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Abstract

In this paper, we extend the results of Wardowski by applying some new
conditions on the self map on a complete metric space, concerning the F-
contractions defined by Wardowski. We present some fixed point results of
Wardowski type. An example is given to demonstrate the novelty of our work.
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1 Introduction and preliminaries

It is known that the contraction mapping principle formulated by Banach in
1920 in his Ph.D dissertation and published in 1922 in [1] is one of the most
important theorems in clasical functional analysis. Because of its importance
in mathematical theory many autors gave generalisations [2]-[15] of it in many
directions. One of the most well-known generalisation of the Banach contraction
principle is the Wardowski fixed point theorem [14].

Following this direction of research, in this paper, we well present some fixed
point results of Wardowski type for self-mappings on complete metric spaces.
Moreover, an example is given to illustrate the usability of these results.

Definition 1. A self-map T on a metric space (X, d) is said to be an F— contraction,
if there exists F' € F and T € (0,00) such that
[d(Tz,Ty) > 0= 7+ F(d(Tz,Ty)) < F(d(z,y))], (V)z,y€X,

where F is the family of all functions F : (0,00) — R such that
(F1) F is strictly increasing, i.e. for all z,y € Ry, x <y = F(x) < F(y);
(F2) For each sequence {ay,} of positive numbers, li_>m an = 0 if and only if
n—oo

lim F(ay,) = —o0;
n—oo
(F3) There exists k € (0,1) such that lim o*F (a) = 0.
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Every F-contraction is contractive and necessarly continuous map.

Theorem 1. [14] Let (X, d) be a metric space andT : X — X be an F—contraction.
Then T has a unique fized point z* € X and {T"z} — z*.

Later, Wardowski and Van Dung [15] introduced the concept of an F'—weak
contraction as follows.

Definition 2. Let (X,d) be a metric space. A mapping T : X — X is said to
be an F— weak contraction on (X,d) if there exists FF € F and 7 > 0 such that,
Maz,ye X

d(Txz,Ty) >0=7+ F(d(Tz,Ty)) < F(M(z,y)),

where

M) = max{a,) 0, 7). d ), ATV LAWY

2

Theorem 2. [15] Let (X,d) be a complete metric space and T : X — X be a
F— weak contraction. If T or F is continuous, then T' has a unique fized point
x* € X and for all x € X, the sequence {T™x} converges to x*.

Dung and Hang introduced the notationof a modified generalised F-contraction
and proved new fixed point theorem. They generalised F'— weak contraction as
folows.

Definition 3. [5] Let (X, d) be a metric space. A mapping T : X — X is said to
be a generalised F-contraction on (X,d) if there exist F € F and 7 > 0 such that

Ve,y € X,[d(Tx,Ty) >0 = 7+ F(d(Tz,Ty)) < F(N(z,v))]

where

d(x,Ty) +d(y, Tx)
2 )

N(z,y) = max{d(m,y),d(z,T@,d(y,Ty),

d(T?z,x) + d(T?z, Ty)
2

(T, To).d(T, ). (T, Ty) |

In 2016 Piri and Kumam replaced condition (F3) in the definition of F-
contraction introduced by Wardowski with

(F3) F is continuous (0, 00).

Using the family of all functions which satisfy conditions (Fy, Fy, F}), they
proved some Wardowski and Suzuki type fixed point theorem. [9]
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2 Main results

The aim of this paper is to give another type of generalisation for Wardowski
fixed point theorem. We give an example to show that our result is a proper
extension of clasical Wardowski fixed point theorem.

Definition 4. Let (X,d) be a metric space. T : X — X is a Picard operator if
and only if:

(1) (A z* € X a fized point for T,

(2) {T"z} converges to x*, (V) x € X.

