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RESULT ON UNIQUENESS OF ENTIRE FUNCTIONS
RELATED TO DIFFERENTIAL-DIFFERENCE POLYNOMIAL

Sujoy MAJUMDER∗,1 and Jeet SARKAR2

Abstract

In the paper, we use the idea of normal family to investigate the unique-
ness problems of entire functions when certain types of differential-difference
polynomials generated by them sharing a non-zero polynomial. Also we ex-
hibit one example to show that the conditions of our results are the best
possible.
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1 Introduction, definitions and results

In the paper by meromorphic functions we shall always mean meromorphic
functions in C. We adopt the standard notations of value distribution theory (see
[6]). For a non-constant meromorphic function f , we denote by T (r, f) the Nevan-
linna characteristic of f and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)}
as r →∞ possibly outside a set of finite linear measure. A meromorphic function
a is called a small function with respect to f , if T (r, a) = S(r, f). The order of f
is denoted and defined by

ρ = ρ(f) = lim sup
r−→∞

log T (r, f)

log r
.

For a ∈ C ∪ {∞}, we define

δ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
.
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Let f and g be two non-constant meromorphic functions. Let a be a small function
with respect to f and g. We say that f and g share a CM (counting multiplicities)
if f−a and g−a have the same zeros with the same multiplicities and we say that
f and g share a IM (ignoring multiplicities) if we do not consider the multiplicities.

Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all
a-points of f where an a-point of multiplicity m is counted m times if m ≤ k and
k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f and g share a with
weight k. We write f and g share (a, k) to mean that f and g share a with weight
k. Also we note that f and g share a IM or CM if and only if f and g share (a, 0)
or (a,∞) respectively.

Let b be a small function of both f and g. We denote by NE(r, f = b = g)
the reduced counting function of the common zeros of f − b and g − b with the
same multiplicities. We say that f and g share (b,∞)∗ if

N(r, b; f)−NE(r, f = b = g) = O(log r) as r →∞
and N(r, b; g)−NE(r, f = b = g) = O(log r) as r →∞.

Let f be a transcendental meromorphic function and n ∈ N. Many authors have
investigated the value distributions of fnf ′. In 1959, W. K. Hayman (see [5],
Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and n ∈ N such
that n ≥ 3. Then fnf ′ = 1 has infinitely many solutions.

The case n = 2 was settled by Mues [11] in 1979. Bergweiler and Eremenko
[1] showed that ff ′ − 1 has infinitely many zeros.

For an analogue of the above result, Laine and Yang [7] investigated the value
distribution of difference products of entire functions in the following manner.

Theorem B. Let f be a transcendental entire function of finite order, n ∈ N and
c ∈ C\{0}. Then for n ≥ 2, fn(z)f(z+c) assumes every non-zero value infinitely
often.

In 2010, X. G. Qi, L. Z. Yang and K. Liu [13] proved the following uniqueness
result.

Theorem C. Let f and g be two transcendental entire functions of finite order,
η ∈ C \ {0} and n ∈ N such that n ≥ 6. If fn(z)f(z + η) and gn(z)g(z + η)
share (1,∞), then either fg = t1 or f = t2g for t1, t2 ∈ C \ {0} such that
tn+1
1 = tn+1

2 = 1.

Let

P (z) = anz
n + an−1z

n−1 + . . .+ a0 (1.1)

be a non zero polynomial, where an( 6= 0), an−1, . . . , a0 are complex constants. We
denote Γ1,Γ2 by Γ1 = m1 + m2,Γ2 = m1 + 2m2 respectively, where m1 is the
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number of simple zeros of P (z) and m2 is the number of multiple zeros of P (z).
Let d = gcd(λ0, λ1, . . . , λn), where λi = n+ 1 if ai = 0, λi = i+ 1 if ai 6= 0.

In 2011, L. Xudan and W. C. Lin [16] considered the zeros of one certain type
of difference polynomial and obtained the following result.

Theorem D. Let f be a transcendental entire function of finite order and η ∈
C\{0}. Then for n > Γ1, P (f(z))f(z+η)−α(z) = 0 has infinitely many solutions,
where α(z)(6≡ 0) is a small function with respect to f .

In the same paper the authors also proved the following uniqueness result
corresponding to Theorem D.

Theorem E. Let f and g be two transcendental entire functions of finite order,
η ∈ C\{0} and n ∈ N such that n > 2Γ2+1. If P (f(z))f(z+η) and P (g(z))g(z+η)
share (1,∞), then one of the following cases hold:

(i) f ≡ tg, where td = 1;

(ii) R(f, g) ≡ 0 where R(w1, w2) = P (w1)w1(z + η)− P (w2)w2(z + η);

(iii) f = eα and g = eβ, where α, β are non-constant polynomials and α + β =
c ∈ C satisfying a2

ne
(n+1)c = 1.

We recall the following example due to L. Xudan and W. C. Lin [16].

Example 1. Let P (z) = (z−1)6(z+1)6z11, f(z) = sin z, g(z) = cos z and η = 2π.
It is easily seen that n > 2Γ2+1 and P (f(z))f(z+η) ≡ P (g(z))g(z+η). Therefore
P (f(z))f(z+η) and P (g(z))g(z+η) share 1 CM. It is also clear that R(f, g) ≡ 0,
where R(w1, w2) = P (w1)w1(z + η)− P (w2)w2(z + η) but f 6≡ tg for t ∈ C \ {0}
satisfying tm = 1, where m ∈ Z+.

From the above example, we see that f and g do not share (0,∞). Regarding
this one may ask the following question.

Question 1. What can be said about the relationship between f and g, if f and
g share (0,∞) in Theorem E ?

Keeping the above question in mind, recently W. L. Li and X. M. Li [8] proved
the following results.

Theorem F. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,∞), η ∈ C \ {0} and n ∈ N such that n > 2Γ2 + 1. If
P (f(z))f(z + η) and P (g(z))g(z + η) share (1,∞), then one of the following two
cases hold:

(i) f ≡ tg, where td = 1;

(ii) f = eα and g = ce−α, where α is a non-constant polynomial and c ∈ C\{0}
satisfying a2

nc
n+1 = 1.
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Theorem G. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,∞), η ∈ C\{0} and n ∈ N such that n > 3Γ1 +2Γ2 +4.
If P (f(z))f(z+ η) and P (g(z))g(z+ η) share (1, 0), then one of the following two
cases hold:

(i) f ≡ tg, where td = 1;

(ii) f = eα and g = ce−α, where α is a non-constant polynomial and c ∈ C\{0}
satisfying a2

nc
n+1 = 1.

Regarding Theorems F and G, P. Sahoo and S. Seikh [14] asked the following
question.

Question 2. What happen if one consider the difference polynomials of the form
(P (f(z))f(z + η))k, where k ∈ N ∪ {0} ?

Keeping the above question in mind, in 2016, P. Sahoo and S. Seikh [14] proved
the following results.

Theorem H. Let f be a transcendental entire function with finite order and
α(z)(6≡)0 be a small function with respect to f . Let η ∈ C \ {0}, k ∈ N ∪ {0} and
n ∈ N. Then for n > Γ1 +km2, (P (f(z))f(z+η))k−α(z) = 0 has infinitely many
solutions.

Theorem I. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,∞) and η ∈ C \ {0}. Let k ∈ N ∪ {0} and n ∈ N such
that n > 2Γ2 + 2km2 + 1. If P (f(z))f(z + η) and P (g(z))g(z + η) share (1,∞),
then one of the following two cases hold:

(i) f ≡ tg, where td = 1;

(ii) f = eα and g = ce−α, where α is a non-constant polynomial and c ∈ C\{0}
satisfying a2

nc
n+1 = 1.

