

n− 1
{S(Y, Z)X − S(X,Z)Y }, (12)

for X,Y, Z ∈ T (M), where R is the curvature tensor and S is the Ricci tensor.
Infact, M is projectively flat ( that is, P = 0) if and only if the manifold is of
constant curvature[24]. Thus, the projective curvature tensor is a measure of the
failure of a Riemannian manifold to be of constant curvature.

In 1982 Szabo([20],[21]) studied Riemannian spaces satisfying R(X,Y ).R = 0.
In [3] De and Samui studied P.R = 0, R.P = 0 and P.S = 0 in an LP -Sasakian
manifold.

In [11], Hamilton introduced the notion of Yamabe solition. According to
Hamilton, a Riemannian metric g of an n-dimensional Riemannian manifold
(M, g) is said to be a Yamabe soliton if it satisfies

LV g = (λ− r)g, (13)
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for a smooth vector field V and a real number λ, where r is the scalar curvature
of g and L denotes the Lie-derivative operator. The vector field is called soliton
field of the Yamabe soliton. A Yamabe soliton is said to be shrinking, steady or
expanding according to λ > 0, λ = 0 or λ < 0, respectively. Yamabe solitons have
been studied by many authors in different contexts (see, [10], [19], [23], [24]).

On the other hand, Yamabe solitons have been defined in pseudo-Riemannian
manifold, in particular in Lorentzian manifold in the same way as in the Rieman-
nian manifolds[2].

Let us now briefly review conformal vector fields. A vector field V on an
m-dimensional Riemannian manifold (M, g) is said to be conformal if,

LV g = 2ρg (14)

for a smooth function ρ on M . A conformal vector field satisfies,

(LV S)(X,Y ) = −(m− 2)g(∇XDρ, Y ) + (∆ρ)g(X,Y ), (15)

LV r = −2ρr + 2(m− 1)∆ρ, (16)

where D is the gradient operator and ∆ = −divD is the Laplacian operator of g
[25].

The present paper is organized as follows :
After preliminaries we characterize Ricci pseudosymmetric and Ricci generalized
pseudosymmetric LP -Sasakian manifolds in section 3 and 4 respectively. Next,
in section 5, we study the curvature condition R(X, ξ).P = P (X, ξ).R in an LP -
Sasakian manifold. Then we prove that in an LP -Sasakian manifold divR = 0
and divC = 0 are equivalent under certain restriction on the scalar curvature.
Finally, we study Yamabe solitons in a 3-dimensional LP -Sasakian manifold.

2 Preliminaries

An n-dimensional differentiable manifold M is called an LP -Sasakian manifold
([8],[14]) if it admits a (1,1) tensor field φ, a covariant vector field ξ, a 1-from η
and a Lorentzian metric g satisfying :

φ2(X) = X + η(X)ξ, η(ξ) = −1, (17)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (18)

g(X, ξ) = η(X),∇Xξ = φX, (19)

(∇Xφ)Y = g(X,Y )ξ + 2η(X)η(Y )ξ, (20)

where ∇ denotes the operator of covariant differentiation with respect to the
Lorentzian metric g.
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It can be easily seen that in an LP -Sasakian manifold, the following relations
hold:

φξ = 0, η(φX) = 0, (21)

rank(φ) = n− 1. (22)

Again if we put

Ω(X,Y ) = g(X,φY ), (23)

for any vector fields X and Y , then the tensor field Ω(X,Y ) is symmetric (0,2)
tensor field[13]. Also, since the vector field η is closed in an LP -Sasakian manifold,
we have ([8],[13]),

Ω(X,Y ) = (∇Xη)Y, Ω(X, ξ) = 0, (24)

for any vector fields X and Y.

An LP -Sasakian manifold M is said to be η-Einstein if its Ricci tensor S is of
the from

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (25)

for any vector fields X,Y where a,b are smooth functions on M . Let M be
an n-dimensional LP -Sasakian manifold with the structure (φ, ξ, η, g). Then we
have([8],[14]):

g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ), (26)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X, (27)

R(X,Y )ξ = η(Y )X − η(X)Y, (28)

R(ξ,X)ξ = X + η(X)ξ, (29)

S(X, ξ) = (n− 1)η(X), (30)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (31)

for any vector fields X,Y, Z, where R is the curvature tensor and S is the Ricci
tensor.