Theorem 3. Let (X,d) be a complete metric space. Let T : X — X and 7 > 0
be such

Mazyye X, [d(Tz,Ty) >0=17+F(d(Tx,Ty)) < F(M*(z,y))] (1)

where
1. F: (0,00) — R is strictly increasing: (V) z,y € (0,00), z <y = F(z) <
F (y) ,and
M*(z,y) = max{d(z,y) +|d(z,Tx) —d(y, Ty)|,

d(z,Tx) + |d(y, Ty) — d(z,y)|, (2)
d(y, Ty) + |d(z,y) — d(x, Tw)l,
d(z,Ty) +d(y, Tz) + |d(z, Tz) — d(y, Ty)| }

5 .

2. There exists T > 0, such that T+ liminfy y, F'(u) > limsup,_,,, F'(u), for
every ug > 0.

Then T is a Picard operator.
Proof. Let xg € X. Put xp41 = T, xg € X, for all n € N. If there exists n € N
such that z,41 = x,, then 11 = Tx, = x,. That is z, is a fixed point of T.

Now, we suppose that x,11 # xp, for all n € N. Then d(z,,x,+1) > 0,
(V) n € N. We denote by

dp =d(xn,2nt1), (V)neN. (3)
If we put © = x,, y = p4+1 in (1), we deduce:

T+ F(d(Tan, Tons1)) = 7+ F(d(@ns1,Tnt2)) (4)
T+ F(dnt1) < F (M7 (20, Znt1))
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where

M* (xp,xpy1) = max{d(zyp,Tnt1) + |d(zn, Ten) — d(ni1, TToe1)]
d(tp, Tzn) + |d(Tnt1, TTns1) — d(Tn, Tni1)l
A(Tpt1, TTns1) + |d(Tn, Tng1) — d(Tn, Trn)l,
d(xn711rn+l)4‘d($n+lajﬂrn)‘+’d($n711rn)‘_’d($n+1,jvxn+1)|}
2

= max{d, + |dn, — dnt1|;dn + |dnt1 — dn|;dnt1 + |dn — dn|; (5)

d(Tpn, Tnt2) + d(Tnt1, Tns1) + |dn — dnga }
2

= max {d, + |dn — dn11|;dni1;

d(Tp, Tpy2) + |dn — dpia] }

2

If d, < dpt1, (V)n €N,

d ny4n dn - dn
M (xmwn—i-l) = max {dn—l—l; (37 & +2) i1 } .

2
Using the triangle inequality

d(xn’ xn+2) + dn+1 - dn < dn + dn+1 + dn+1 - dn

= dn
2 = 2 1
SO
M (CEn, wn—i—l) = dn+1-
From (4) we deduce
T+ F(dpy1) < F(dpy),
which is false for 7 > 0.
So, dp, > dpy1, (V)n € N and from (5)
M*(xn, tpnt1) = max{d, + dp — dpi1;dni1;
d(mn; xn+2) + dn - dn+1
5 )
But, d, +d,, — dn—l—l > dp, dn+1 <d, and
d(xru $n+2) +d, — dn+1 < dn + dn+1 +d, — dn+1 —d
2 - 2 S
then
M*(l'n, .’En+1) = an — dn+1. (6)

By the assumption of the Theorem 3, specialy from relation (1) we have the
following result:
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We known that d,, > d,,+1 and d,, > 0, (V)n € N so {d,} is convergent. Let now
d = lim d,,, and we suppose that d > 0. Taking the limit as n — oo, we get

n—00
dnsr N\ d
and
2dy, — dpt1 N\ d.
Because F' is strictly increasing,
T+ F(d+0) < F(d+0). (8)

The contradiction obtained shows that

dn N\ 0 (9)

We claim now, that {z,} is a Cauchy sequence on (X,d) wich is complete
metric space. Suppose, on the contrary, that there exist € > 0 and sequences
{n(k)}, {m(k)} of positive integers such that n(k) > m(k) > k, and

d (xn(k),xm(k)) > g, (V) k>1 (10)