Theorem J. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,∞) and η ∈ C \ {0}. Let k ∈ N ∪ {0} and n ∈ N such
that n > 3Γ1 + 2Γ2 + 5km2 + 4. If P (f(z))f(z + η) and P (g(z))g(z + η) share
(1, 0), then one of the following two cases hold:

(i) f ≡ tg, where td = 1;

(ii) f = eα and g = ce−α, where α is a non-constant polynomial and c ∈ C\{0}
satisfying a2

nc
n+1 = 1.

In 2017, S. Majumder and R. Mandal [10] executed some errors in the proof of
Theorems I and J which were discussed in Section 1 [10]. Also in the same paper
S. Majumder and R. Mandal [10] asked the following question.

Question 3. Can one replace the condition “f and g share (0,∞)” in Theorems
I and J by weaker one ?
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Keeping the above question in mind, S. Majumder and R. Mandal [10] obtained
the following results which not only rectified Theorems I and J but also improved
and generalized Theorems I and J.

Theorem K. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,∞)∗, cj ∈ C (j = 1, 2, . . . , s) be distinct and let
k ∈ N ∪ {0}, n ∈ N, µj ∈ N ∪ {0} (j = 1, 2, . . . , s) such that n > 2Γ2 + 2km2 + σ,
where σ =

∑s
j=1 µj > 0. Suppose that P has at least one zeros of multiplicities at

least k + 1 and δ(0; f) > 0 when k ≥ 1. If (P (f(z))
∏s
j=1(f(z + cj))

µj )(k) − p(z)
and (P (g(z))

∏s
j=1(g(z + cj))

µj )(k) − p(z) share (0, 2), where p(z) is a non-zero
polynomial with deg(p) ≤ n+ σ − 1, then one of the following cases hold.

(i) f(z) ≡ tg(z) for t ∈ C \ {0} such that td = 1, where d is the GCD of the
elements of J , J = {p ∈ I : ap 6= 0} and I = {σ, σ + 1, . . . , n+ σ}.

(ii) If k = 0, then f(z) = eα(z) and g(z) = te−α(z) where α(z) is a non-constant
polynomial and t ∈ C \ {0} such that a2

nt
n+σ = c2.

(iii) If p 6∈ C, then f(z) = eα(z) and g(z) = eβ(z), where α and β are two non-
constant polynomials such that nα(z)+

∑s
j=1 µjα(z+ cj) = c

∫ z
0 p(z)dz+ b1,

nβ(z) +
∑s

j=1 µjβ(z + cj) = −c
∫ z

0 p(z)dz + b2, b1, b2, c(6= 0) ∈ C such that

c2a2
ne
b1+b2 = −1.

(iv) If p(z) ≡ b ∈ C\{0}, then f(z) = c1e
dz and g(z) = c2e

−dz, where c1, c2, d( 6=
0) ∈ C such that (−1)ka2

n(c1c2)n+σ(d(n+ σ))2k = b2.

Theorem L. Under the same situation in Theorem K if further n > 1
2Γ1 + 2Γ2 +

3
2km2 + 3

2σ and (P (f(z))
∏s
j=1(f(z + cj))

µj )(k) − p(z) and (P (g(z))
∏s
j=1(g(z +

cj))
µj )(k) − p(z) share (0, 1), then conclusions of Theorem K hold.

Theorem M. Under the same situation in Theorem K if further n > 3Γ1 +2Γ2 +
5km2 + 4σ and (P (f(z))

∏s
j=1(f(z + cj))

µj )(k) − p(z) and (P (g(z))
∏s
j=1(g(z +

cj))
µj )(k) − p(z) share (0, 0), then conclusions of Theorem K hold.

Remark 1. It is easy to see that the conditions “f and g share (0,∞)∗” and
“δ(0; f) > 0” in Theorem K are sharp by the following example.

Example 2. [16] Let P (z) = (z − 1)6(z + 1)6z11, f(z) = sin z, g(z) = cos z and
η = 2π. Clearly f and g do not share (0,∞)∗ and δ(0; f) = 0. Also it is easily seen
that n > 2Γ2+2km2+1 and (P (f(z))f(z+η))(k) ≡ (P (g(z))g(z+η))(k). Therefore
(P (f(z))f(z + η))(k) and (P (g(z))g(z + η))(k) share (1,∞), but conclusions of
Theorem K do not hold.

Theorems K, L and M suggest the following questions as an open problems.

Question 4. Can one remove the condition “deg(p) ≤ n + σ − 1” in Theorems
K-M ?
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Question 5. Can one deduce generalized results in which Theorems K-M will be
included ?

Throughout the paper we use the following notations:
For two transcendental entire functions f , g and c0 ∈ C, we define f1(z) = f(z)−c0

and g1(z) = g(z)− c0. For z1 = z − c0, we define

P (z) =
n∑
i=0

ai(z − c0 + c0)i =
n∑
i=0

ai(z1 + c0)i

= a1,nz
n
1 + a1,n−1z

n−1
1 + . . .+ a1,0 = P1(z1), say

where a1,i ∈ C (i = 0, 1, . . . , n) and a1,n = an. Also throughout the paper
we define F1(z) =

∏s
j=1(f(z + cj) − c0)µj =

∏s
j=1(f1(z + cj))

µj and G1(z) =∏s
j=1(g(z + cj) − c0)µj =

∏s
j=1(g1(z + cj))

µj , where cj ∈ C \ {0} are distinct for
j = 1, 2, . . . , s and µj ∈ N ∪ {0} such that σ =

∑s
j=1 µj > 0.

2 Main results

Now taking the possible answers of the above Questions 4 and 5 into backdrop
we obtain the following results.

Theorem 1. Let f and g be two transcendental entire functions of finite order
such that f and g share (c0,∞)∗, where c0 ∈ C and let k ∈ N∪{0} and n ∈ N such
that n > 2Γ2 +2km2 +σ. Suppose that P1 has at least one zeros of multiplicities at
least k+1 and δ(c0; f) > 0 when k ≥ 1. If (P1(f1)F1)(k)−p and (P1(g1)G1)(k)−p
share (0, 2), where p is a non-zero polynomial, then one of the following cases
hold.

(1) f − c0 ≡ t(g − c0) for t ∈ C \ {0} such that td = 1, where d = gcd(σ + p :
p ∈ {0, 1, . . . , n} with a1,p 6= 0).

(2) when p 6∈ C, then one of the following cases holds.

(2)(i) f(z)−c0 = eα(z) and g(z)−c0 = eβ(z), where α and β are non-constant
polynomials such that nα(z) +

∑s
j=1 µjα(z + cj) = c

∫ z
0 p(z)dz + b1,

nβ(z) +
∑s

j=1 µjβ(z + cj) = −c
∫ z

0 p(z)dz + b2, b1, b2, c( 6= 0) ∈ C such

that c2a2
ne
b1+b2 = −1;

(2)(ii) f(z)−c0 = h(z)eaz and g(z)−c0 = th(z)e−az, where h is a non-constant
polynomial and a, t ∈ C\{0} such that a2

nt
n+σh2n(z)(

∏s
j=1 h(z+cj))

2 ≡
p2(z).

(3) when p(z) ≡ b, then one of the following cases holds.

(3)(i) f(z) − c0 = eα(z) and g(z) − c0 = te−α(z) where α is a non-constant
polynomial and t ∈ C \ {0} such that a2

nt
n+σ = b2;

(3)(ii) f(z) − c0 = c1e
d1z and g(z) − c0 = c2e

−d1z, where c1, c2, d1 ∈ C \ {0}
such that (−1)ka2

n(c1c2)n+σ(d1(n+ σ))2k = b2.
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Theorem 2. Under the same situation in Theorem 1 if further n > 1
2Γ1 + 2Γ2 +

3
2km2 + 3

2σ and (P1(f1)F1)(k)− p and (P1(g1)G1)(k)− p(z) share (0, 1), then con-
clusions of Theorem 1 hold.