3 Ricci pesudo-symmetric LP -Sasakian manifolds

In this section we study Ricci pseudosymmetric LP -Sasakian manifolds, that
is, the manifold satisfies the condition

R.S = fQ(g, S).

Assume that M is a Ricci pseudo-symmetric LP -Sasakian manifold and X,Y, U, V
∈ χ(M). We have from (5)

(R(X,Y ).S)(U, V ) = fQ(g, S)(X,Y ;U, V ), (32)
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which is equivalent to

(R(X,Y ).S)(U, V ) = f((X ∧g Y )(U, V ). (33)

Using (9) and (4) in the above equation, we get

−S(R(X,Y )U, V )− S(U,R(X,Y )V ) = f [−g(Y, U)S(X,V ) + g(X,U)S(Y, V )

− g(Y, V )S(U,X) + g(X,V )S(U, Y )].(34)

Putting X = U = ξ in (34) and using (26)-(29) yields

(1− f)[S(Y, V )− (n− 1)g(Y, V )] = 0. (35)

Then either f = 1 or, the manifold is an Einstein manifold of the from

S(Y, V ) = (n− 1)g(Y, V ). (36)

By the above discussion we have the following :

Proposition 1. Every n-dimensional Ricci pseudo-symmetric LP -Sasakian man-
ifold is of the from R.S = Q(g, S), provided the manifold is non-Einstein.

Conversely, if the manifold is an Einstein manifold of the from (36), then from
(34) it follows that R.S = fQ(g, S). This leads to the following :

Theorem 1. An n-dimensional LP -Sasakian manifold is Ricci pseudo-symmetric
if and only if the manifold is an Einstein manifold, provided f 6= 1.

4 Ricci generalized pseudo-symmetric LP -Sasakian man-
ifolds

This section deals with Ricci generalized pseudosymmetric LP -Sasakian man-
ifolds. Let us suppose that M is an n-dimensional Ricci generalized pseudosym-
metric LP -Sasakian manifolds. Then from (6) we have

R.R = fQ(S,R), (37)

that is,

(R(X,Y ).R)(U, V )W = f((X ∧S Y ).R)(U, V )W. (38)

Using (8) and (4) we get from (38)

R(X,Y )R(U, V )W −R(R(X,Y )U, V )W

− R(U,R(X,Y )V )W −R(U, V )R(X,Y )W

= f [(X ∧S Y )R(U, V )W −R((X ∧S Y )U, V )W

− R(U, (X ∧S Y )V )W −R(U, V )(X ∧S Y )W ]. (39)
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Applying (2) in (39), we get

R(X,Y )R(U, V )W −R(R(X,Y )U, V )W

− R(U,R(X,Y )V )W −R(U, V )R(X,Y )W

= f [S(Y,R(U, V )W )X − S(X,R(U, V )W )Y

− S(Y, U)R(X,V )W + S(X,U)R(X,Y )W

− S(Y, V )R(U,X)W + S(X,V )R(U, Y )W

− S(Y,W )R(U, V )X + S(X,W )R(U, V )Y ]. (40)

Substituting X = U = ξ and using (27)-(30) in the above equation, we have

g(V,W )Y + g(V,W )η(Y )ξ − g(Y, V )η(W )ξ + η(V )η(W )Y

− R(Y, V )W − g(V,W )η(Y )ξ + η(W )η(Y )V + g(Y,W )η(V )ξ

− η(W )η(V )Y − g(Y,W )V − g(Y,W )η(V )ξ + g(V, Y )η(W )ξ − η(Y )η(W )V

= f [(n− 1)g(V,W )η(Y )ξ − S(Y, V )η(W )ξ + (n− 1)g(V,W )Y

+ (n− 1)η(W )η(V )Y − (n− 1)g(V,W )η(Y )ξ + (n− 1)η(W )η(Y )V

− (n− 1)R(Y, V )W + (n− 1)g(Y,W )η(V )ξ − (n− 1)η(W )η(V )Y − S(Y,W )V

− η(V )S(Y,W )ξ + (n− 1)g(V, Y )η(W )ξ − (n− 1)η(Y )η(W )V ]. (41)

