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Abstract

In this paper, by using Leggett-Williams fixed-point theorem and Hölder
inequality, we study the existence of three positive solutions for fourth-order
differential equations with integral boundary conditions. The results are il-
lustrated with an example.
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1 Introduction

In this paper, by using Leggett-Williams fixed-point theorem and Hölder in-
equality, we study the existence of three positive solutions for fourth-order two-
point boundary value problem (BVP)

u(4) (t) = ω (t) f (t, u (t)) , t ∈ (0, 1) ,

u (0) = u (1) =
∫ 1
0 g (s)u (s) ds,

u′′ (0) =
∫ 1
0 h (s)u′′ (s) ds, u(3) (1) = 0,

(1)

where ω (.) is Lp − integrable for some 0 ≤ p ≤ +∞. In addition f and ω satisfy

(A1) ω (t) ∈ LP [0, 1] for some 0 ≤ p ≤ +∞ and there exists λ > 0 such that
ω (t) ≥ λ a.e. on [0, 1],
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(A2) f ∈ C ([0, 1]× [0,∞) , [0,∞)),
(A3) g, h ∈ L1 [0, 1] are nonnegative and µ ∈ [0, 1) , ν ∈ [0, 1), where

ν =

1∫
0

g (t) dt, µ =

1∫
0

h (t) dt

The theory of multi-point boundary value problems for ordinary differential
equations arises in different areas of applied mathematics and physics. For exam-
ple, the vibrations of a guy wire of uniform cross-section and composed of N parts
of different densities that can be set up as a multi-point boundary value problem.
Many problems in the theory of elastic stability can be handled as multi-point
boundary value problems too. Higher-order boundary value problems occur in
the study of fluid dynamics, astrophysics, hydrodynamic, hydromagnetic stability
and astronomy, be a mandlong wave theory, induction motors, engineering and
applied physics. The boundary value problems of higher-order have been exam-
ined due to their mathematical importance and applications in different areas of
applied sciences. In particular, third-order, fourth-order and nth order were con-
sidred, see [3, 4, 5, 6, 7, 10, 11, 20, 23, 27, 34] and the references therein.

The existence of positive solutions for nonlinear fourth-order multi-point bound-
ary value problems has been studied by many authors using nonlinear alternatives
of Leray-Schauder, the fixed point theory, monotone iterative technique and the
method of upper and lower solutions, see [1, 9, 12, 13, 14, 15, 21, 22, 25, 28, 35]
and references therein. The multi-point boundary value problem is in fact a spe-
cial case of the boundary value problem with integral boundary conditions.

Boundary value problem with integral boundary conditions is a typical nonlo-
cal problem, which arises naturally in hydrodynamic problems [8], semiconductor
problems [18], thermal conduction problems [29]. Such problems have been con-
sidered by many authors, see [16, 17, 24, 33].

Recently, Zhang and Ge [31] studied the existence of positive solutions by using
the Krasnoselskii fixed point theorem of the following fourth-order boundary value
problem with integral boundary conditions

u(4) (t) = ω (t) f (t, u (t)) , t ∈ (0, 1) ,

u (0) =
∫ 1
0 g (s)u (s) ds, u (1) = 0,

u′′ (0) =
∫ 1
0 h (s)u (s) ds, u′′ (1) = 0,

where ω (.) ∈ L1 [0, 1] , g, h ∈ L1 [0, 1] , g (s) ≥ 0, h (s) ≥ 0.
Bai [2] studied the existence of positive solutions by using the Krasnoselskii

fixed point theorem of nonlocal fourth-order boundary value problem
u(4) (t) + βu′′ (t) = λf (t, u (t)) , t ∈ (0, 1) ,

u (0) = u (1) =
∫ 1
0 g (s)u (s) ds,

u′′ (0) = u′′ (1) =
∫ 1
0 h (s)u′′ (s) ds,
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where λ > 0, 0 < β < π2, g, h ∈ L1 [0, 1] , g (s) ≥ 0, h (s) ≥ 0 and
f ∈ C ([0, 1]× [0,∞)× (−∞, 0] , [0,∞)).

