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GENERALIZATION OF SOME HARDY-TYPE INTEGRAL
INEQUALITY WITH NEGATIVE PARAMETER
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Abstract

In 2007, Bicheng Yang [3] presented a new Hardy-type integral inequality
with a best constant factor. The aim of this work is to give a direct general-
ization of these inequalities obtained with negative parameter p < 0.
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1 Introduction
Bicheng Yang [3] announced the following Hardy-type integral inequality.

Lemma 1. Ifp<0, r>1, f(t)>0and 0 < / 7" (tf(t))Pdt < oo, then
0

[ ([ sl (2 [eworn o

P
> is the best possible.

where the constant factor <1 P
—r

Lemma 2. Ifp <0, r <1, f(t) >0and 0 < / t7"(tf(t))Pdt < oo, then
0

/Oooxr </0If(t)dt)pdx§ <A>p/0°°tr(tf(t))pdt’ o)

p
where the constant factor <pl> is the best possible.
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These inequalities play an important role in analysis and its applications.
Other authors have also studied these type inequalities in more general forms as
it may be seen in [1]-[6].

The overall structure of the study takes the form of three sections with an
introduction. The remainder of this work is organized as follows: In the second
section we prove our results; Theorems 1-3. The third section is for application,
we generalize the integral inequalities (1) and (2). In particular a case we obtain
the best constant factor.

2 Main Results

Our first result is given in the following theorem.

Theorem 1. Let f,g > 0, p < 0, r > 1land F(z) = / fydt. If — is

non-decreasing, then

Y@@ < (22 [T @) @@y, (3)
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where the right hand side is finite.
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Proof. By the reverse Holder inequality for — + — =1, it follows that
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then we find
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Therefore, we get
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From the assumption of the function (()) non-decreasing on (0,t), we have
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Thus, we obtain that
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which completes the proof. O

t —r
fp(t) / g " (ac)xlTH*ldxdt
0

Theorem 2. Let f,g >0, p<0, 0 <r < 1and F(zx /f t)dt. Ifﬁzs

non-increasing then

[ < (25) [T @y n

where the right hand side is finite.
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1 1
Proof. By the reverse Hélder inequality for — + — =1, we have
p P
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then we get

Thus, we find that
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By the assumption of the function <()) non-increasing on (t, 00), we have
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‘We obtain that
/OOO h" (2) FP(z)dx < ( p >’”/O°°g_r(x)(xf(x))pdx

which completes the proof. O

Theorem 3. Let f,g > 0, p < 0, r < 0and F(z /f . Ifiis

non-decreasing then

/Ooog_r(x)Fp(x)dx < <rfl>p/000 "(2)(zf(z))Pde, (5)

where the right hand side is finite.

Proof. The proof of Theorem 3 is similar to Theorem 2. O

3 Applications

We believe that the above three theorems should have many applications es-
pecially in the theory of weights and other fields. In this paper we give some
applications of theorems.

Corollary 1. Let f >0, p<0, r>1, m <1 and F(x / f(t)dt, then

/OOO TP (x)dx < <1 ﬁ r>p/ooo & (2 f (x))Pda. (©)

Proof. This follows from Theorem 1 where g(z) = ™. O
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Remark 1. We can get the particular cases
(i) If we take m = 1 we get

/Oooxr (/:of(t)dt>pdw§ <1f

(ii) for r =2, one has

T ([T rwar) de < (—pp [ a2 (). (8)
f e ([ o) /

(iii)for r = 1 — p, one has

/0 = gm-p) ( /x h f(t)dt)p dr < /O gt fP(x)da. (9)

P
Remark 2. If m = 1 then the constant factor (&) is the best possible.
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Proof. For 0 < 0 < mr — 1, we put

o) = xmriTliefl, x € [1,00)
f@()—{ 0, xz e (0,1)

then we get

/OO g </OO fg(t)dt>pdx
/ </ tmple‘ldt>pdx
( mr—|—9> /100$91dx
- () &
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We have 0 < mr —1 and r > 1 then 0 < m < 1. For § — 0, we get that the
p
constant factor <1f;m> is positive if 1 —mr < 0. We obtain r > % then m = 1.

Therefore,
00 o] p P p 00
/ x=mr </ fg(t)dt) dx = ( > / x” "™ (z fo(x))Pdx
0 x L=r) Jo
we deduct if m = 1 then the constant factor <1f T)p is the best possible. O

With m = 1, the constant factors in inequalities (7),(8) and (9) are the best
possible.
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Corollary 2. Let f >0, p<0, r<0, m <1 and F(x /f t)dt, then

/Ooo P (z)dx < <T f 1>p/ooo 27 (2 f ()P, (10)

Proof. This follows from Theorem 3 where g(z) = z™. O

Remark 3. We can get the particular cases
(i) For r = p, one has

/0°° - (/Oxf(t)dt>pda: < <pf1>p/ooo 0 fP(a)de. (1)

(ii)for r = p+1, one has

/Oooz—m <313 /Omf(t)dt>pdm§/ooomp —m)=m £ (1) 4o (12)

Corollary 3. Let f >0, p<0, 0<r <1, m>1and F(zx /f t)dt, then
o] P p o]
/ 5 P (2 < ( ) / T (2 f ()P, (13)
0 r—=1/ Jo
Proof. This follows from Theorem 2 where g(z) = z™. O

Remark 4. We can get the particular cases
(i) For r =0, one has

/0°° </0”” f(t)dt>pd$ < (=p)* /Ooo(wf( ))Pdz. (14)

(ii)For v = L and m # 1, one has

[T (3 rwa) s () [Tep@an o)

Remark 5. If we take m =1 in Corollary 2 and Corollary 3, we get;

forr <1, / / Ft)dt)Pdz < ( p 1>p/ooox7“(xf(x))ﬁdx. (16)

P
where the constant factor (1]'%1) is the best possible.

Proof. For 0 < 8 <1 —r, we put

fo(z) = { P el ,

0, x € (1,00)
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then we get

Amx4<lfﬁ@m0pm
jflx—T<J/ Tl*e‘%u) dz
(7‘ 1 +0> /le“dgg
(—ta)

/0 T (afy(x)Pd =/01x“d:c=;.

P
For & — 0, we get that the constant factor (T%) is the best possible in (16). O
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