Theorem 3. Under the same situation in Theorem 1 if further n > 3Γ1 + 2Γ2 +
5km2+4σ and (P1(f1)F1)(k)−p and (P1(g1)G1)(k)−p share (0, 0), then conclusions
of Theorem 1 hold.

Remark 2. It is easy to see that the conditions “f and g share (c,∞)∗” and
“δ(c; f) > 0” in Theorem 1 are sharp by the following example.

Example 3. Let f(z) = sin z + c, g(z) = cos z + c, P1(z) = (z − c− 1)6(z − c+
1)6(z − c)11 and η = 2π. Clearly f and g do not share (c,∞)∗. Note that

f(z) = sin z + c =
e2ı̇z − 1

2ı̇eı̇z
+ c =

e2ı̇z + 2cı̇eı̇z − 1

2ı̇eı̇z
=

(eı̇z − α)(eı̇z − β)

2ı̇eı̇z
, say.

Clearly α, β 6= 0. Also we have T (r, f) = 2 T (r, eı̇z) + S(r, eı̇z). Since eı̇z 6=
0,∞, it follows that N(r, α; eı̇z) ∼ T (r, eı̇z) and N(r, β; eı̇z) ∼ T (r, eı̇z). Therefore
N(r, c; f) = N(r, α; eı̇z) +N(r, β; eı̇z) ∼ 2 T (r, eı̇z). Consequently

δ(c; f) = 1− lim sup
r−→∞

N(r, c; f)

T (r, f)
= 1− lim sup

r−→∞

N(r, α; eı̇z) +N(r, β; eı̇z)

2T (r, eı̇z) + S(r, eı̇z)

= 1− lim sup
r−→∞

2T (r, eı̇z)

2T (r, eı̇z) + S(r, eı̇z)
= 0.

Also we see that n > 2Γ62 + 2km62 + 1 and
(
P1(f(z) − c)(f(z + η) − c)

)(k) ≡(
P1(g(z) − c)(g(z + η) − c

)(k)
. Therefore

(
P1(f(z) − c)(f(z + η) − c)

)(k)
and(

P1(g(z)− c)(g(z + η)− c)
)(k)

share (1,∞), but the conclusions of Theorem 1 do
not hold.

3 Lemmas

Let h be a meromorphic function in C. Then h is called a normal function if
there exists a positive real number M such that h#(z) ≤M ∀ z ∈ C, where

h#(z) =
|h′(z)|

1 + |h(z)|2

denotes the spherical derivative of h.
Let F be a family of meromorphic functions in a domain D ⊂ C. We say

that F is normal in D if every sequence {fn}n ⊆ F contains a subsequence which
converges spherically and uniformly on the compact subsets of D (see [15]).

For two non-constant entire functions F and G we define the auxiliary function
H as follows

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(

G′′

G′
− 2G′

G− 1

)
. (3.1)
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Lemma 1. [17] Let f be a non-constant meromorphic function and let an( 6≡ 0),
an−1, ... , a0 be meromorphic functions such that T (r, ai) = S(r, f) for i =
0, 1, 2, ..., n. Then T (r, anf

n + an−1f
n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2. [3] Let f be a meromorphic function of finite order ρ and let c ∈ C\{0}
be fixed. Then for each ε > 0, we have

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O

(
rρ−1+ε

)
.

Lemma 3. [4] Let f be a non-constant meromorphic function of finite order and
c ∈ C. Then

N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f)

and N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f).

Lemma 4. Let f be a transcendental entire function of finite order and n ∈ N.
Then for each ε > 0, we have T (r, P1(f1)F1) = (n+ σ) T (r, f1) +O(rρ−1+ε).

Proof. Proof follows directly from Lemma 2.6 [10].

Lemma 5. [9] Let h be a non-constant meromorphic function such that N(r, 0;h)+
N(r,∞;h) = S(r, h). Let f = a0h

p+a1h
p−1+. . .+ap and g = b0h

q+b1h
q−1+. . .+bq

be polynomials in h with co-efficients a0, a1, . . . , ap, b0, b1, . . . , bq being small func-
tions of h and a0b0ap 6= 0. If q ≤ p, then m

(
r, gf
)

= S(r, h).

Lemma 6. Let f and g be two transcendental entire functions of finite order,

k ∈ N ∪ {0} and n ∈ N such that n > 2Γ1 + 2km2 + σ. Let F = (P1(f1)F1)(k)

α and

G = (P1(g1)G1)(k)

α , where α is a small function of f and g. If H ≡ 0, then one of
the following two cases holds.

(i) (P1(f1)F1)µj )(k) ≡ (P1(g1)G1)(k),

(ii) (P1(f1)F1)(k)(P1(g1)G1)(k) ≡ α2,
where (P1(f1)F1)(k) − α and (P1(g1)G1)(k) − α share (0,∞).

Proof. Proof follows directly from Lemma 2.8 [10].

Lemma 7. Let f and g be two transcendental entire functions of finite order
such that f and g share (c0,∞)∗. Let k ∈ N ∪ {0} and n ∈ N such that n >
2m1 + 2km2 + σ. If (P1(f1)F1)(k) ≡ (P1(g1)G1)(k), then f − c0 ≡ t(g − c0) for
t ∈ C\{0} such that td = 1, where d = gcd(σ+p : p ∈ {0, 1, . . . , n} with a1,p 6= 0).

Proof. Suppose (P1(f1)F1)(k) ≡ (P1(g1)G1)(k). Using Lemma 2.9 [10], one can
easily obtain

P1(f1(z))
s∏
j=1

(f1(z + cj))
µj ≡ P1(g1(z))

s∏
j=1

(g1(z + cj))
µj . (3.2)



Results on uniqueness of entire functions related to..... 631

Let h = f1
g1

. Now by putting f1 = hg1 into (3.2), we get

a1,ng
n
1 (z)

hn(z)
s∏
j=1

(h(z + cj))
µj − 1

 (3.3)

+a1,n−1g
n−1
1 (z)

hn−1(z)
s∏
j=1

(h(z + cj))
µj − 1

+ . . .

+a1,1g1(z)

h(z)

s∏
j=1

(h(z + cj))
µj − 1

+ a1,0

 s∏
j=1

(h(z + cj))
µj − 1

 ≡ 0.

First we suppose h ∈ C \ {0}. Now from (3.3), we get

a1,ng
n
1

(
hn+σ − 1

)
+ a1,n−1g

n−1
1

(
hn+σ−1(z)− 1

)
+

. . .+ a1,1g1

(
hσ+1 − 1

)
+ a1,0 (hσ − 1) ≡ 0,

which implies that hd = 1, where d = gcd(σ + p : p ∈ {0, 1, . . . , n} with a1,p 6= 0).
Thus f − c0 ≡ t(g − c0) for a constant t such that td = 1, where d = gcd(σ + p :
p ∈ {0, 1, . . . , n} with a1,p 6= 0).
Next we suppose h 6∈ C. Since f1 and g1 share (0,∞)∗, it follows that h is a
non-constant meromorphic function such that N(r, 0;h) + N(r,∞;h) = O(log r)
as r → ∞. Also we note that ρ(h) ≤ max{ρ(f), ρ(g)} < ∞, i.e., h is of finite
order.
Suppose that h is a rational function. Let P1(f1) = a1,nf

n
1 . Then from (3.3), we

get

hn(z)

s∏
j=1

(h(z + cj))
µj ≡ 1, i.e., hn(z) =

1∏s
j=1(h(z + cj))µj

. (3.4)

Let

h =
h1

h2
, (3.5)

where h1 and h2 are two nonzero relatively prime polynomials. From (3.5), we
have

T (r, h) = max{deg(h1),deg(h2)} log r +O(1). (3.6)

Now from (3.4), (3.5) and (3.6), we have

n max{deg(h1), deg(h2)} log r (3.7)

= T (r, hn) +O(1)

≤ T (r,
s∏
j=1

(h(z + cj))
µj ) +O(1)

≤ σ max{deg(h1), deg(h2)} log r +O(1).
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We see that max{deg(h2),deg(h3)} ≥ 1. Since n > σ, we arrive at a contradiction
from (3.7).
Let P1(f1) 6≡ a1,nf

n
1 . Suppose a1,p is the last non-vanishing term of P1(z1), where

p ∈ {0, 1, . . . , n− 1}. Then from (3.3), we have

a1,ng
n−p
1 (z)

hn(z)
s∏
j=1

(h(z + cj))
µj − 1

 (3.8)

+a1,n−1g
n−p−1
1 (z)

hn−1(z)
s∏
j=1

(h(z + cj))
µj − 1

+ . . .

