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Abstract

In this paper we investigate certain properties of a class of generalized
Bernstein type operators.
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1 Preliminaries

Let Bn : C[0, 1]→ C[0, 1] be the Bernstein operators, defined as follows:

(Bnf)(x) =

n∑
k=0

bn,k(x) · f
(k
n

)
, ∀f ∈ C[0, 1],

where

bn,k(x) =

(
n
k

)
· xk · (1− x)n−k.

In [1] the following Bernstein special operator have been introduced. Denote
by Vn the operators defined as:

Vn(f)(x) =
n∑

k=0

pn,k(x) · f
(k
n

)
where

pn,k(x) =
(

1 +
1

n

)n
·
(
n
k

)
· xk ·

( n

n+ 1
− x
)n−k

and

f ∈ C[0, 1], x ∈
[
0, 1− 1

n+ 1

]
, n ∈ N.
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Similarly, we introduce a generalization to Bernstein operator:

St
n : C[0, 1]→ C

[
0,

n

n+ t

]
, t > 0, n ∈ N,

St
n(f)(x) =

n∑
k=0

sn,k(x) · f
( k

n+ t

)
, ∀f ∈ C[0, 1], x ∈

[
0,

n

n+ t

]
, (1)

where

sn,k(x) =
(n+ t

n

)n
·
(
n
k

)
· xk ·

( n

n+ t
− x
)n−k

.

Operator St
n can be defined also on the space C

[
0, n

n+t

]
, and we denote a

function f ∈ C[0, 1] and his restriction to the interval
[
0, n

n+t

]
with the same

symbol.

2 Auxiliary results

Denote the monomial functions by ei(t) = ti, t ∈ R, i = 0, 1, 2, . . .. We use the
Pochhammer symbol: (a)r = a(a− 1) . . . (ar + 1), for a ∈ R, r ∈ N.

Proposition 1. Operator St
n satisfies the following relations:

i) St
n(f)(x) ≥ 0, if f ∈ C

[
0,

n

n+ t

]
, f ≥ 0.

ii) St
n(e0)(x) = 1;

iii) St
n(e1)(x) = x;

iv) St
n(e2)(x) = x

(n− 1

n
· x+

1

n+ t

)
,

where x ∈
[
0, 1− 1

n+ t

]
Proof. i) It is obvious by definition;
ii)

St
n(e0)(x) =

(n+ t

n

)n
·

n∑
k=0

( n

n+ t
− x
)n−k

· xk ·
(
n
k

)
· 1

=
(n+ t

n

)n
·
( n

n+ t

)n
= 1;

iii)

St
n(e1)(x) =

(n+ t

n

)n n∑
k=0

( n

n+ t
− x
)n−k

xk
(
n
k

)
· k

n+ t

=
(n+ t

n

)n
· x

n+ t
· n ·

( n

n+ t

)n−1
= x;
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iv)

St
n(e2)(x) =

(n+ t

n

)n
·

n∑
k=0

( n

n+ t
− x
)n−k

· xk ·
(
n
k

)
· k2

(n+ t)2

=
(n+ t

n

)n
· 1

(n+ t)2
· x2 · n · (n− 1) ·

( n

n+ t

)n−2
+

(n+ t

n

)n
· 1

(n+ t)2
· x · n ·

( n

n+ t

)n−1
=

n− 1

n
· x2 +

1

n+ t
· x = x

(n− 1

n
· x+

1

n+ t

)
.

Proposition 2. The following recurrence relation holds:

x
( n

n+ t
− x
)
s′n,k(x) = n ·

( k

n+ t
− x
)
sn,k(x).

Proof. We have:

x
( n

n+ t
− x
)
s′n,k(x)

= x ·
( n

n+ t
− x
)
·
(n+ t

n

)n
·
(
n
k

)
·
(
k · xk−1 ·

( n

n+ t
− x
)n−k

−xk · (n− k) ·
( n

n+ t
− x
)n−k−1)

= x ·
( n

n+ t
− x
)
·
(n+ t

n

)n
·
(
n

k

)
· xk−1 ·

( n

n+ t
− x
)n−k−1

×
(
k ·
( n

n+ t
− x
)
− x · (n− k)

)
=

(n+ t

n

)n
·
(
n

k

)
· xk ·

( n

n+ t
− x
)n−k k · n− n2 · x− n · t · x

n+ t

= n ·
( k

n+ t
− x
)
sn,k(x).