Zhang et al. [32] studied the existence of positive solutions of the following fourth-
order boundary value problem with integral boundary conditions

u(4) (t)− λf (t, u (t)) = 0, t ∈ (0, 1) ,

u (0) = u (1) =
∫ 1
0 g (s)u (s) ds,

u′′ (0) = u′′ (1) =
∫ 1
0 h (s)u (s) ds,

where λ, 0 < β < π2, g, h ∈ L1 [0, 1] , g (s) ≥ 0, h (s) ≥ 0 and
f ∈ C ([0, 1]× [0,∞) , [0,∞)).

In [30], Yan studied the existence of positive solutions by applying the Krein-
Rutman theorem and fixed point index theory for the nonlinear problem

u(4) (t) + βu′′ (t) = µ [u (t)− u′′ (t)] , t ∈ (0, 1) ,

u (0) = u (1) =
∫ 1
0 g (s)u (s) ds,

u′′ (0) = u′′ (1) =
∫ 1
0 h (s)u′′ (s) ds,

In [26], Shen and He used global bifurcation techniques to study the global struc-
ture of positive solutions of the singular problem

u(4) (t)− λf (t, u (t)) = 0, t ∈ (0, 1) ,

u (0) =
∫ 1
0 u (s) dα (s) ,

u′ (0) = u (1) = u′ (1) = 0,

where λ ∈ (0,∞), h (t) be singular at t = 0 and t = 1 and
∫ 1
0 u (s) dα (s) is a

Stieltjes integral with α (t) being not a constant on [0, 1].

Motivated and inspired by the above-mentioned works, in this paper, we study
the existence of three positive solutions for BVP (1). The argument are based
upon a fixed point theorem due to Leggett and Williams which deals with fixed
points of a cone-preserving operator defined on an ordered Banach space [19]. The
current paper is organized as follows. In Section 2, we provide some lemmas that
will be used to prove our main results of BVP (1). In Section 3, the main results
of BVP (1) will be stated and proved, and we give an example to illustrate our
results.

2 Preliminaries

We shall consider the Banach space C [0, 1] equipped with sup norm ‖u‖ =
max
0≤t≤1

|u (t)|. C+ [0, 1] is the cone of nonnegative functions in C [0, 1].
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Definition 1. Let E be a real Banach space. A nonempty closed set P ⊂ E is
said to be a cone provided that
(i) c1u+ c2v ∈ P for all c1 ≥ 0, c2 ≥ 0, and
(ii) u, −u ∈ P implies u = 0.
Every cone P induces an ordering in E given by u ≤ v if and only if v − u ∈ P .

Definition 2. The map β is said to be nonnegative continuous concave functional
on a cone P of a real Banach space E provided that β : P → [0,∞) is continuous
and

β (tx+ (1− t) y) ≥ tβ (x) + (1− t)β (y) , for all x, y ∈ P and 0 ≤ t ≤ 1.

We will reduce BVP (1) to an integral equation. To do this goal, firstly by
means of the transformation

u′′ (t) = −v (t) ,

we convert problem (1) into{
v′′ (t) + ω (t) f (t, u (t)) = 0, 0 < t < 1,

v (0) =
∫ 1
0 h (t) v (t) dt, v′ (1) = 0,

(2)

and {
−u′′ (t) = v (t) , 0 < t < 1,

u (0) = u (1) =
∫ 1
0 g (t)u (t) dt.

(3)

In arriving our results, we need the following six preliminary lemmas. The
first and third lemmas are well known.

Lemma 1. Assume (H1) − (H3) hold. Then problem (2) has a unique solution
given by

v (t) =

1∫
0

H (t, s)ω (s) f (s, u (s)) ds, (4)

where

H (t, s) = G (t, s) +
1

1− µ

1∫
0

G (s, τ)h (τ) dτ, (5)

and

G (t, s) =

{
t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1.
(6)

The functions G (t, s) and H (t, s) have the following properties.

Lemma 2. Let δ ∈
(
0, 12
)
, Jδ = [δ, 1− δ]. If µ ∈ [0, 1),then, we have

H (t, s) > 0, G (t, s) > 0, ∀t, s ∈ (0, 1) (7)
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H (t, s) ≥ 0, G (t, s) ≥ 0, ∀t, s ∈ J (8)

e (t) e (s) ≤ G (t, s) ≤ G (t, t) = t = e (t) ≤ 1, ∀t, s ∈ J (9)

ρe (t) e (s) ≤ H (t, s) ≤ γs = γe (s) ≤ γ, ∀t, s ∈ J (10)

G (t, s) ≥ δG (s, s) , H (t, s) ≥ δH (s, s) , ∀t ∈ Jδ, s ∈ J (11)

where

e (t) = t, γ =
1

1− µ
, ρ = 1 +

∫ 1
0 sh (s) ds

1− µ
(12)

Proof. The proof is evident, we omit it.