+a1,p+1g1(z)

hp+1(z)
s∏
j=1

(h(z + cj))
µj − 1


≡ −a1,p

hp(z) s∏
j=1

(h(z + cj))
µj − 1

 .

Now from Lemma 1 and (3.8), we get (n − p) T (r, g1) = S(r, g1), which is a
contradiction.
Next we suppose that h is a transcendental meromorphic function. We claim that

hn(z)

s∏
j=1

(h(z + cj))
µj 6≡ 1.

If not, suppose

hn(z)

s∏
j=1

(h(z + cj))
µj ≡ 1, i.e., hn(z) =

1∏s
j=1(h(z + cj))µj

. (3.9)

Now by Lemmas 1, 2 and 3, we get

n T (r, h) = T (r, hn) + S(r, h)

= T

(
r,

1∏s
j=1(h(z + cj))µj

)
+ S(r, h)

≤
s∑
j=1

µjN(r, 0;h(z + cj)) +
s∑
j=1

µj m

(
r,

1

h(z + cj)

)
+ S(r, h)

≤
s∑
j=1

µj N(r, 0;h(z)) +

s∑
j=1

µj m

(
r,

1

h(z)

)
+ S(r, h)

≤ σ T (r, h) + S(r, h),

which is a contradiction.
Let P1(f1) = a1,nf

n
1 . Then from (3.3), we get hn(z)

∏s
j=1(h(z+ cj))

µj ≡ 1, which
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is a contradiction.
Let P1(f1) 6≡ a1,nf

n
1 . Suppose a1,p is the last non-vanishing term of P1(z1), where

p ∈ {0, 1, . . . , n− 1}. Then from (3.8), we have

a1,n−1g
n−p−1
1 (z)

hn−1(z)
∏s
j=1(h(z + cj))

µj − 1

hn(z)
∏s
j=1(h(z + cj))µj − 1

+ . . . (3.10)

+a1,p+1g1(z)
hp+1(z)

∏s
j=1(h(z + cj))

µj − 1

hn(z)
∏s
j=1(h(z + cj))µj − 1

+a1,p

hp(z)
∏s
j=1(h(z + cj))

µj − 1

hn(z)
∏s
j=1(h(z + cj))µj − 1

≡ −a1,ng
n−p
1 ,

where p ∈ {0, 1, . . . , n− 1}. Let

Hi(z) =
hi(z)

∏s
j=1(h(z + cj))

µj − 1

hn(z)
∏s
j=1(h(z + cj))µj − 1

,

where i = p, p+ 1, . . . , n− 1. Then we have

Hi(z) =
hσ+i(z)

∏s
j=1(h(z+cj))

µj

hσ(z) − 1

hn+σ(z)
∏s
j=1(h(z+cj))

µj

hσ(z) − 1
.

Since h is a transcendental meromorphic function, we have S(r, h) + O(log r) =
S(r, h). Now using Lemma 2, we get

T

r, s∏
j=1

(
h(z + cj)

h(z)

)µj
≤

s∑
j=1

µj T

(
r,
h(z + cj)

h(z)

)

≤
s∑
j=1

µj

(
m

(
r,
h(z + cj)

h(z)

)
+N

(
r,∞;

h(z + cj)

h(z)

))

≤
s∑
j=1

µj (S(r, h) +O(log r)) = S(r, h).

This implies that
∏s
j=1

(
h(z+cj)
h(z)

)µj
∈ S(h). Since n+ σ > i+ σ, using Lemma 5,

we get m(r,Hi) = S(r, h), where i = p, p+ 1, . . . , n− 1.
Also Lemma 4 and (3.2) yield T (r, f1) + S(r, f1) = T (r, g1) + S(r, g1). Since
h = f1

g1
, it follows that T (r, h) ≤ 2T (r, g1) + S(r, g1) and S(r, h) can be replaced

by S(r, g1). Therefore m(r,Hi) = S(r, g1), where i = p, p + 1, . . . , n − 1. For the
sake of simplicity we assume that a1,n−1 6= 0. Then from (3.10), we have

−a1,ng
n−p
1 ≡ a1,n−1g

n−p−1
1 Hn−1 + . . .+ a1,p+1g1Hp+1 + a1,pHp, (3.11)
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where p ∈ {0, 1, . . . , n− 1}. Now from (3.11), we obtain

(n− p)m(r, g1)

≤ m
(
r,−a1,ng

n−p
1

)
+O(1)

= m
(
r, a1,n−1g

n−p−1
1 Hn−1 + . . .+ a1,p+1g1Hp+1 + a1,pHp

)
+O(1)

≤ m
(
r, a1,n−1g

n−p−1
1 Hn−1 + . . .+ a1,p+1g1Hp+1

)
+ S(r, g1)

≤ m(r, g1) +m
(
r, a1,n−1g

n−p−2
1 Hn−1 + . . .+ a1,p+1Hp+1

)
+ S(r, g1)

≤ m(r, g1) +m
(
r, a1,n−1g

n−p−2
1 Hn−1 + . . .+ a1,p+2g1Hp+2

)
+ S(r, g1)

≤ 2m(r, g1) +m
(
r, a1,n−1g

n−p−3
1 Hn−1 + . . .+ a1,p+2Hp+2

)
+ S(r, g1)

≤ . . . . . . . . . . . . . . .

≤ (n− p− 1)m(r, g1) + S(r, g1).

This intimates that m(r, g1) = S(r, g1). Since g1 is a transcendental entire func-
tion, N(r,∞; g1) = 0 and so T (r, g1) = m(r, g1) = S(r, g1), which is a contradic-
tion. This completes the proof.

Lemma 8. [21] Let F be a family of meromorphic functions in the unit disc ∆
such that all zeros of functions in F have multiplicity greater than or equal to l
and all poles of functions in F have multiplicity greater than or equal to j and α be
a real number satisfying −l < α < j. Then F is not normal in any neighborhood
of z0 ∈ ∆, if and only if there exist

(i) points zn ∈ ∆, zn → z0,

(ii) positive numbers ρn, ρn → 0+ and

(iii) functions fn ∈ F ,

such that ρ−αn fn(zn + ρnζ)→ g(ζ) spherically locally uniformly in C, where g is a
non-constant meromorphic function. The function g may be taken to satisfy the
normalisation g#(ζ) ≤ g#(0) = 1(ζ ∈ C).

Lemma 9. [2] Let f be a meromorphic function on C with finitely many poles.
If f has bounded spherical derivative on C, then f is of order at most 1.

Lemma 10. [6] If f is an integral function of finite order, then∑
a6=∞

δ(a, f) ≤ δ(0, f ′).