Theorem 1. Let be the m-th order moment for the operator (1) be defined by

µn,m(x) =

n∑
k=0

sn,k(x)
( k

n+ t
− x
)m

,m = 0, 1, 2, ...,

then we have:

i) µn,0(x) = 1;

ii) µn,1(x) = 0;
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iii) nµn,m+1(x) = x
( n

n+ t
− x
)(
µ′n,m(x) +mµn,m−1(x)

)
;

iv) µn,2(x) =
x

n

( n

n+ t
− x
)

;

v) µn,3(x) =
x

n

( n

n+ t
− x
)( 1

n+ t
− 2x

n

)
;

vi) µn,4(x) =
x

n

( n

n+ t
−x
)[ 1

n
·
( n

n+ t
−x
)
·
( 1

n+ t
− 4x

n
+3
)
− x
n

( 1

n+ t
− 2x

n

)]
.

Proof. i) It follows immediately from Proposition 1 - ii)
ii) From Proposition 1 - i), ii) we have

µn,1(x) = St
n(e1)(x)− xSt

n(e0)(x) = 0.

iii) First note that

µ′n(x) =
n∑

k=0

s′n,k(x)

(
k

n+ t
− x
)m

−m
n∑

k=0

sn,k(x)

(
k

n+ t
− x
)m−1

.

Then, using also Proposition 2 we obtain

x
( n

n+ t
− x
)(
µ′n,m(x) +mµn,m−1(x)

)
= x

( n

n+ t
− x
) n∑

k=0

s′n,k(x)

(
k

n+ t
− x
)m

= n
n∑

k=0

( k

n+ t
− x
)
sn,k(x)

(
k

n+ t
− x
)m

= nµn,m+1(x).

iv) Using i), ii) and iii), we have:

µn,2(x) =
x

n

( n

n+ t
− x
)

(µ′n,1(x) + µn,0(x)) =
x

n

( n

n+ t
− x
)
.

v) Using ii), iii) and iv), we have:

µn,3(x) =
x

n

( n

n+ t
− x
)

(µ′n,2(x) + 2µn,1(x)) =
x

n

( n

n+ t
− x
)( 1

n+ t
− 2x

n

)
.

vi) Using iii), iv) and v), we have:

µn,4(x) =
x

n

( n

n+ t
− x
)

(µ′n,3(x) + 3µn,2(x))

= µn,2(x)(µ′n,3(x) + 3µn,2(x))

= µn,2(x)
[ 1

n
·
( n

n+ t
− x
)
·
( 1

n+ t
− 4x

n
+ 3
)
− x

n

( 1

n+ t
− 2x

n

)]
.
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3 Convergence properties

Theorem 2. For all t > 0, f ∈ C[0, 1] and 0 < ε < 1, it is true the following:

lim
n→∞

St
n(f)(x) = f(x)

uniformly on [0, 1− ε].

Proof. There exists n0 ∈ N such that for all n ≥ n0,
n

n+ t
> 1− ε.

From Proposition 1 we have that limn→∞ S
t
n(ei)(x) = xi, i = 0, 1, 2 uniformly

on [0, 1 − ε]. Then we can apply Korovkin theorem for the sequence (St
n)n on

interval [0, 1− ε].

Next, we give a Voronovskaja-type theorem.

Theorem 3. Let be f ∈ C[0, 1] be a bounded function two times derivable at the
point x ∈ (0, 1). Then

lim
n→∞

n
[
St
n(f)(x)− f(x)

]
=
x(1− x)

2
f ′′(x).

Proof. Fix a point x ∈ (0, 1). Taylor expansion of f in point x leads to:

f(t) = f(x)− (t− x)f ′(x) +
(t− x)2

2
f ′′(x) + (t− x)2ηx(t− x), t ∈ [0, 1], (2)

where ηx is a bounded function having the property limh→0 ηx(h) = 0. Denote
σ(x, t) = (t− x)2ηx(t− x), t ∈ [0, 1].

We can choose an indice n0, such that n
n+t > x, for n ≥ n0. Applying operator

St
n for n ≥ n0 in (2) and taking into account Theorem 1 one obtains

St
n(f)(x) = f(x)µn,0(x) + f ′(x)µn,1(x) +

f ′′(x)

2
µn,2(x) + St

n(σ(x, ·))(x)

= f(x) +
(
− 1

n
x2 +

1

n+ t
x
)f ′′(x)

2
+ St

n(σ(x, ·))(x).