Remark 1. From (5) and (11), we can obtain

H (t, s) ≥ δs = δG (s, s)

Lemma 3. If (H2) and (H3) hold, then problem (3) has a unique solution u given
by

u (t) =

1∫
0

H1 (t, s) v (s) ds, (13)

where

H1 (t, s) = G1 (t, s) +
1

1− ν

1∫
0

G1 (s, τ) g (τ) dτ, (14)

and

G1 (t, s) =

{
t (1− s) , 0 ≤ t ≤ s ≤ 1,

s (1− t) , 0 ≤ s ≤ t ≤ 1.
(15)

The functions G1 (t, s) and H1 (t, s) have the following properties.

Lemma 4. Let δ ∈
(
0, 12
)
, Jδ = [δ, 1− δ]. If v ∈ [0, 1),then, we have

H1 (t, s) > 0, G1 (t, s) > 0, ∀t, s ∈ (0, 1) (16)

H1 (t, s) ≥ 0, G1 (t, s) ≥ 0, ∀t, s ∈ J (17)

e1 (t) e1 (s) ≤ G1 (t, s) ≤ G1 (s, s) = e1 (s) ≤ 1

4
, ∀t, s ∈ J (18)

e1 (t)H1 (s, s) ≤ H1 (t, s) ≤ H1 (s, s) ≤ e1 (s) , ∀t, s ∈ J (19)

ρ1e1 (s)H1 (s, s) ≤ H1 (t, s) ≤ γ1G1 (s, s) = γe1 (s) ≤ 1

4
γ, ∀t, s ∈ J (20)

G1 (t, s) ≥ δ2G (s, s) , H1 (t, s) ≥ δ2H1 (s, s) ≥ δ2e1 (s) , ∀t ∈ Jδ, s ∈ J (21)

where

e1 (t) = t (1− t) , max
0≤t≤1

e1 (t) =
1

4
, γ1 =

1

1− ν
, ρ1 =

∫ 1
0 G1 (τ, τ) g (τ) dτ

1− ν
. (22)
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Proof. Since the proof is similar, we need to prove (20). It follows from (14), (17)
and (18) that

H1 (t, s) = G1 (t, s) +
1

1− ν

1∫
0

G1 (s, τ) g (τ) dτ

≥ 1

1− ν

1∫
0

G1 (s, τ) g (τ) dτ

≥ 1

1− ν

1∫
0

e1 (s) e1 (τ) g (τ) dτ

=

∫ 1
0 e1 (τ) g (τ) dτ

1− v
s (1− s)

=

∫ 1
0 G1 (τ, τ) g (τ) dτ

1− v
s (1− s)

= ρ1e1 (s) .

In addition, from (18), we have

H1 (t, s) = G1 (t, s) +
1

1− ν

1∫
0

G1 (s, τ) g (τ) dτ

≤ e1 (s) +
1

1− ν

1∫
0

e1 (s) g (τ) dτ

≤ e1 (s)

1 +
1

1− ν

1∫
0

e1 (τ) g (τ) dτ


=
e1 (s)

1− v
= γ1e1 (s) .

The proof is complete.

Remark 2. Suppose that u is a solution of BVP (1). Then from Lemma 1 and
Lemma 3, we have

u (t) =

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds.
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Define a cone K by

K =
{
u ∈ C+ [0, 1] : u (t) ≥ 0, t ∈ [0, 1]

}
. (23)

It is easy to see K is closed convex cone of C+ [0, 1].
Now, define an integral operator T : K → C+ [0, 1] by

(Tu) (t) =

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds, (24)

From (24), we know that u is a solution of PVB (1) if and only if u is a fixed
point of operator T .

Lemma 5. Assume (A1) and (A2) hold. Then T (K) ⊂ K and T : K → K is
completely continuous.