Lemma 11. [[6], Lemma 3.5] Suppose that F is meromorphic in a domain D
and set f = F ′

F . Then for n ∈ N,

F (n)

F
= fn +

n(n− 1)

2
fn−2f ′ + anf

n−3f ′′ + bnf
n−4(f ′)2 + Pn−3(f),
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where an = 1
6n(n − 1)(n − 2), bn = 1

8n(n − 1)(n − 2)(n − 3) and Pn−3(f) is a
differential polynomial with constant coefficients, which vanishes identically for
n ≤ 3 and has degree n− 3 when n > 3.

Lemma 12. Let f and g be two transcendental entire functions of finite or-
der such that f and g share (c0,∞)∗ and δ(c0, f) > 0. Let k ∈ N ∪ {0},
n ∈ N, µj ∈ N ∪ {0} (j = 1, 2, . . . , s) and p be a non-zero polynomial. Suppose(
P1(f1)F1

)(k)(
P1(g1)G1

)(k) ≡ p2, where
(
P1(f1)F1

)(k) − p and
(
P1(g1)G1

)(k) − p
share (0,∞). Now

(1) when p 6∈ C, then one of the following cases holds.

(1)(i) f(z)−c0 = eα(z) and g(z)−c0 = eβ(z), where α and β are non-constant
polynomials such that nα(z) +

∑s
j=1 µjα(z + cj) = c

∫ z
0 p(z)dz + b1,

nβ(z) +
∑s

j=1 µjβ(z + cj) = −c
∫ z

0 p(z)dz + b2, b1, b2, c( 6= 0) ∈ C such

that c2a2
ne
b1+b2 = −1;

(1)(ii) f(z)−c0 = h(z)eaz and g(z)−c0 = th(z)e−az, where h is a non-constant
polynomial and a, t ∈ C\{0} such that a2

nt
n+σh2n(z)(

∏s
j=1 h(z+cj))

2 ≡
p2(z).

(2) when p(z) ≡ b, then one of the following cases holds.

(2)(i) f(z) − c0 = eα(z) and g(z) − c0 = te−α(z) where α is a non-constant
polynomial and t ∈ C \ {0} such that a2

nt
n+σ = b2;

(2)(ii) f(z) − c0 = c1e
d1z and g(z) − c0 = c2e

−d1z, where c1, c2, d1 ∈ C \ {0}
such that (−1)ka2

n(c1c2)n+σ(d1(n+ σ))2k = b2.

Proof. Suppose

(P1(f1)F1)µj )(k) (P1(g1)G1)(k) ≡ p2. (3.12)

Using Lemma 2.12 [10], one can easily prove that (P1(f1)F1)(k) and (P1(g1)G1)(k)

share (0,∞). Now we want to show that P1(z1) = a1,nz
n
1 .

First we suppose k = 0. Then from (3.12) we get

P1(f1)F1P1(g1)G1 ≡ p2. (3.13)

From (3.13), we have N(r, 0;P1(f1)) = O(log r). Clearly P1(z1) can not have
more than one distinct zeros otherwise we get a contradiction from the second
fundamental theorem. Hence we conclude that P1(z1) has only one zero and so we
may write P1(f1) = a1,n(f1−a)n, where a ∈ C. Since f1 and g1 are transcendental
entire functions of finite order, from (3.13) we obtain that

f1(z) = α1(z)eβ1(z) + a, g1(z) = α2(z)eβ2(z) + a (3.14)

F1(z) = α3(z)eβ3(z) and G1(z) = α4(z)eβ4(z), (3.15)
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where α1, α2, α3, α4 are non-zero polynomials and β1, β2, β3, β4 are non-constant
polynomials. Now from (3.14) and (3.15), we have

s∏
j=1

(
α1(z + cj)e

β1(z+cj) + a
)µj

= α3(z)eβ3(z)

and so we have N(r,−a;α1(z+ c1)eβ1(z+c1)) = O(log r). Now using Lemma 1, we
get from the second fundamental theorem that

T
(
r, eβ1(z+c1)

)
= T

(
r, α1(z + c1)eβ1(z+c1)

)
+ S

(
r, α1(z + c1)eβ1(z+c1)

)
≤ N

(
r,∞;α1(z + c1)eβ1(z+c1)

)
+N

(
r, 0;α1(z + c1)eβ1(z+c1)

)
+N

(
r,−a;α1(z + c1)eβ1(z+c1)

)
+ S

(
r, α1(z + c1)eβ1(z+c1)

)
= O(log r) + S

(
r, α1(z + c1)eβ1(z+c1)

)
= S

(
r, α1(z + c1)eβ1(z+c1)

)
,

which is impossible. Hence a = 0 and so P1(z1) = a1,nz
n
1 . Therefore

(anf
n
1 F1)(ang

n
1G1) ≡ p.

Next we suppose k ∈ N. Here it is given that P1(z1) = a1,nz
n
1 +a1,n−1z

n−1
1 + . . .+

a1,1z1 + a1,0. Suppose that

P1(z1) = (z1 − a)m(bl1z
l1
1 + bl1−1z

l1−1
1 + . . .+ b1z1 + b0), (3.16)

where m+ l1 = n and a1,n = bl1 . Let z2 = z1 − a. Then (3.16) becomes

P1(z1) = zm2 (dl1z
l1
2 + dl1−1z

l1−1
2 + . . .+ d1z2 + d0),

i.e., P1(z1) = zm2 P2(z2),

}
(3.17)

where P2(z2) = dl1z
l1
2 + dl1−1z

l1−1
2 + . . .+ d1z2 + d0. Clearly

P1(f1) = fm2 P2(f2). (3.18)

By the given condition, since P1 has at least one zero of multiplicity at least
k + 1 when k ∈ N, for the sake of simplicity we may assume that m > k. Since
P1(f1) = fm2 P2(f2) and m > k, from (3.12) we conclude that the zeros of both f2

and g2 are the zeros of p. As the the number of zeros of p is finite, it follows that
f2 as well as g2 have finitely many zeros. Therefore f2 takes the form f2 = h0e

α,
where h0 is a non-zero polynomial and α is a non-constant polynomial.
Note that f ′2 = f ′1 = (h′0 + h0α

′)eα. Therefore δ(0, f ′1) = 1 and δ(a, f1) = 1. Since
δ(0, f1) > 0, then by Lemma 10 we conclude that a = 0 and so f1 = h0e

α. Also
in that case we have P1(f1) = fm1 (bl1f

l1
1 + bl1−1f

l1−1
1 + . . .+ b1f1 + b0).
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Now we claim that bi = 0 for i = 0, 1, . . . , l1 − 1. If not, for the sake of simplicity
we may assume that bl1 , b0 6= 0. Let

Hi(z) = hm+i(z)

s∏
j=1

(h(z + cj))
µj

and ξi(z) = (m+ i)α(z) +
s∑
j=1

µjα(z + cj),

where i = 0, 1, . . . , l1. Clearly fm+i
1 (z)F1(z) = Hi(z) e

ξi(z), where i = 0, 1, . . . , l1.
Then by induction we have(

bif
m+i
1 F1

)(k)
= ηi

(
ξ′i, ξ

′′
i , . . . , ξ

(k)
i ,Hi,H

′
i, . . . ,H

(k)
i

)
eξi , (3.19)

where ηi

(
ξ′i, ξ

′′
i , . . . , ξ

(k)
i ,Hi,H

′
i, . . . ,H

(k)
i

)
, i = 0, 1, . . . , l1 are differential polyno-

mials in ξ′i, ξ
′′
i , . . . , ξ

(k)
i ,Hi,H

′
i, . . . ,H

(k)
i . If possible suppose

ηi

(
ξ′i, ξ

′′
i , . . . , ξ

(k)
i ,Hi,H

′
i, . . . ,H

(k)
i

)
≡ 0, i = 0, 1, . . . , l1.