Then

lim
n→∞

n
[
St
n(f)(x)− f(x)

]
=
x(1− x)

2
f ′′(x) + lim

n→∞
n(St

nσ(x, ·))(x). (3)

Using Hölder inequality it follows

∣∣nSt
n(σ(x, ·))(x)

∣∣ = n

∣∣∣∣∣
n∑

k=0

( k

n+ t
− x
)2
ηx

( k

n+ t
− x
)
sn,k(x)

∣∣∣∣∣
≤ n

√√√√ n∑
k=0

sn,k(x)
( k

n+ t
− x
)4
·

n∑
k=0

sn,k(x)η2x

( k

n+ t
− x
)

= n
√
µn,4(x)

√
St
n((ηx)2)(x)
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From Theorem 1-vi) we obtain µn,4(x) = O
(

1
n2

)
. Then n

√
µn,4(x) = O(1).

On the other hand from Theorem 2 we have

lim
n→∞

St
n((ηx)2)(x) = ηx(x) = 0.

We deduce

lim
n→∞

n(St
nσ(x, ·))(x) = 0.

This finishes the proof.

4 Simultaneous approximations

We adopt this known definitions

Definition 1. A function g : I → R, I interval, is named convex of order r ≥ −1
if all the divided differences on r + 2 points in I are positive.

Hence o positive function is a convex function of order −1, an increasing
function is convex of order 0 and so on. In other words, for r ≥ 0 if f ∈ Cr+1(I)
, then f is convex of order r iff f (r+1) ≥ 0.

Definition 2. A linear operator is named convex operator of order r, r ≥ −1 if
it transforms any r convex function into a r-convex function.

The following property is essential for proving the existence of the simultaneous
approximation.

Theorem 4. Operators St
n is convex of order r − 1, ∀r ∈ [0, n].

Proof. It suffices to prove that we have St
n(f)(r) ≥ 0, ∀f ∈ Cr

[
0,

n

n+ t

]
, such that

f (r) ≥ 0, because if f is convex of order r − 1 on I, there is g ∈ C(r)
[
0,

n

n+ t

]
,

such that g coincides with f on the knots k
n+1 , 0 ≤ k ≤ n and we ca take g instead

of f .

For r = 0, the affirmation is true from Proposition 1 - i).

Let be r ≥ 1 and a function f ∈ Cr
[
0,

n

n+ t

]
such that f (r) ≥ 0.

We use formula:

s′n,k(x) (4)

= (n+ t)
[
sn−1,k−1

((n− 1)(n+ t)

n(n+ t− 1)
x
)
−sn−1,k

((n− 1)(n+ t)

n(n+ t− 1)
x
)]
, 0 ≤ k ≤ n.

Here we made the convention sn,−1(t) = 0 and sn,n+1(t) = 0, for any t and
n ≥ 1.

We denote by ∆hf(x) := f(x+ h)− f(h) and by ∆r
h, the r-th iterate of ∆h.
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From formula (4). We have:

(St
n(f))′(x)

=
n−1∑
k=0

(n+ t)
[
sn−1,k−1

((n− 1)(n+ t)

n(n+ t− 1)
x
)
− sn−1,k

((n− 1)(n+ t)

n(n+ t− 1)
x
)]
f
( k

n+ t

)
= (n+ t)

n−1∑
k=0

sn−1,k

((n− 1)(n+ t)

n(n+ t− 1)
x
)[
f
(k + 1

n+ t

)
− f

( k

n+ t

)]
= (n+ t)

n−1∑
k=0

sn−1,k

((n− 1)(n+ t)

n(n+ t− 1)
x
)

∆ 1
n+t

f
( k

n+ t

)
. (5)

Now we apply induction. Suppose that the following is true:

(St
n(f))(r)(x) = (n+ t)r

n−r∑
k=0

sn−r,k

((n− 1)r(n+ t)r
(n)r(n+ t− 1)r

x
)

∆r
1

n+t

f
( k

n+ t

)
, (6)

where (n+ t)r is the Pochhammer symbol.

