Bulletin of the Transilvania University of Bragov e Vol 13(62), No. 2 - 2020
Series II1: Mathematics, Informatics, Physics, 705-714
https://doi.org/10.31926 /but.mif.2020.13.62.2.26

HIGH PERFORMANCE COMPUTING FOR MACHINE
LEARNING

Arpid KERESTELY*!

Abstract

Efficient High Performance Computing for Machine Learning has become
a necessity in the past few years. Data is growing exponentially in domains
like healthcare, government, economics and with the development of IoT,
smartphones and gadgets. This big volume of data, needs a storage space
which no traditional computing system can offer, and needs to be fed to Ma-
chine Learning algorithms so useful information can be extracted out of it.
The larger the dataset that is fed to a Machine Learning algorithm the more
precise the results will be, but also the time to compute those results will
increase. Thus, the need for Efficient High Performance computing in the
aid of faster and better Machine Learning algorithms. This paper aims to
unveil how one benefits from another, what research has achieved so far and
where is it heading.

2000 Mathematics Subject Classification: 68T01, 68T02.

Key words: distributed, data parallelism, model parallelism, Hadoop,
Spark, machine learning, data science, data mining, high performance com-
puting.

1 Introduction

High Performance Computing and Machine Learning are two different topics.
They developed analogous of each other driven by different necessities. Still the
two joined at some point and now it is hard to think of one, without the other
lurking in the background. Before diving into detail, let’s look into some basic
concepts.

1 Corresponding author, Faculty of Mathematics and Informatics, Transilvania University of
Bragov, Romania, e-mail: arpad.kerestely@unitbv.ro

706 Arpéd Kerestély

1.1 High Performance Computing

“High Performance Computing (HPC) most generally refers to the practice
of aggregating computing power in a way that delivers much higher performance
than one could get out of a typical desktop computer or workstation in order
to solve large problems in science, engineering, or business.” [23] Aggregating
computing power can be done to result in:

e single supercomputer: composed of powerful central processing units (CPUs),
graphical processing units (GPUs), big memory (RAM), huge (and fast)
storage space; unaffordable to most companies (not to mention researchers)

e cluster of computers: many high end but affordable computers - called nodes
- interconnected through a network, that act as a single computer to the end
user

The most commonly used are the clusters of computers, as a cluster can easily
be extended with additional nodes (computers) to quickly gain more computing
power or storage space. A typical node in a cluster has about 1 to 4 CPUs
each having 2, 4 or 8 cores, which can be used to compute more tasks locally
or to speed up the execution of one task. A cluster can have from 2 nodes,
used by small companies, to 256 nodes, used by medium and big companies.
Data-centers typically have thousands of nodes in a cluster, but also have many
clusters, depending on the tasks at hand or the purpose of the data-center. The
nodes are usually connected and communicate through Ethernet connection to
act as one computer. By the nature of this architecture, nodes can join a cluster
even if they are not physically in the same location, although that is not desired,
as there could be latency issues. Another advantage of having a cluster on nodes
to act as supercomputer is that it can be remotely or even automatically scaled
on demand, which is not possible with single supercomputers.

High performance systems can normally reduce the execution time of an algo-
rithm if the algorithm itself can run in a parallel fashion, meaning the problem can
be decomposed into multiple sub problems, the results of which combined will give
the solution to the initial problem. While this is generally true, it is not always
enough for an algorithm to run faster: memory access, disk I/O and inter-node
communications should be taken into account when decomposing a problem.

High performance computing also refers to using specialized dedicated hard-
ware for certain problems. An example is the usage of the GPU to render high
demanding 3D scenes, animations and movies which would normally run very
slow on the general purpose CPU. Lately there has been an opening to using the
GPU for more than just graphical processing. Thus, for example, Nvidia devel-
oped PhysX to run Newtonian physics simulations, or CUDA to enable general
purpose processing on the GPU, making the GPU termed as a GPGPU (Gen-
eral Purpose Graphical Processing Unit). Other companies like Intel or AMD
developed their own technologies that are similar to those that Nvidia offers.

