Bulletin of the Transilvania University of Bragov e Vol 13(62), No. 2 - 2020
Series II1: Mathematics, Informatics, Physics, 677-682
https://doi.org/10.31926 /but.mif.2020.13.62.2.23
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Abstract

A presentation of related global representations for the first degree spline
function is given, revisiting some known results. The given global represen-
tations are deduced one from another by simple transformations.
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1 Introduction

In this paper we give a presentation of related representations for the first
degree spline function, revisiting some known results. A spline function may be
represented by local and / or global representation. As an example, the local
representation of a polynomial spline function is

S(.le) = Z Si(x)l[xi,xi+1}(x)a

%

where s;(x) is a polynomial giving the values of s in the interval [z;, z;+1] and 14
is the indicator function of the set A. For the first degree interpolating spline

T (2 — ), (1)

and s satisfies the interpolation constraints s(z;) = y;, for any i. A global repre-
sentation formula does not take into account the position of the argument relative
to nodes.

The given global representations are deduced one from another by simple
transformations.
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2 First degree spline given by global expressions

Let be the mesh zy < z1 < ... < x, and the real numbers yg, y1,...,Yy,. We
shall use the notations

Ayi = Yit1 — ¥
hi = g1 — i
The starting point is the following folkloric result:

Theorem 1. The first degree spline function satisfying the interpolation condi-
tions s(x;) = s, for alli € {0,1,...,n} is given by

n—1

s(x)=yo+ > pilz—w)y, wER, (2)
i=0
with py = 5, % and p; = Aih - %, ie{l,2,...,n—1}.
i >
Above, (-)4 is the usual first degree truncated polynomial, (x)4 = { g ii i - 8’ :

We give a short elementary proof.

Proof. Inductively we compute the coefficients (p;); so that the interpolation con-
straints to be satisfied and so that s][%xi ,,) to be a first degree polynomial.
If z € [xg,21) then
s(x) = yo + po(z — z0).

_ 1% _ Ay
r1—x0  ho °

If © € [z1,22) then s(z) = yo + Ayo (x — xo) + p1(x — x1). The interpolation
constrain s(z2) = y2 implies

The interpolation constrain s(x;) = y; implies pg =

A

0
Yo + hi (w2 — w0) + pr(w2 — 21) = Y2

and consequently

A A
Yo+ S0 (hg+h) Fpihi =12 S g1+ —Chy +pih =,

ho ho
from where py = £ — Ah—zéo = Ah—?il - % Also we find
A A A
s(a) =+ G0 = a0y + (52 - 50 - ) =
A A Ay
—yo—i-h—%ho%—%(x—xl)—yl—i-h—l(x—a:l) x € [z1,22),
0 1 1

which is consistent with (1), for ¢ = 1.
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We suppose that for any j € {1,2,...,7 — 1} the following relations are valid

piy = ¥ By
J hj h];l ’
Ayj1
s(z) = yj—1+ h'Jl (x —xj-1), x € [xj_1,2).
e

If x € [x;, 241) then s(x) = yi_1+%(x—xi_1)+pi(:r—xi). The interpolation
constrain s(z;4+1) = y;+1 implies

Ay
Yi-1+ h‘z ) (it1 = zi—1) + pilTiv1 — @) = Yy
i
and then
Ayi1 YVirl —¥i  Ayic1 Ay Ayi
Yi + hifl i+ Dilg Yi+1 Di hz hifl hz hifl

For x € [x;, xi+1) the function s(x) becomes

_ Ay . Ayi Ay L Ay
s(z) = yi1+ By (z l‘z—l)-f—( I, T (x—m;) = yi+ . (x—z). O

Using the relation 2 = 3(|z| + z), from (2) we obtain the equality

A 1= (Ay; Ay,
s(x):a+ﬂx+}i0x—xo|+2;(h?j _ }i_;)‘x—mi\,

where

B Ayo 15~ (Ay Ayig
@ = Yo 7/10 960—2; h, - it Ti;

and

2hyg 2 P

B

B B th,1 .

Ay 1 Ay Ay ~ Ayp
Sho Z ( h; hi—1

The coefficient o may be further simplified

n—1
A 1 Avy; Ay,
QZQO—T?$0—§ E < hy T — hy ll(iﬂil-l-hil)):

I
92 Yo Yn—1 hnfl n—1] -

It results the global representation

1 Ay Ay
s(z) =5 (yo + Yn—1— hy_llxn_1> + 25 _11:1:+ (3)
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Yo Yi Yi—1
1Yt L § : Ay A — i, R.
h x — x| < I, T |z — a4 x €

1=

If we restrict to the interval [xg, 2], then |z — 29| =  — 2o and consequently

1 A Ayn_ Ayo  Ayn
s(z) = 3 (3/0 + Yt — hzoxo - hy_llxn_l) + (2}‘1’2 + 5 _f) o+

1 [Ay; Ayz 1
22( - >|IL‘—$Z|

z 1

Simplifying the first term we obtain the result of KoLiHA, [1, Th. 1]

+ +

YoT1 — Y170 | Yn—1Tn — YnTn—1 Ayo  Ayp-
= 4
5() 2ho 2hn_1 * (2h0 2hn_1 > =+ @

1 Ay, Ay
+2Z< i |z — 4], x € [zo, Zn).

If the nodes are equidistant x; = xo + ih, i € {0,1,...,n}, where h = #n-%0
then from (4) we find

)

s(x) = — Y0+ Yn — Yn—1)+

2
oh Y1

1 Y Y
i—1 + Yit1
+E E 1: <l2l+ _yi> |z — @)
1=

Let ¢ € R. Adding and subtracting the following two terms

1
ﬁ(yom — Y120 + Yn—1Tn — YnTn—1) +

yo+nyn—1—(n—1)yn—2c

e G
n

2nh

Yntnyi—(n—1)yo—2c ‘l’
2nh

_ Yntnyi—(n—1)yo—2c (z

— x| = 2nh — o)

after reducing the terms it results

-1
L Yntnyr— (n—1)yo — 2c 1y Yi—1 + Yit1
s(x) =c+ o J:—acoH-h; s W |z — 2|+
Yo + nyn—1 — (n — Lyn — 2¢
2nh

Yntnyr1—(n—1)yo—2c yo+nyn—1—(n—1)yn—2c
Denoting ng = = 2(nh ) » Mn = zéh ) and

n o= <% —yi> , 1 € {1,2,...,n — 1}, the above becomes the result of
Toba, [3, Th. B]

+

| — ).

v)=c+ Y mlr—xl, @€ [xo, mn]. (5)
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The parameter ¢ matters only outside of the interval [zg, ).
It was observed in [3] that if (y;); are the values of a convex function f and if

¢ <min{y, + ny1 — (n — 1)yo, yo + nyn—1 — (n — Dy, }

then the coefficients 7; are nonnegative for any i. As a consequence the first degree
spline function s given by (5) is convex in R.

The convergence property lim,,_,~, s(x) = f(x) is proven in [3], too.

In the case of a convex function the existence of a function expressed as in (5)
and the corresponding convergence property is used in [2, Lm. 3.7] to characterize
an entropy solution for scalar conservation laws.
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