Taking the inner product of (41) with Z we obtain

g(V,W )g(Y,Z) + g(Y,Z)η(V )η(W )− g(R(Y, V )W,Z)

− g(Y,Z)η(W )η(V )− g(Y,W )g(V,Z)

= f [(n− 1)g(V,W )g(Y,Z)− S(Y, V )η(W )η(Z)

− (n− 1)g(R(Y, V )W,Z) + (n− 1)g(Y,W )η(V )η(Z)

− S(Y,W )g(V,Z)− S(Y,W )η(V )η(Z) + (n− 1)g(V, Y )η(W )η(Z)]. (42)

Putting Y = Z = ei in (42), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over ‘i’(1 ≤ i ≤ n), we
get

(1− nf)[S(V,W )− (n− 1)g(V,W )] = 0.

Then either f = 1
n or, the manifold is an Einstein manifold of the from

S(V,W ) = (n− 1)g(V,W ).

This leads the following :

Theorem 2. An n-dimensional Ricci generalized pseudo-symmetric LP -Sasakian
manifold is an Einstein manifold, provided nf 6= 1.

By the above discussion we have the following :

Proposition 2. Every n-dimensional Ricci generalized pseudo-symmetric LP -
Sasakian manifold is of the from R.R = 1

nQ(S,R), provided the manifold is non-
Einstein.
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5 LP -Sasakian manifolds satisfying R(X, ξ).P = P (X, ξ).R

This section is devoted to characterizing LP -Sasakian manifolds satisfying the
curvature condition R(X, ξ).P = P (X, ξ).R.
Suppose

(R(X, ξ).P )(U, V )W = (P (X, ξ).R)(U, V )W.

Then we get

R(X, ξ)P (U, V )W − P (R(X, ξ)U, V )W

− P (U,R(X, ξ)V )W − P (U, V )R(X, ξ)W

= P (X, ξ)R(U, V )W −R(P (X, ξ)U, V )W

− R(U,P (X, ξ)V )W −R(U, V )P (X, ξ)W. (43)

Substituting U = W = ξ and using (27)-(30) in the above equation, we get

S(X,V ) = (n− 1)g(X,V ).

Hence, we have

Theorem 3. An LP -Sasakian manifold satisfying the curvature condition
R(X, ξ).P = P (X, ξ).R, is an Einstein manifold.

6 LP -Sasakian manifolds with divC = 0

From the definition of divR and divC, it follows that divR = 0 implies
divC = 0. But the converse, is not generally, true. In this section we prove
that divC = 0 implies divR = 0.
Let us assume that divC = 0. Then from (11) we have

(∇XS)(Y,Z)− (∇Y S)(X,Z) =
1

2(n− 1)
[dr(X)g(Y,Z)− dr(Y )g(X,Z)]. (44)

Using (30) we have

(∇XS)(Y, ξ)− (∇Y S)(X, ξ) = 2(n− 1)dη(X,Y ). (45)

But in an LP -Sasakian manifold dη = 0[11]. Then (45) yields

(∇XS)(Y, ξ)− (∇Y S)(X, ξ) = 0. (46)

Substituting Z = ξ in (44) and using (46), we have

dr(X)η(Y )− dr(Y )η(X) = 0.

Replacing X by ξ in the above equation, it follows

dr(Y ) = −dr(ξ)η(Y ).
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Suppose the scalar is invariant under the characteristic vector ξ, then from the
above expression we get r is constant.
Hence from (44) we get

(∇XS)(Y,Z)− (∇Y S)(X,Z) = 0,

which implies

divR = 0.

Conversely, let us suppose divR = 0. This implies r = constant.
Hence divR = 0 implies divC = 0.
Thus, we state the following :

Theorem 4. In an LP -Sasakian manifold divR = 0 and divC = 0 are equivalent,
provided the scalar curvature r is invariant under the characteristic vector filed ξ.