Using the triangle inequality and (10) and (11), we get

e < d(Tnw) Tm)
< d (Zpgy Tay—1) + d (Tng)—15 Tm) ) -

Taking the limit as & — oo in this inequality and using (9) we deduce
d (xn(k), xm(k)) N\ E. (12)
But
d (T (k)1 T)—1) < A@Tn()—1,Ta@) + A@Tne) Tmey) + d (Tm(ky, Tmir)-1)

SO

(T (k)15 Tin(k)—1) — A T)s Ton)) | < A @)= 15 Trry) + & (Timrys Tme)—1) -

(13)
Taking the limit as & — oo in (13) we deduce
klggod (xn(k)—la xm(k)—l) =¢&. (14)
In relation (1), we put = Zp(k)—1, ¥ = Ty(x)—1 and obtain
T+ F (d (2o Tmy)) < FOM (Zpe)—1 Tmk)-1) ) (15)

where
M* (T (k)—1> Trn(ky—1) =
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= max {d(@,)—1, Tm)—1) + |4 (Tnr)—1, TTn)—1) — & (Zm)—1, TTmk)—1) | ;
A(Tp k)1, TTr(r)—1) + \d( L) =1 T () —1) — & (Tr(k)y—1> L)1) | 3
d(l‘ (k)— 17Txm(k 1) }d( (k)—1, L m(k)—l) - d($n(k)—17Txn(k)—1)‘;

1
5 [d(@n(y—1, TZm()—1) + ATy 1, T (r)—1)+

+1d (@nw) -1, Tonm)-1) = d (@)1, TTmery-1)|] } (16)
= max {d(Zn(k) -1, Tm)-1) + |4 (Tn@)-1, Taw)) = & (Zme)-1, Tm(r))
AT () -1, Tnry) + |d (xm(k)fhxm(k)) — d (Zp)—1> Trm(e)—1) | 5

A @ (k)—1> Tmk)) T |4 (T 15 Trmk)—1) — d (Tn) =1 Tn)) |5
1
3 [A(@n(k)—1> Tm()) — AT ()15 (i) +

| (Tnge) -1 Tury) = d (i) -1 Tmery) |1} -

We will see that for £ — oo, all the four terms which are in M™* tends to ¢, be
taking into account relation (9).

Taking the limit £ — oo in (16) and using (12) and (14) we have
M*(Zp(k)—1, Tm(k)—1) — €, then it follows that

)

lim sup F'(M* (25 k) -1, Tmk)-1)) < F(e +0)

n—oo

Also, taking the limit £ — oo in (15), we have

o < Timi « <
T+ h]gng((:cn(k),a:m(k))) < hkrggéfF(M (Tr(k)—1> Tm(k)—1)) <

< limsup F(M*(Zp(k) -1, Tm(k)-1)) < F'(e +0), so

k—o00
T+ F(e+0) < F(e+0) (17)

This is a contradiction. Therefore, {z,} is a Cauchy sequence and (X,d) is a
complete metric space, so {z,} converges to some point z* € X.
We shall prove that z* is a fixed point of T'. If there exist a sequence {l(n) }nen
of a natural numbers such that ;)11 = T,y = Tz", then limy, 00 Tyn)41 = 2%,
so Tx* = x*. Otherwise, there exist N € N, such that x,+1 = Tz, # Tz*,Vn >
N. Assume that Tx* # z*. For the assumption of the Theorem 3, for x = x,,y =
z* we obtain
T+ F(d(zps1, Tx™)) < F(M*(zy, ")) (18)

where

M* (xp,2") = max{d(zn,2") + |d(Tn, Tnt1) — d(z”, Tx")|;
d($n7$n+1) + ’d ($*,T35*) - d(:ﬂn,x*)| ;
d(z*, Tz") + |d (zn, %) — d(@p, Tnt1)];

1
5 [d(@n, T2*) +d (%, 2ny1) + (19)

+ |d (:L'manrl) - d($*7Tx*)”}
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For xz,, — z* it clear that M*(x,,x*) — d(z*, Tx*), and