Proof. Since the proof of completely continuous is standard, we need only to prove
T (K) ⊂ K. In fact, for any (t, s) ∈ [δ, 1− δ] × [0, 1] and since f ≥ 0, ω ≥ 0 and∫ 1
0

∫ 1−δ
δ s2 (1− s) > 0, we have

(Tu) (t) =

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds,

≥
1∫

0

1−δ∫
δ

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds

≥ δ3
1∫

0

1−δ∫
δ

s2 (1− s)ω (τ) f (τ, u (τ)) dτ ≥ 0.

Therefore, T (K) ⊂ K. The proof is complete.

Now, let 0 < l < r be given and let β be a nonnegative continuous concave
functional on the cone K. Define the convex sets Kl and K (β, l, r) by

Kl = {u ∈ K : ‖u‖ < l} ,

and
K (β, l, r) = {u ∈ K : l ≤ β (u) , ‖u‖ ≤ r} .

The key tool in our approach is the following Leggett-Williams fixed point theo-
rem.

Theorem 1. [19] Let E be a Banach space and K ⊂ E be a cone in E. T :
K̄c → K̄c be a completely continuous and β be a nonnegative continuous concave
functional on K with β (u) ≤ ‖u‖ for all u ∈ Kc. Suppose there exist 0 < d < l <
r ≤ c such that
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(i) u ∈ {K (β, l, r) : β (u) > l} 6= ∅ and β (Tu) > l for u ∈ K (β, l, r),
(ii) ‖Tu‖ < d for ‖u‖ ≤ d,
(iii) β (Tu) > l for u ∈ K (β, l, c) with ‖Tu‖ > r.
Then T has at least three fixed points u1, u2, u3 satisfying

‖u1‖ < d, l < β (u2) , ‖u3‖ > d and β (u3) < l.

We will employ Hölder inequality.

Lemma 6. (Hölder). Let f ∈ Lp [a, b] with 0 < a < b and p > 1, g ∈ Lq [a, b]
with q > 1, and 1

p + 1
q = 1. Then fg ∈ L1 [a, b] and

‖fg‖1 ≤ ‖f‖p ‖g‖q .

Let f ∈ L1 [a, b], g ∈ L∞ [a, b]. Then fg ∈ L1 [a, b] and

‖fg‖1 ≤ ‖f‖1 ‖g‖∞ .

3 Existence results

In this section, we apply Theorem 1 and Lemma 6 to establish the existence
of triple positive solutions for BVP (1). We consider the following three cases for
ω (.) ∈ Lp [0, 1] : p > 1, p = 1 and p =∞.

For convenience, we introduce the following notations:

D = γγ1 ‖e1‖q ‖ω‖p , δ∗ =
δ2

γ1
,

and

f∞ = lim
u→∞

sup max
t∈[0,1]

f (t, u)

u
.

Theorem 2. Assume (A1) − (A3) hold. Furthermore, suppose that there exist
constants 0 < d < l < l

δ∗ ≤ c such that
(H1) f

∞ < 1
D ,

(H2) f (t, u) > 12l
δ3(1−2δ)λ , for (t, u) ∈ [δ, b− δ]×

[
l, l
δ∗

]
, δ ∈

[
0, 12
]
, λ ∈ N∗,

(H3) f (t, u) < d
D , for (t, u) ∈ [0, 1]× [0, d].

Then BVP (1) has at least three positive solutions u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.
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Proof. Let β (u) = min
t∈[δ,b−δ]

u (t). Then β (u) is nonnegative continuous concave

functional on the cone K satisfying β (u) ≤ ‖u‖ for all u ∈ K. We denote r = l
δ∗ .

From (H1), there exist 0 < σ < 1
D , and l > 0 such that

f (t, u) ≤ σu, and u ≥ l.

Let η = max
0≤u≤l, t∈[0,1]

f (t, u).

Then

f (t, u) ≤ σu+ η, t ∈ [0, 1] , 0 ≤ u ≤ +∞. (25)

Set

c > max

{
Dη

1−Dσ
,
l

δ∗

}
,

and

e1 (s) = s (1− s) .