Taking the derivative in (6) an using formula (5) we obtain:(
St
n(f))(r)(x)

)′
= (n+ t)r

n−r−1∑
k=0

(n− r + t)sn−r−1,k

((n− 1)r(n+ t)r
(n)r(n+ t− 1)r

(n− r − 1)(n− r + t)

(n− r)(n− r + t− 1)
x
)

×∆ 1
n+t

(
∆r

1
n+t

f
( k

n+ t

))
= (n+ t)r+1

n−r−1∑
k=0

sn−r−1,k

((n− 1)r+1(n+ t)r+1

(n)r+1(n+ t− 1)r+1
x
)
x
)

∆r+1
1

n+t

f
( k

n+ t

)
.

So, relation (6) was proved.

Now if f is convex of order r− 1 then all the finite differences ∆r
1

n+t

f
( k

n+ t

)
are positive. Then from formula (6) one obtains that (St

n(f))′ ≥ 0. This means
that St

n is convex of order r.

The study of simultaneous approximation is based on the use of Kantorovich
operators of higher order. First we prove the following additional theorems.

Theorem 5. Writing Tn,r(x) = St
n(er)(x), we have:

Tn,r+1(x) = x · Tn,r(x) +
x

n

( n

n+ t
− x
)
T ′n,r(x).

Proof. Using Proposition 2, we obtain
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x
( n

n+ t
− x
)
T ′n,r(x) = x

( n

n+ t
− x
) n∑

k=0

s′n,k(x)
( k

n+ t

)r
= n

n∑
k=0

( k

n+ t
− x
)
sn,k(x)

( k

n+ t

)r
= n

( n∑
k=0

sn,k(x)
( k

n+ t

)r+1
− x

n∑
k=0

sn,k(x)
( k

n+ t

)r)
= nTn,r+1(x)− nxTn,r(x).

From this it results

Tn,r+1(x) =
1

n

( n

n+ t
− x
)
T ′n,r(x) + xTn,r(x).

Theorem 6. For n ≥ 1, r ≥ 0, x ∈ [0, 1], we have:

Tn,r(x) = An,rx
r +Bn,rx

r−1 + Cn,rx
r−2 +Rn,r(x)

where

An,r =
(n− 1)r−1
nr−1

,

Bn,r =
r(r − 1)

2
· (n− 1)r−2
nr−2(n+ t)

,

Cn,r =
r(r − 1)(r − 2)(3r − 5)

24
· (n− 1)r−3
nr−3(n+ t)2

and Rn,r is a polynomial of degree r − 3.

Proof. From relation

Tn,r+1(x) = x
(
An,rx

r +Bn,rx
r−1 + Cn,rx

r−2 +Rn,r(x)
)

+
x

n

( n

n+ t
− x
)(
rAn,rx

r−1 + (r − 1)Bn,rx
r−2

+(r − 2)Cn,rx
r−3 +Rn,r−1(x)

)
,

by identifying the coefficients, we obtain:

An,r+1 =
n− r
n
·An,r;

Bn,r+1 =
n− r + 1

n
·Bn,r +

r

n+ t
·An,r;
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Cn,r+1 =
n− r + 2

n
· Cn,r +

r − 1

n+ t
·Bn,r.

Using Proposition 1 and Theorem 5 one obtains

Tn,1(x) = x

Tn,2(x) =
n− 1

n
· x2 +

1

n+ t
· x

and then

Tn,3(x) = x · Tn,2(x) +
x

n

( n

n+ t
− x
)
T ′n,2(x)

=
(n− 1)(n− 2)

n2
x3 +

3(n− 1)

n(n+ t)
x2 +

x

(n+ t)2
.

Then

An,3 =
(n− 1)(n− 2)

n2
, Bn,3 =

3(n− 1)

n(n+ t)
, Cn,3 =

1

n(n+ t)
.

So that Theorem is true for Theorem is true for r = 1, 2, 3.
Further suppose by induction that Theorem is true for r. Then applying the

relations of recurrence one obtains:

An,r+1 =
n− r
n
·An,r =

n− r
n
· (n− 1)r−1

nr−1

=
(n− 1)r
nr

.