Then from (3.19), we have fm+i
1 F1 ≡ p1, where p1 is a polynomial such that

deg(p1) ≤ k − 1. Therefore T
(
r, fm+i

1 F1

)
= O(log r) and so by Lemma 4, we get

T (r, f1) = O(log r)+O
(
rρ−1+ε

)
for all ε > 0, which contradicts the fact that f1 is

a transcendental entire function. Hence ηi

(
ξ′i, ξ

′′
i , . . . , ξ

(k)
i ,Hi,H

′
i, . . . ,H

(k)
i

)
6≡ 0,

i = 0, 1, . . . , l1. Therefore

(P1(f1)F1)(k) =
(
fm1 (bl1f

l1
1 + bl1−1f

l1−1
1 + . . .+ b1f1 + b0)F1

)(k)
(3.20)

=

l1∑
i=0

(
bif

m+i
1 F1

)(k)

=

l1∑
i=0

ηie
ξi

= exp

mα(z) +
s∑
j=1

α(z + cj)

×
l1∑
i=0

ηi(z)e
iα(z).

Note that Hi and ξi are polynomials for i = 0, 1, . . . , l1 and so ηi are also poly-
nomials for i = 0, 1, . . . , l1. Since f1 is a transcendental entire function, it fol-
lows that T (r, ηi) = S(r, f) for i = 0, 1, . . . , l1. Also from (3.12), we see that
N(r, 0; (P1(f1)F1)(k)) = O(log r) and so from (3.20), we have

N(r, 0; ηl1e
l1α + . . .+ η1e

α + η0) ≤ S(r, f1). (3.21)

Since ηl1e
l1α+. . .+η1e

α is a transcendental entire function and η0 is a polynomial,
it follows that η0 is a small function of ηl1e

l1α+ . . .+η1e
α. Now in view of Lemma
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1, (3.21) and using second fundamental theorem for small functions (see [19]), we
obtain

l1 T (r, f1) = l1T (r, eα) = T
(
r, ηl1e

l1α + . . .+ η1e
α
)

+ S(r, f1)

≤ N
(
r, 0; ηl1e

l1α + . . .+ η1e
α
)

+N
(
r, 0; ηl1e

l1α + . . .+ η1e
α + η0

)
+ S(r, f1)

≤ N
(
r, 0; ηl1e

(l1−1)α + . . .+ η1

)
+ S(r, f1)

≤ (l1 − 1)T (r, f) + S(r, f1),

which is a contradiction. Hence bi = 0 for i = 0, 1, . . . , l1 − 1 and so P1(f1) =
a1,nf

n
1 . By the given condition, since P1 has at least one zero of multiplicity

at least k + 1 when k ∈ N, it follows that n ≥ k + 1. Therefore (3.12) yields
(anf

n
1 F1)(k)(ang

n
1G1)(k) ≡ p2.

Thus in either cases we have

(anf
n
1 F1)(k)(ang

n
1G1)(k) ≡ p2, (3.22)

where (anf
n
1 F1)(k) and (ang

n
1G1)(k) share (0,∞). Let zq be a zero of f1 of multi-

plicity q and zr be a zero of g1 of multiplicity r. Clearly zq will be a zero of fn1
of multiplicity nq and zr will be a zero of gn1 of multiplicity nr. Since f1 and g1

are transcendental entire functions, it follows that zq and zr must be the zeros
of (anf

n
1 F1)(k) and (ang

n
1G1)(k) of multiplicities at least q1 − k(≥ nq − k ≥ 1)

and r1 − k(≥ nr − k ≥ 1) respectively. Since (anf
n
1 F1)(k) and (ang

n
1G1)(k) share

(0,∞), it follows that zp = zq. Hence f1 and g1 share (0,∞). Consequently F1

and G1 share (0,∞) and so anf
n
1 F1 and ang

n
1G1 share (0,∞).

We consider the following cases.
Case 1. Suppose 0 is a Picard exceptional value of both f1 and g1. Since f1 6= 0
and g1 6= 0, so we can take

f1(z) = eα(z) and g1(z) = eβ(z), (3.23)

where α and β are two non-constant entire functions. Since f1 and g1 are of finite
order, both α and β are non-constant polynomials. Let

α1(z) = n α(z) +

s∑
j=1

µjα(z + cj) and β1(z) = n β(z) +

s∑
j=1

µjβ(z + cj). (3.24)

We now consider the following sub-cases.
Sub-case 1.1. Let deg(p) = l ∈ N. Following sub-cases are immediately.
Sub-case 1.1.1. Let k = 0. Note that anf

n
1 F1 6= 0 and ang

n
1G1 6= 0. Since

deg(p) ≥ 1, from (3.22) we arrive at a contradiction.
Sub-case 1.1.2. Let k = 1. Then from (3.22), we get

a2
nα
′
1β
′
1e
α1+β1 ≡ p2. (3.25)
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Also from (3.25), we can conclude that α1 + β1 ≡ c1 ∈ C and so α′1 + β′1 ≡ 0.
Thus from (3.25), we get a2

ne
c1α′1β

′
1 ≡ p2. By computation we get

α′1(z) = cp(z) and β′1(z) = −cp(z), where c ∈ C \ {0}. (3.26)

Hence
α1(z) = cQ(z) + b1 and β1(z) = −cQ(z) + b2, (3.27)

where Q(z) =
∫ z

0 p(z)dz and b1, b2 ∈ C. Finally we take f and g as

f(z)− c0 = eα(z) and g(z)− c0 = eβ(z)

such that nα(z)+
∑s

j=1 µjα(z+cj) = c
∫ z

0 p(z)dz+b1, nβ(z)+
∑s

j=1 µjβ(z+cj) =

−c
∫ z

0 p(z)dz + b2, where b1, b2 ∈ C and c ∈ C \ {0} such that a2
nc

2eb1+b2 = −1.
Sub-case 1.1.3. Let k ∈ N\{1}. Then from (3.22), we see that α1 +β1 ∈ C, i.e.,
α′1 ≡ −β′1. Therefore deg(α1) = deg(β1). If possible suppose deg(α1) = deg(β1) =
1. Then clearly (anf

n
1 F1)(k) 6= 0 and (ang

n
1G1)(k) 6= 0. Since deg(p) ≥ 1, we get

a contradiction from (3.22). Hence deg(α1) = deg(β1) ≥ 2. Now from (3.23) and
Lemma 11, we see that

(anf
n
1 F1)(k) =

(
nk(α′1)k +

k(k − 1)

2
nk−1(α′1)k−2α′′1 + Pk−2(α′1)

)
eα1 .

Similarly we have

(ang
n
1G1)(k)

=

(
nk(β′1)k +

k(k − 1)

2
nk−1(β′1)k−2β′′1 + Pk−2(β′1)

)
eβ1

=

(
(−1)knk(α′1)k − k(k − 1)

2
nk−1(−1)k−2(α′1)k−2α′′1 + Pk−2(−α′1)

)
eβ1 .

Since deg(α1) ≥ 2, we observe that deg((α′1)k) ≥ k deg(α′1) and so (α′1)k−2α′′1 is
either a non-zero constant or deg((α′1)k−2α′′1) ≥ (k − 1) deg(α′1)− 1. Also we see
that

deg
(

(α′1)k
)
> deg

(
(α′1)k−2α′′1

)
> deg

(
Pk−2(α′1)

)
(or deg

(
Pk−2(−α′1)

)
).