7 A 3-dimensional LP -Sasakian metric as a Yamabe
soliton

Before proving the main theorem, we state and prove the following lemma.

Lemma 1. For an LP -Sasakian manifold, equation (13) implies

(i) (LV η)(ξ) = r−λ
2

and

(ii) η(LV ξ) = λ−r
2 .

Proof. In an LP -Sasakian manifold

g(ξ, ξ) = −1. (47)

Lie-differentiating (13) along V and using (47) we obtain (ii).
Next, Lie-differentiating η(ξ) = −1 along V gives (i). This completes the proof.

Let us consider a Yamabe soliton that is of type (g, ξ) on an LP -Sasakian
manifold, that is, V = ξ.
From (13) we have

LV g = (λ− r)g. (48)

Substituting V = ξ in (48), we obtain

(Lξg)(X,Y ) = (λ− r)g(X,Y ). (49)

Now putting X = Y = ξ in (49), we get λ = r, since ∇ξξ = 0.
Now using λ = r in (49), we get ξ is a Killing vector field.
In view of the above, we can state the following theorem :
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Theorem 5. If an LP -Sasakian manifold admits Yamabe soliton (g, ξ), then ξ is
a Killing vector field.

Recalling that the Ricci tensor S of a 3-dimensional LP -Sasakian manifold is
given by[4]

S(X,Y ) =
1

2
{(r − 2)g(X,Y ) + (6− r)η(X)η(Y )}. (50)

As V is a conformal vector field with ρ = r−λ
2 , equations (15) and (16) can be

rewritten as,

(LV S)(X,Y ) =
1

2
[g(∇XDr, Y )− (∆r)g(X,Y )], (51)

LV r = −2∆r − r(λ− r). (52)

Applying Lie-derivative of (50) and using (13), (51) and (52) yields

g(∇XDr, Y ) = −[∆r + 2(λ− r)]g(X,Y )

+ [2∆r + r(λ− r)]η(X)η(Y )

+ (6− r)[(LV η)Xη(Y ) + (LV η)Y η(X)]. (53)

In a 3-dimensional LP -Sasakian manifold, holds[9]

ξr = −(r − 6)trace(φ). (54)

Let us suppose that
trace(φ) = 0, (55)

that is, the characteristic vector field ξ is harmonic[1].
Differentiating (54) along an arbitrary vector field X and using (55),(17)-(19), we
infer

g(∇XDr, ξ) = −(φX)r. (56)

Substituting ξ for Y in (53), using (56) and Lemma 7.1 provided the equation :

−(φX)r = [−3∆r − (λ− r)(10 + r)

2
]η(X)− (6− r)(LV η)X. (57)

Putting X = ξ in the above equation, using (17),(19) and Lemma 7.1, we get

∆r = −8

3
(λ− r). (58)

Using (58) in (57) gives

(6− r)(LV η)X = (φX)r +
(λ− r)(6− r)

2
η(X). (59)

Equations (58) and (59) transform equation (53) as

∇XDr =
2

3
(λ− r)[X + η(X)ξ] + g(X,φDr)ξ + η(X)φDr. (60)
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At this point, we assume {ei}(i= 1,2,3) to be a local orthonormal frame on M .
Using (60) we compute S(X,Dr) = g(R(ei, X)Dr, ei), and then using (17),(19),
skew-symmetry of φ and equation (20) we obtain,

S(X,Dr) = −η(X)g(φ∇eiDr, ei),

where ‘i’ is summed over 1,2,3. Then use of (60) in the right hand side of the
foregoing equation shows that S(X,Dr) = 0. Using this in (50) immediately
yields (Xr)(r − 2) = 0, which implies r = constant. Hence from (58) we obtain
r = λ. Thus equation (13) implies the potential vector field V is Killing.
This leads to the following :

Theorem 6. If a 3-dimensional LP -Sasakian manifold admits Yamabe soliton,
then the scalar curvature is constant and the potential vector field V is Killing,
provided the characteristic vector field ξ is harmonic.
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[17] Özgür, C., φ-conformally flat Lorentzian para-Sasakian manifolds, Radovi
matematicki 12 (2003), 99-106.
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