Then, for u ∈ K̄c, it follows from (10), (19) and (25) that

(Tu) (t) =

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτ

≤
1∫

0

1∫
0

γγ1e1 (τ)ω (τ) (σu+ η) dτds

≤
1∫

0

1∫
0

γγ1e1 (τ)ω (τ) (σ ‖u‖+ η) dτds

≤ γγ1 (σc+ η)

1∫
0

e1 (τ)ω (τ) dτ

≤ (σc+ η) ‖ω‖p ‖e‖q
< c,

which shows that Tu ∈ Kc. Hence, we have shown that if (H1) holds, then T
maps Kc into Kc.
We verify that {u/K (β, l, r) : β (u) > l } 6= ∅ and β (Tu) > l , for all u ∈
K (β, l, r).
Take ϕ0 (t) = δ∗+1

2δ∗ l, for t ∈ [0, 1]. Then

ϕ0 ∈
{
u/u ∈ K

(
β, l,

l

δ∗

)
, β (u) > l

}
.

This shows that {u/K (β, l, r) : β (u) > l } 6= ∅.
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Therefore, from (H2),(11) and (21), we have

β (Tu) = min
t∈[δ,1−δ]

(Tu) (t)

= min
t∈[δ,1−δ]

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds

≥ δ
1∫

0

1∫
0

e (s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds

≥ δ3
1∫

0

1−δ∫
δ

e (s) e1 (s)ω (τ) f (τ, u (τ)) dτds

≥ δ3
1∫

0

s2 (1− s) ds
1−δ∫
δ

ω (τ) f (τ, u (τ)) dτ

≥ δ3

12
λ (1− 2δ)

12l

δ3 (1− 2δ)λ
= l.

If u ∈ Kd, then it follows from (H3) that

(Tu) (t) =

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds

≤
1∫

0

1∫
0

γγ1e1 (τ)ω (τ) f (τ, u (τ)) dτds

≤
1∫

0

1∫
0

γγ1e1 (τ)ω (τ)
d

D
dτds

≤
(
d

D

)
γγ1 ‖ω‖p ‖e1‖q = d.

Finally, we assert that if u ∈ K (β, l, c) and ‖Tu‖ > r, then β (Tu) > l.
Suppose u ∈ K (β, l, c) and ‖Tu‖ > r, then it follows from (21) that

β (Tu) = min
t∈[δ,1−δ]

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds

≥ δ2
1∫

0

1∫
0

e1 (s)H (s, τ)ω (τ) f (τ, u (τ)) dτds
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≥ δ2

γ1

1∫
0

1∫
0

γ1e1 (s)H (s, τ)ω (τ) f (τ, u (τ)) dτds

≥ δ∗ ‖Tu‖ > l

To sum up, the hypotheses of Theorem 1 hold. Therefore, BVP (1) has at least
three positive solutions u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.

The following Corollaries deals with p = +∞.

Corollary 1. Assume (A1) − (A3), (H1), (H2) and (H3) hold. Then BVP (1)
has at least three positive solutions u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.

Proof. Let ‖ω‖∞ ‖e‖1 replace ‖ω‖p ‖e‖q and repeat the argument above.

Finally we consider the case of p = 1.
Let
(H4) f

∞ < 1
D′ ,

(H5) f (t, u) ≤ d
D′ , for (t, u) ∈ [0, 1]× [0, d],

where

D′ = γγ1 ‖ω‖1 .

Corollary 2. Assume (A1) − (A3),(H4) and (H5) hold. Then BVP (1) has at
least three positive solutions u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , ‖u3‖ > d with β (u3) < l

Proof. Set

c′ > max

{
Dη

1−Dσ′
,
l

δ∗

}
,

and

e1 (s) = s (1− s) ,

where 0 < σ′ < 1
D′ . Then, for u ∈ Kc′ , it follows from (10), (20) and (25) that

(Tu) (t) =

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds

≤
1∫

0

1∫
0

γγ1e1 (τ)ω (τ) f (τ, u (τ)) dτds
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≤
1∫

0

1∫
0

γγ1e1 (τ)ω (τ)
(
σ′u+ η

)
dτds

≤
1∫

0

1∫
0

γγ1e1 (τ)ω (τ)
(
σ′ ‖u‖+ η

)
dτds

≤ γγ1
(
σ′c′ + η

) 1∫
0

ω (τ) dτds

≤ γγ1
(
σ′c′ + η

)
‖ω‖1 = c′,

which shows that Tu ∈ Kc′ . Hence, we have shown that if (H4) holds, then T
maps Kc′ into Kc′ .

If u ∈ Kd, then it follows from (H5), (10) and (20) that

(Tu) (t) =

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds

≤
1∫

0

1∫
0

γγ1e1 (τ)ω (τ) f (τ, u (τ)) dτds

≤
1∫

0

1∫
0

d

D′
γγ1e1 (τ)ω (τ) dτds

≤ d

D′
γγ1

1∫
0

ω (τ) dτ

≤ d

D′
γγ1 ‖ω‖1 = d.