HPC for ML 707

1.2 The intersection of Machine Learning and High Performance
Computing

A strong bond exists between Machine Learning algorithms and High Per-
formance Computing, even if at first glance it is not that obvious. Looking at
the evolution of Machine Learning algorithms, we could say that some key com-
ponents existed long before the first computers were “born”. When computing
stations began spreading, hope had reborn in Machine Learning algorithms, but
soon vanished as the required computing power to run them, was unimaginable.
This is how “Artificial Neural Networks”, which were first published in the ’80s,
gained significant popularity only after 25 years, when the computational power
had caught up so something significant could be made with them, and in rea-
sonable amount of time. So why does Machine Learning need High Performance
Computing?

Generally speaking, most Machine Learning algorithms need to “train” (we
can call this fit, or find the best parameters, or compute some distance) before
being able to predict (or generalize) the results of unseen input. Training takes
time, for some algorithms, it takes more than for others. Omne fact is proven:
the more the training data (or training iterations), the slower the train session
will be. Another fact is proven too: that the more training iterations and data
an algorithm gets the more chance it has to give better results. Putting these
together, one can easily guess that often the performance of a learning model is
sacrificed if favor of reduced training time, by reducing the amount of time an
algorithm will train.

Another thing to have in mind is that most Machine Learning algorithms have
some hyper-parameters that need to be tuned empirically so that the algorithms
can yield the best results for the problem at hand. This in turn requires rerunning
the training process several times, until the best hyper-parameters are found. This
whole process is very long and sometimes ends prematurely, with not exploring
the whole training set and hyper-parameters domain, thus not achieving the best
possible results the algorithms could have had.

High Performance Computing can push the Machine Learning algorithms to
new limits, by aiding in this costly process of training and beyond that. But
there’s a catch. Today’s high performance systems rely heavily on the fact that
algorithms can run in parallel. This said, Machine Learning can benefit from high
performance computing only if its algorithms can be decomposed into paralleliz-
able subroutines. Sometimes this step is obvious as in the case of finding the
best hyper-parameters, but at other times it requires architectural redesigns of an
algorithm.

In the following sections, this paper aims to provide a survey of the existing
work that has been done in both High Performance Computing and Machine
Learning, to provide personal recommendations and best practices on when and
how to use High Performance Computing and Machine Learning, and finally, in
the conclusion section, to wrap up and provide a forecast on where the High
Performance Computing and Machine Learning might end up next.

708 Arpéd Kerestély

2 Literature Overview

In the digitalized era we live in, large amounts of data are generated by the
healthcare [20], government and economic systems. Some of the notable sources
of data are the “record keeping, compliance and patient related data, physician
notes, Lab reports, X-Ray reports, case history, diet regime, list of doctors and
nurses in a particular hospital, national health register data, medicine and sur-
gical instruments expiry date identification based on RFID data”[9]. These data
help by providing “patient centric services, detecting spreading diseases earlier,
monitoring the hospital’s quality and improving the treatment methods” [9]. “A
Survey Of Big Data Analytics in Healthcare and Government” [9] suggests a Big
Data Ecosystem architecture that receives data streams through “Apache Flume”
[2] and can import data from structured datastores such as relational databases
with the usage of “Apache Sqoop” [7]. The data acquired this way is stored in
a “Hadoop Distributed File System (HDFS)” which is a module of the bigger
“Apache Hadoop” [3]. Analyzing and processing the data is done, using machine
learning algorithms, in a parallel manner using “Map-Reduce” (which is again part
of Apache Hadoop) and “Apache Hive” [5] which was formerly part of Hadoop,
but it is now a standalone project and it is used to manage data using SQL. For
storing multi-structured data, “Apache HBase” [4] is used, which is similar to
Google’s “Bigtable” [11] but is built on top of HDFS. “Apache Storm” [8] helps
in processing streaming data in real time. To produce reports and gain a better
knowledge of data, “Intellicius” and “Hunk” are used.

On the early days of Hadoop, the authors of “MapReduce: Distributed Com-
puting for Machine Learning” [17] tested different types of machine learning algo-
rithms with the Map-Reduce framework. They defined three categories of machine
learning algorithms: “Single-pass Learning”, “Iterative Learning” and “Query-
based Learning with Distance Metrics” which behave slightly different on the
Map-Reduce framework, with the first being the fastest and the last being the
slowest. The execution time being proportional to the amount of queries made to
the data available on the HDFS.