Let

α′1(z) = etz
t + et−1z

t−1 + . . .+ e0,

where e0, e1, . . . , et(6= 0) ∈ C. Then we have

(α′1(z))i = eitz
it + iei−1

t et−1z
it−1 + . . . ....,

where i ∈ N. Therefore we have

(anf
n
1 F1)(k) =

(
nkekt z

kt + knkek−1
t et−1z

kt−1 + . . .+ (D1 +D2)zkt−t−1 + . . .
)
eα1
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and

(ang
n
1G1)(k) =

(
(−1)knkekt z

kt + (−1)kknkek−1
t et−1z

kt−1 + . . .

+
(

(−1)kD1 + (−1)k−1D2

)
zkt−t−1 + . . .

)
eβ1 ,

where D1, D2 ∈ C such that D2 = k(k−1)
2 tnk−1ek−1

t . Since (anf
n
1 F1)(k) and

(ang
n
1G1)(k) share (0,∞), we have

nkekt z
kt + knkek−1

t et−1z
kt−1 + . . .+ (D1 +D2)zkt−t−1 + . . . (3.28)

= d∗1

(
(−1)knkekt z

kt + (−1)kknkek−1
t et−1z

kt−1 + . . .

+
(
(−1)kD1 + (−1)k−1D2

)
zkt−t−1 + . . .

)
where d∗1 ∈ C \ {0}. From (3.28), we get D2 = 0, i.e., k(k−1)

2 tnk−1ek−1
t = 0, which

is impossible for k ≥ 2.
Sub-case 1.2. Let p(z) = b ∈ C \ {0}. Since n > k, we have f1 6= 0 and g1 6= 0.
In this case also we have f1(z) = eα(z) and g1(z) = eβ(z), where α and β are
non-constant polynomials. We now consider the following two sub-cases.
Sub-case 1.2.1. Let k = 0. Now from (3.22) and (3.23), we have

a2
n exp{n(α(z) + β(z)) +

s∑
i=1

µj(α(z + cj) + β(z + cj))} ≡ b.

Therefore we must have n(α(z)+β(z))+
∑s

i=1 µj(α(z+cj)+β(z+cj)) ∈ C and so
α(z) + β(z) ∈ C. Finally we can take f1(z) and g1(z) as follows f(z)− c0 = eα(z)

and g(z) − c0 = te−α(z), where α is a non-constant polynomial and t ∈ C \ {0}
such that a2

nt
n+σ = b2.

Sub-case 1.2.2. Let k = 1. Considering Sub-case 1.1.2 one can easily conclude
that deg(α1) = deg(β1) = 1, i.e., deg(α) = deg(β) = 1. Finally observing (3.22),
we can take f(z)− c0 = c1e

d1z and g(z)− c0 = c2e
−d1z, where c1, c2, d1 ∈ C such

that (−1)ka2
n(c1c2)n+σ(d1(n+ σ))2k = b2.

Sub-case 1.2.3. Let k ∈ N \ {1}. Then from (3.22), we see that

(anf
n
1 F1)(k) 6= 0 and (ang

n
1G1)(k) 6= 0. (3.29)

Again from (3.22), we see that α1 + β1 ∈ C, i.e., α′1 ≡ −β′1. Therefore deg(α1) =
deg(β1). Suppose deg(α1) = deg(β1) ≥ 2. Considering Sub-case 1.1.3 one can
easily get

(anf
n
1 F1)(k) =

(
nk(α′1)k +

k(k − 1)

2
nk−1(α′1)k−2α′′1 + Pk−2(α′1)

)
eα1

and

(ang
n
1G1)(k)

=

(
(−1)knk(α′1)k − k(k − 1)

2
nk−1(−1)k−2(α′1)k−2α′′1 + Pk−2(−α′1)

)
eβ1 ,
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where

nk(α′1)k +
k(k − 1)

2
nk−1(α′1)k−2α′′1 + Pk−2(α′1)

and (−1)knk(α′1)k − k(k − 1)

2
nk−1(−1)k−2(α′1)k−2α′′1 + Pk−2(−α′1)

are non-constant polynomials. Then from (3.29), we arrive at a contradiction.
Hence deg(α1) = deg(β1) = 1 and so deg(α) = deg(β) = 1. Finally observing
(3.22), we can take f(z)−c0 = c1e

d1z and g(z)−c0 = c2e
−d1z, where c1, c2, d1 ∈ C

such that (−1)ka2
n(c1c2)n+σ(d1(n+ σ))2k = b2.

Case 2. Suppose 0 is not a Picard exceptional value of f1 and g1. Since n > k,
from (3.22) we see that zeros of both f1 and g1 are the zeros of p and so f1 and g1

have finitely many zeros. Consequently both fn1 F1 and gn1G1 have finitely many
zeros.
Let H = fn1 F1, Ĥ = gn1G1, F = H

p and G = Ĥ
p . Clearly F and G have finitely

many poles. Let F = {Fω} and G = {Gω}, where Fω(z) = F (z + ω) = H(z+ω)
p(z+ω)

and Gω(z) = G(z + ω) = Ĥ(z+ω)
p(z+ω) , z ∈ C. Clearly F and G are two families of

meromorphic functions defined on C. We now consider following two sub-cases.
Sub-case 2.1. Suppose that one of the families F and G, say F, is normal on
C. Then by Marty’s theorem F#(ω) = F#

ω (0) ≤ M for some M > 0 and for all

ω ∈ C. Hence by Lemma 9, we have F
(

=
fn1 F1

p

)
is of order at most 1. From

Lemma 4, we have ρ(fn1 F1) = ρ(f1). Now from (3.22), we have

ρ(f1) = ρ

(
fn1 F1

p

)
= ρ(fn1 F1) = ρ

(
(fn1 F1)(k)

)
= ρ

(
(gn1G1)(k)

)
= ρ(gn1G1) = ρ

(
gn1G1

p

)
= ρ(g1) ≤ 1.

Since f1 and g1 are transcendental entire functions having finitely many zeros and
are of order at most 1, we have

f1 = h1e
α and g1 = h1e

β, (3.30)

where h1 is a non-constant polynomial and α, β polynomials of degree 1. Now
from (3.22) and (3.24), we see that α1 + β1 ∈ C and so α′1 + β′1 ≡ 0. Since α
and β are polynomials of degree 1, without loss of generality we may assume that
α(z) = a1z+b1 and β(z) = a2z+b2, where a1(6= 0), b1, a2( 6= 0), b2 ∈ C. Then from
(3.24), we have α′1(z) = (n+ σ)a1 and β′1(z) = (n+ σ)a2. Since β′1(z) ≡ −α′1(z),
it follows that a2 = −a1 and so α′(z) ≡ −β′(z). Now we consider the following
two sub-cases.
Sub-case 2.1.1. Let k = 0. Now observing (3.22), we can take f(z)−c0 = h(z)eaz

and g(z)−c0 = th(z)e−az, where h is a non-constant polynomial and a, t ∈ C\{0}
such that a2

nt
n+σh2n(z)(

∏s
j=1 h(z + cj))

2 ≡ p2(z).
Sub-case 2.1.2. Let k ∈ N. Suppose α′(z) = a1. Therefore β′(z) ≡ −α′(z) ≡
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−a1. Now from (3.24), we have α′1(z) = (n+ σ)a1 and β′1(z) = −(n+ σ)a1. Now
from (3.22) and (3.30), we have respectively