Bn,r+1 =
n− r + 1

n
·Bn,r +

r

n+ t
·An,r

=
n− r + 1

n
· r(r − 1)

2
· (n− 1)r−2
nr−2(n+ t)

+
r

n+ t
· (n− 1)r−1

nr−1

=
(n− 1)r−1
nr−1(n+ t)

(r(r − 1)

2
+ r
)

=
r(r + 1)

2
· (n− 1)r−1
nr−1(n+ t)

Cn,r+1 =
n− r + 2

n
· Cn,r +

r − 1

n+ t
·Bn,r

=
n− r + 2

n
· r(r − 1)(r − 2)(3r − 5)

24
· (n− 1)r−3
nr−3(n+ t)2

+
r − 1

n+ t
· r(r − 1)

2
· (n− 1)r−2
nr−2(n+ t)

=
(n− 1)r−2
nr−2(n+ t)2

·
(r(r − 1)(r − 2)(3r − 5)

24
+
r(r − 1)2

2

)
=

(r + 1)r(r − 1)(3r − 2)

24
· (n− 1)r−2
nr−2(n+ t)2
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The main result is the following

Theorem 7. For any function f ∈ Cr[0, 1], r ≥ 1 any t > 0 and ε > 0 we have

lim
n→∞

(St
n(f)(x))(r) = f (r)(x), uniformly for x ∈ [0, 1− ε]. (7)

Proof. We take n ∈ N, such that n
n+t ≤ 1− ε and n > r.

For r ∈ N, we denote the derivative operator of order r, by

Dr(f)(x) = f (r)(x), f ∈ Cr[0, 1], x ∈ [0, 1]. (8)

The antiderivative operator of degree r, is defined by

Jr(f)(x) =

∫ x

0

(x− u)r−1

(r − 1)!
f(u)du, f ∈ C[0, 1]. (9)

Consider be the Kantorovich operator of order r attached to St
n, namely

Kn,r(f)(x) =
(
Dr ◦ St

n ◦ Jr
)

(f)(x). (10)

Let show that operator Kn,r is positive. If g ∈ C
[
0, n

n+t

]
is positive then Jr(g)

has the derivative of order r positive and hence all the divided differences on r+1
points are positive. In particular his finite differences on r + 1 point are positive.
If in formula (6) we replace function f by function Jr(g) one obtains

(St
n(Jr(g)))(r)(x) = (n+ t)r

n−r∑
k=0

sn−r,k

((n− 1)r(n+ t)r
(n)r(n+ t− 1)r

x
)

∆r
1

n+t

Jr(g)
( k

n+ t

)
≥ 0.

But if this is equivalent with the condition that Kn,r is positive operator.

Using (8),(9),(10), we deduce

Dr(St
n)(f) = Kn,r(f

(r)), ∀f ∈ C
[
0,

n

n+ t

]
. (11)

So that, in order to prove the theorem it suffices to show that the sequence of
operators (Kn,r)n satisfies the conditions of the theorem of Korovkin.

We begin with the following relation, which are true for any x ∈ [0, 1]:

Jr(e0)(x) =
xr

r!

Jr(e1)(x) =
xr+1

(r + 1)!
.

Jr(e2)(x) = 2 · xr+2

(r + 2)!
.
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Consequently,

Kn,r(e0)(x) =
(
St
n

(er
r!

)
(x)
)(r)

=
1

r!

(
An,rx

r +Bn,rx
r−1 + Cn,rx

r−2 +Rn,r(x)
)(r)

= An,r,

Kn,r(e1)(x) =
(
St
n

( er+1

(r + 1)!

)
(x)
)(r)

=
1

(r + 1)!

(
An,r+1x

r+1 +Bn,r+1x
r + Cn,r+1x

r−1 +Rn,r+1(x)
)(r)

= An,r+1 · x+
1

r + 1
·Bn,r+1,

Kn,r(e2)(x) =
(
St
n

( 2 · er+2

(r + 2)!

)
(x)
)(r)

=
2

(r + 2)!

(
An,r+2x

r+2 +Bn,r+2x
r+1 + Cn,r+2x

r +Rn,r+2(x)
)(r)

= An,r+2 · x2 +
2

r + 2
·Bn,r+2 · x+

2r!

(r + 2)!
+ Cn,r+2.

Since

lim
n→∞

An,s = 1, ∀s ≥ 1

lim
n→∞

Bn,s = 0, ∀s ≥ 2

lim
n→∞

Cn,s = 0, ∀s ≥ 3

it results

lim
n→∞

Kn,r(ej)(x) = ej(x), uniformly on [0, 1− ε], for j = 0, 1, 2. (12)
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