“Large-Scale Machine Learning based on Functional Networks for Biomedical
Big Data with High Performance Computing Platforms” [15] outlines that Map-
Reduce built on top of HDFS has some drawbacks, which are crucial when working
with machine learning algorithms. One of the major drawbacks is that Map-
Reduce architecture is designed to reload data from disk at each Map-Reduce
processing function. Thus, it relies heavily on the disk I/O speed which is usually
very slow compared to the speed of in-memory operations. Machine learning
algorithms can’t be efficient using Map-Reduce in its native form. “Spark” [6]
overcomes this limitation by reducing the disk I/O operations and offering an in-
memory solution, while keeping the fault tolerant behavior of Map-Reduce. The
speed gain is claimed to be 100x the speed of Map-Reduce (see figure 1). Spark can
work with HDFS as well as with other file systems and can be accessed through
Java, Scala, Python, R, and SQL. “Offers over 80 high-level operators that make
it easy to build parallel apps. And you can use it interactively from the Scala,

HPC for ML 709

— 120 7110

2

2 90

-E ® Hadoop
o 60

g ® Spark
5 30 0.9

o 0 i

Figure 1: “Logistic regression in Hadoop and Spark” [6]

Python, R, and SQL shells.” [6]. The authors of the paper [15] demonstrate the
usage of “Functional Networks” [10] on a Spark system.

Recent work in the field of machine learning focused heavily on two types of
algorithms: Convolutional Neural Networks (with all its flavors) and Deep Neural
Networks. Because of the heavy processing and high memory footprint, these
algorithms can’t benefit from a framework like Spark, as much of the time would
be wasted exchanging information between the computing nodes. To achieve
faster communication speed between the memory and the computing unit, these
algorithms have been moved to the Graphical Processing Unit (GPU). The result
was an increase in speed from 10 to nearly 60 percent, compared to a run on
CPU (using Singe Instruction Multiple Data (SIMD)) [12]. While GPUs are very
powerful at parallel computing - mostly because they are composed of many small
processing units that reside, physically, close to the GPUs dedicated memory -
they have their limitations. The biggest limitation of the GPUs is their dedicated
memory limit. While this limitation can be overcome by using RAM, research
has shown that it comes with a significant performance penalty [12]. The trend
in the aforementioned machine learning algorithms is to grow in size by pulling
in more hidden layers, more neurons. As this has proven to help the networks
generalize better, it is also a barrier that prevents training and running them
on GPUs, because of the memory constraints. The authors of “DaDianNao: A
machine-learning supercomputer” [12] suggest and implement dedicated hardware
for CNNs and DNNs that overcomes the memory limitations, by providing a
cluster of dedicated memories, thus opening the way for bigger, sophisticated
networks. By being dedicated hardware for these types of algorithms, specific
operations are also built in the hardware which boost the overall performance (as
seen in Figure 2).

While these results are astonishing, the machine learning researchers commu-
nity can’t use them right away without having the hardware.

“Deep learning with COTS HPC systems” [13] offers a more accessible so-
lution to the same problem, namely running deep neural networks with over 1
billion parameters. To be able to feel the magnitude of 1 billion parameters, let’s
assume that each parameter is a double which occupies 8 bytes, thus the size of 1
billion parameters is roughly 8 GB. With common end-user GPUs having mostly
4 GB of dedicated memory, the limitation becomes clear. Even in the event of
having a GPU with 8 GB of memory the limitation is still there; we can’t use
a network of more than 1 billion parameters. One possibility would be to use a

710 Arpéd Kerestély

M 1chip B Achips 16chips M 64chips
1000

W

FIITI LSS F PSS

c}yoy"ooooo“xo“qoq S

Speedup

Figure 2: “Speedup w.r.t. the GPU baseline (inference).” [6] The X axis rep-
resents the different types of layers. # of chips represents the amount of chips
clustered together to form the final hardware piece.

distributed computing infrastructure such as “DistBelief” [14], which trained a
neural network using 16000 CPU cores (in 1000 machines) in a few days. Sadly,
this kind of infrastructure is not available to most researchers. The solutions of-
fered by [13] can make the same network train on only 3 machines, each having
4 NVIDIA GTX680 GPUs, in less time. The authors also show that in a few
days they can train a network of 11 billion parameters using 16 GPU equipped
machines. While the approach of having GPUs connected on a network seems
intuitive, the overhead created by transferring knowledge through Ethernet con-
nection between GPUs prevented significant improvements from being done. The
authors of [13] succeeded in this chapter by using an FDR Infiniband connec-
tion between the machines, which can send messages in microseconds compared
to Ethernet connection that needs a few milliseconds. “DistBelief” has evolved
since it was first published, into the newer “Tensorflow” presented in [1]. This
new framework can be used to run Machine Learning algorithms on a cluster of
dedicated computers, but also on mobile devices, using their CPUs or GPUs, thus
unifying the computation power under a single hood while providing a friendly
API.