7+ liminf F(d(xp+1, T2")) < liminf F(M* (2, 2")) < limsup F(M*(zp, "))
n—oo n—o0 n—oo
For n — oo, we have d(zp+1, Tx*) — d(z*, Tx*), and M (zp,,x*) — d(a*, Tx*),
hence

7+ liminf F(u) < liminf F(u) < limsup F(u)
u—rd(x*,Tr*) u—d(xz*,Tx*) u—sd(z* Tx*)

wich contradicts the second condition of the Theorem 3. Hence Tz* = x*.
Let now, x*,y* be two fixed points of T and suppose that x* # y*. It folows
that d(Tx*,Ty*) > 0 and from the hypotesis of the Theorem 3:

T+ F(d(Ta", Ty")) < F(M* (2",y")) (20)
where

M* (z*,y*) = max{d(z",y") + |d(z", Tz") —d(y", Ty")|;
d(z*, Tz*) + |d(y*, Ty*) — d (z*,y")|;
dy*, Ty*) + |d(z*,y*) — d (z*, Tx")|; (21)

1

+[d(z", Tz") — d(y", Ty")[]}
= d(z*,y").

We obtain a contradiction, which shows that condition z* # y* is false:
T+ F(d(z",y7)) < F(d(z",y7))

S0,
dz*,y*) =0= 2" =y

This proves than the fixed point of 1" is unique. O

1, z=0
Example 1. Let X =[0,1], Tx = { %7 2 € (0,1]
|x —y|. Then (X,d) is a complet metric space.
We choosing F(a) = Ina, a € (0,00) and. Since T is not continuous, T is
not a contraction.
From definition of mapping T, we observe that d(Tx,Ty) > 0, only for two
situations:

and F(z) =Inz, d(z,y) =

1. x € (0,1 and y =0 and

2. x =0, andy € (0,1], which can be reduced to only one, from symmety of
d(z,y).



674 Alexandrina Maria Proca

First we show that T does not satisfy the conditions of Theorem 1. Indeed, let
T > 0 arbitrary. We can write T = Ina, with a > 1. If we take x = % and y =0,
then inequality

T+ F(d(Tz,Ty)) < F(d(z,y))
s equivalent with
5 1
Ina- 8 < ln§ (false).
So that T is not a F-weak contraction,

On the other hand, if we take T = In 10, the conditions of Theorem 8 are
satisfied. Indeed, first we obtain:

M* (z,0) = max{d(z,0)+ |d(z,Tx) — d(0,T0)|,
d(z,Tx)+|d(0,70) — d(x,0)|,
d(0,70) + |d(z,0) — d(x, Tx)|,
% [d(0, Tz) + d(x, TO)+
+ |d(x, Tx) — d(0,T0)|]}

1
= - =1
max{x—i— 6' ,
+ |z — 1] 1+ !
T — = x — xT—=|—x
6 ’ 6 ’
L 1—1—1 + ! 1
A x T- o .
We have the following cases:
1) € (0,75
. 1 1
M(:L‘,O):max{m—i— 6’—1, ‘+|:p—1],1+ 6'—3},
1/1 1
Sl R — -1 -
O )

5 7 7 7
= 2 2¢; - —2x;1 ) = = — 2
max<a:+6,6 '8 :c,> 5 T

115

So, relation (1) from Theorem 3 became In 1j- g < In (f — 2;10), which 1s true

for every x € (O, 112]
2) x € (12’6] M*(m 0) —max{2x+6,6 2x; 2:U+5 1}

M*(z,0) =2z + 2, so relation (1) from Theorem 3 became

which is true for every x € (% %}
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3) % <zx<1
M*(z,0) = max Z,§,z,z—x = Z,
6 666 6
and relation (1) from Theorem 3 is true
w2y
10 6 6

The second condition of Theorem 3 is satisfied by F(«), which is continuous,
Ya > 0.

Since the conditions of Theorem 3 are satisfied, then T has a unique fixed point
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