Finally, we assert that if u ∈ K (β, l, c) and ‖Tu‖ > r, then β (Tu) > l.

Suppose u ∈ K (β, l, c) and ‖Tu‖ > r, then it follows from

β (Tu) = min
t∈[δ,1−δ]

1∫
0

1∫
0

H (t, s)H1 (s, τ)ω (τ) f (τ, u (τ)) dτds

≥ δ2
1∫

0

1∫
0

e1 (s)H (s, τ)ω (τ) f (τ, u (τ)) dτds
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≥ δ2

γ1

1∫
0

1∫
0

γ1e1 (s)H (s, τ)ω (τ) f (τ, u (τ)) dτds

≥ δ∗ ‖Tu‖ > l.

To sum up, the hypotheses of Theorem 1 hold. Therefore, BVP (1) has at least
three positive solutions u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.

Remark 3. We remark that the condition (H3) in Theorem 2 can be replaced by
the following condition:
(H3)

′
fd0 ≤ 1

D , where

fd0 ≤ max

{
max
t∈[0,1]

f (t, u)

d
: u ∈ [0, d]

}
.

(H3)
′′
f0 ≤ 1

D .

Corollary 3. If the condition (H3) in Theorem 2 replaced by (H3)
′

or (H3)
′′
,

respectively, then the conclusion of Theorem 2 also hold.

We construct an example to illustrate the applicability of the results presented.

Example 1. Let δ = 1
4 , m = 3, a = 0, b = 1 and p = 1. It follows from p = 1

that q =∞. Consider the following boundary value problem
u(4) (t) = ω (t) f (t, u (t)) , t ∈ (0, 1) ,

u (0) = u (1) =
∫ 1
0 g (s)u (s) ds, u′ (0) = 0,

u′′ (0) =
∫ 1
0 h (s)u′′ (s) ds, u(3) (1) = 0,

(26)

where

ω (t) =
1

5
t+

1

10
, h (t) = g (t) = t,

and

f (t, u) =


d, (t, u) ∈ [0, 1]× [0, d] ,

u+ (10)3
(
l
δ∗

) (
u−d
l−d

)
, (t, u) ∈ [0, 1]× [d, l] ,

(10)3
(
l
δ∗

)
, (t, u) ∈ [0, 1]×

[
l, l
δ∗

]
,

(10)3
(
l
δ∗

)
+
(
u− l

δ∗

)
t, (t, u) ∈ [0, 1]×

[
l
δ∗ ,∞

)
.

It is easy to see by calculating that ω (t) ≥ λ = 1
10 , for a.e. t ∈ [0, 1].
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By simple calculation, we obtain

µ =

1∫
0

h (t) dt =
1

2
, ν =

1∫
0

g (t) =
1

2

γ =
1

1− µ
= 2, γ1 =

1

1− ν
= 2, δ =

1

4
and δ∗ =

δ2

γ1
=

1

32
.

It follows from ω (t) = 1
5 t+ 1

10 and e (t) = t (1− t) that

‖ω‖1 =

1∫
0

(
1

5
t+

1

10

)
dt =

1

10
,

and

‖e‖q = ‖e‖∞ = lim
q→∞

 1∫
0

(t)q (1− t)q dt


1
q

= 1.

It is easy to verify that

D = γγ1 ‖e‖q ‖ω‖1 =
2

5
, and f∞ = 1.

Choosing 0 < d < l < l
δ∗ ≤ c, we have

f∞ = 1 <
5

2
=

1

D
,

f (t, u) = (10)3
l

δ∗
= 32 (10)3 l > l = 64 (400) =

20l

δ3 (1− 2δ)λ
,

∀ (t, u) ∈
[

1

4
,
3

4

]
×
[
l,
l

δ∗

]
,

and

f (t, u) = d <
d

D′
=

5d

2
, ∀ (t, u) ∈ [0, 1]× [0, d] ,

which shows (H1) , (H2) and (H3) hold.

Thus all assumptions and conditions of Theorem 2 are satisfied. Hence, Corollary
1 implies that BVP (26) has at least three positive solutions u1, u2 and u3 such
that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.
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