Although extra hardware can help a Machine Learning algorithm train and
run faster, sometimes that is not enough. As it can be seen in Figure 3 from
“Imagenet classification with deep convolutional neural networks” [21], but also
n [13], specific architectural changes are needed sometimes so that an algorithm
may run in parallel.

3 Personal recommendations

From the many possibilities that are out there, one may be confused as to
what would be the best solution to go on with. The short answer is that there is
no best solution. Most factors depend on the problem at hand. Nevertheless, this
section will try to give some personal recommendations as to where to start.

The first and most important factor when deciding on the Machine Learn-

HPC for ML 711

5% 204 oag \dense

——
13 dense’| [dense|

1000

128 Max
Max 128 Max pooling
pooling pooling

204 2048

Figure 3: A deep convolutional neural network redesigned to work in parallel, on
two GPUs (forced by memory constraints). Figure from [21]

ing algorithm and the High Performance Computing system is the nature of the
dataset that is used. Important characteristics of a dataset are its features (at-
tributes) and size. The features of a dataset can be: the pixels of an image, a
timeseries, a text or the clinical data of a patient in the form of a table. The
feature type determines the ML algorithm to use. For image classification some
form of CNN should be used, timeseries could be handled by some form of curve
fitting or RNN, for text data the NLP algorithms are the best suited, and so on.
Regarding the size of the dataset there is one rule: if it fits into memory (RAM or
VRAM), than one should go for a library that supports running ML algorithms
on one computer in multi-threaded mode. If the dataset does not fit in memory,
one should look for a distributed solution. There is also the third, the border case,
when the data does not fit in memory, but the algorithm can still compute the
results in memory; while this case can have it’s benefits, it also has many shades
which won’t be covered in this paper. When searching for a good algorithm re-
gardless of the size of data, one should start experimenting on a subset of the
data.

When we think about distributed systems, one of the first options to consider
is the Apache catalog. By setting up some modules on available hardware, or by
renting servers that offer an already set up environment. It is important to note
that the chosen ML algorithm influences the choice of the distributed system, or
vice-versa. For example in Apache Spark’s MLIib there is no existing implementa-
tion for K-Nearest Neighbors (KNN) or for Convolutional Neural Network (CNN)
algorithms (current version: 3.0.0.). Looking deeper down in Spark’s MLlib, we
can observe that for ANNs, the Adam solver is not available to choose. A rec-
ommendation when choosing a library, be it distributed or not, would be to do a
quick research beforehand on: available ML algorithms, exposed hyperparameters
and the possibility of extending the library.

The preferred programming language can also narrow down the possible choice
of Machine Learning algorithms and HPC system combinations. For example, to
work and extend algorithms in Weka, one would need to know Java; to work
natively with Spark, one should know Scala. For Python users there is good news
though: most of the libraries offer an API to work directly in Python; this comes

712 Arpzid Kerestély

from the fact that the Machine Learning community’s preferred programming
language is Python. The recommendation on this topic would obviously be the
following: learn Python!

Other factors exist also but are more specific to a chosen direction. For ex-
ample the renting costs of a server, or the availability of GPUs on the hardware
at hand, or what operating system to choose when setting up a Hadoop-Spark
cluster. Considering these, part of the research should always focus on what and
how others did in the same situations.

4 Conclusions

The fact that High Performance Computing and Machine Learning coexist is
certain, from the high number of papers that are available on this topic. More im-
portant is that Machine Learning is fueled by High Performance Computing, thus
reaching new heights every now and then. Machine Learning, on the other hand,
creates new opportunities for HPC practitioners to come up with new ideas and
solutions, thus pushing the boundaries of what we perceive as high performance
Systems.

As a Machine Learning researcher, it is important to know that a wide range
of solutions exist to make any algorithm run more efficiently. For example, us-
ing Hadoop to connect multiple computers to act as one brings the advantage of
having access to a variety of smaller components with which to extend the func-
tionality of a big data, machine learning application. Using the GPU’s power to
tame some of the most challenging machine learning algorithms can be a solution;
but maybe connecting more GPUs or even having a cluster of machines, each
having a couple of GPUs can be a solution too.

It is important also to know the data that needs to be processed, because
structured and unstructured data are stored and processed differently, nevertheless
some algorithms require and use both to compute their results. Thus, having some
background in the big data domain can help overcome some difficulties.

Where will the High Performance Computing and Machine Learning go is
not clear, but certainly they will always go hand in hand, as Machine Learning
algorithms are not easy tasks for a computing system and where Machine Learning
exists, there will most likely be a need for High Performance Computing. And
who knows, some day, analogous of how the Graphical Processing Unit (GPU)
came to exist in our personal computers, extrapolating the research done by [12],
we could be seeing specialized hardware for machine learning tasks in our personal
computers in the coming 10-15 years.

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M. and Kudlur, M., 2016. Tensorflow:

HPC for ML 713

[12]

[13]

[14]

A system for large-scale machine learning. In 12th USENIX symposium on
operating systems design and implementation (OSDI 16) (pp. 265-283).

Apache Flume. URL: https://flume.apache.org/

Apache Hadoop. URL: http://hadoop.apache.org/

Apache HBase. URL: https://hbase.apache.org/

Apache Hive. URL: https://hive.apache.org/

Apache Spark. URL: https://spark.apache.org/

Apache Sqoop. URL: https://sqoop.apache.org/

Apache Storm. URL: https://hortonworks.com/apache/storm/

Archenaa, J. and Anita, E.M., 2015. A survey of big data analytics in health-
care and government. Procedia Computer Science, 50, pp.408-413.

Castillo, E. and Hadi, A.S., 2014. Functional networks. Wiley StatsRef:
Statistics Reference Online.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows,
M., Chandra, T., Fikes, A. and Gruber, R.E., 2008. Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer Systems
(TOCS), 26(2), pp.1-26.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T.,
Xu, Z., Sun, N. and Temam, O., 2014, December. Dadiannao: A machine-
learning supercomputer. In 2014 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture (pp. 609-622). IEEE.

Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B. and Andrew, N.,
2013, February. Deep learning with COTS HPC systems. In International
conference on machine learning (pp. 1337-1345).

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato,
M.A., Senior, A., Tucker, P., Yang, K. and Le, Q., 2012. Large scale dis-
tributed deep networks. Advances in neural information processing systems,
25, pp.1223-1231.

Elsebakhi, E., Lee, F., Schendel, E., Haque, A., Kathireason, N., Pathare,
T., Syed, N. and Al-Ali, R., 2015. Large-scale machine learning based on
functional networks for biomedical big data with high performance computing
platforms. Journal of Computational Science, 11, pp.69-81.

Freund, K., 2017. What’s Hot At SCI17: The Syn-
thesis of Machine Learning & HPC. Forbes. URL:
https://www.forbes.com/sites/moorinsights/2017/11/14 /whats-hot-at-
sc17-the-synthesis-of-machine-learning-hpc/

714

[17]

[18]

[19]

[20]

[21]

[22]

Arpéd Kerestély

Gillick, D., Faria, A. and DeNero, J., 2006. Mapreduce: Distributed computing
for machine learning. Berkley, Dec, 18.

Introduction to High-Performance Machine learning @SURFsara. URL:
https://events.prace-ri.eu/event/693/attachments/626/. 2018.

Kadupitige, K., 2017. Intersection of HPC and Machine Learning. Digital
Science Center.

Kerestely, A., Sasu, L.M. and Tabirca, M.S., 2018. Machine Learning in
Healthcare: An Overview. Bulletin of the Transilvania University of Brasov.
Mathematics, Informatics, Physics. Series 111, 11(2), pp.273-278.

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2017. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 60(6),
pp-84-90.

Vose, A., 2017. The Intersection of Machine Learning and High-
Performance Computing. URL: https://www.cray.com/blog/intersection-
machine-learning-high-performance-computing/.

What is high performance computing?. URL: https://insidehpc.com/hpe-
basic-training/what-is-hpc.