(fn1 F1)(k) = eα1

k∑
i=0

kCi(nα
′
1)k−i(hn1 )(i) = eα1

k∑
i=0

kCi
(
(n+ σ)a1

)k−i
(hn1 )(i)

and

(gn1G1)(k) = eβ1
k∑
i=0

kCi(β
′
1)k−i(hn1 )(i) = eβ1

k∑
i=0

kCi
(
− (n+ σ)a1

)k−i
(hn1 )(i),

where we define (hn1 )(0) = hn1 . Since (fn1 F1)(k) and (gn1G1)(k) share (0,∞), it
follows that

k∑
i=0

kCi
(
(n+ σ)a1

)k−i
(hn1 )(i) ≡ d∗2

k∑
i=0

kCi(−1)k−i
(
(n+ σ)a1

)k−i
(hn1 )(i), (3.31)

where d∗2 ∈ C \ {0}. But from (3.31), we arrive at a contradiction.
Sub-case 2.2. Suppose that one of the families F and G, say F is not normal on
C. Then there exists at least one point z0 ∈ ∆ such that F is not normal at z0.
Without loss of generality we may assume that z0 = 0. Now by Marty’s theorem
there exists a sequence of meromorphic functions {F (z + ωj)} ⊂ F, where z ∈ ∆
and {ωj} ⊂ C is some sequence of complex numbers such that F#(ωj) → ∞ as
|ωj | → ∞. Since p has only finitely many zeros, so there exists a r1 > 0 such
that p(z) 6= 0 in {z : |z| ≥ r}. Again since fn1 F1 has finitely many zeros, so there
exists a r2 > 0 such that fn1 (z)F1(z) 6= 0 in {z : |z| ≥ r2}. Let r = max{r1, r2}
and D = {z : |z| ≥ r}. Also since wj → ∞ as j → ∞, without loss of generality
we may assume that |wj | ≥ r + 1 for all j. Let

F (wj + z) =
H(wj + z)

p(wj + z)
.

Since |wj + z| ≥ |wj | − |z|, it follows that wj + z ∈ D for all z ∈ ∆. Also since
fn1 (z)F1(z) 6= 0 and p(z) 6= 0 in D, it follows that fn1 (ωj + z)F1(ωj + z) 6= 0 and
p(ωj + z) 6= 0 in ∆ for all j. Observing that F (z) is analytic in D, so F (ωj + z) is
analytic in ∆. Therefore all F (ωj +z) are analytic in ∆. Thus we have structured
a family {F (ωj + z)} of holomorphic functions such that F (ωj + z) 6= 0 in ∆ for
all j. Then by Lemma 8, there exist

(i) points zj ∈ ∆ such that |zj | < 1,

(ii) positive numbers ρj , ρj → 0+,

(iii) a subsequence {F (ωj + zj + ρjζ)} of {F (ωj + z)}

such that

hj(ζ) = ρ−kj F (ωj + zj + ρjζ)→ h(ζ),

i.e., hj(ζ) = ρ−kj
H(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
→ h(ζ) (3.32)
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spherically locally uniformly in C, where h(ζ) is some non-constant holomorphic
function such that h#(ζ) ≤ h#(0) = 1. Now from Lemma 9, we see that ρ(h) ≤ 1.
In the proof of Zalcman’s lemma (see [12, 20] ) we see that

ρj =
1

F#(bj)
, (3.33)

where bj = ωj + zj . By Hurwitz’s theorem we see that h(ζ) 6= 0. Note that

p′(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
→ 0, (3.34)

as j →∞. We now prove that

(hj(ζ))(k) =
H(k)(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
→ h(k)(ζ), where k ∈ N ∪ {0}. (3.35)

Clearly (3.35) is true for k = 0. Therefore we have to show that (3.35) is true for
k ∈ N. Note that from (3.32), we have

ρ−k+1
j

H ′(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
(3.36)

= h′j(ζ) + ρ−k+1
j

p′(ωj + zj + ρjζ)

p2(ωj + zj + ρjζ)
H(ωj + zj + ρjζ)

= h′j(ζ) + ρj
p′(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
hj(ζ).

Now from (3.32), (3.34) and (3.36), we observe that

ρ−k+1
j

H ′(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
→ h′(ζ).

Suppose

ρ−k+l
j

H(l)(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
→ h(l)(ζ).

Let

Gj(ζ) = ρ−k+l
j

H(l)(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
.

Then Gj(ζ)→ h(l)(ζ). Note that

ρ−k+l+1
j

H(l+1)(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
(3.37)

= G′j(ζ) + ρ−k+l+1
j

p′(ωj + zj + ρjζ)

p2(ωj + zj + ρjζ)
H(l)(ωj + zj + ρjζ)

= G′j(ζ) + ρj
p′(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
Gj(ζ).
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So from (3.34) and (3.37), we see that

ρ−k+l+1
j

H(l+1)(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
→ G′j(ζ),

i.e., ρ−k+l+1
j

H(l+1)(ωj + zn + ρjζ)

p(ωj + zj + ρjζ)
→ h

(l+1)
j (ζ).

Then by mathematical induction we get desired result (3.35). Let

(ĥj(ζ))(k) =
Ĥ(k)(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
. (3.38)

From (3.22), we have

H(k)(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)

Ĥ(k)(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
≡ 1

and so from (3.35) and (3.38), we get

(hj(ζ))(k)(ĥj(ζ))(k) ≡ 1. (3.39)

Suppose k = 0. Therefore from (3.35) and (3.39), we can deduce that ĥj(ζ) →
ĥ(ζ), spherically locally uniformly in C, where ĥ(ζ) is some non-constant holo-
morphic function in C.
Suppose k ∈ N. Now from (3.35), (3.39) and the formula of higher derivatives we
can deduce that ĥj(ζ) → ĥ(ζ), spherically locally uniformly in C, where ĥ(ζ) is
some non-constant holomorphic function in C. Thus in either cases we can deduce
that

ĥj(ζ)→ ĥ(ζ), i.e.,
Ĥ(ωj + zj + ρjζ)

p(ωj + zj + ρjζ)
→ ĥ(ζ), (3.40)

spherically locally uniformly in C, where ĥ(ζ) is some non-constant holomorphic
function in C. By Hurwitz’s theorem we see that ĥ(ζ) 6= 0. Therefore (3.40) can
be rewritten as

(ĥj(ζ))(k) → (ĥ(ζ))(k) (3.41)

spherically locally uniformly in C. From (3.35), (3.39) and (3.41), we get

(h(ζ))(k)(ĥ(ζ))(k) ≡ 1. (3.42)

Since ρ(h) ≤ 1, from (3.42), we see that ρ(h) = ρ(h(k)) = ρ(ĥ(k)) = ρ(ĥ) ≤ 1.
Since h and ĥ are non-constant entire functions such that h 6= 0 and ĥ 6= 0, so we
can take h = eα2 and ĥ = eβ2 , where α2 and β2 are non-constants entire functions.
As ρ(h) ≤ 1 and ρ(ĥ) ≤ 1, α2 and β2 must be polynomials such that deg(α2) = 1
and deg(β2) = 1 Therefore we can take

h(z) = ĉ1e
ĉz and ĥ(z) = ĉ2e

−ĉz, (3.43)
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where ĉ, ĉ1, ĉ2 ∈ C\{0} such that (−1)k(ĉ1ĉ2)(ĉ)2k = 1. Also from (3.43), we have

h′j(ζ)

hj(ζ)
= ρj

F ′(wj + zj + ρjζ)

F (wj + zj + ρjζ)
→ h′(ζ)

h(ζ)
= ĉ, (3.44)

spherically locally uniformly in C. From (3.33) and (3.44), we get

ρj

∣∣∣∣F ′(ωj + zj)

F (ωj + zj)

∣∣∣∣ =
1 + |F (ωj + zj)|2

|F ′(ωj + zj)|
|F ′(ωj + zj)|
|F (ωj + zj)|

=
1 + |F (ωj + zj)|2

|F (ωj + zj)|

→
∣∣∣∣h′(0)

h(0)

∣∣∣∣ = |ĉ|.

This shows that lim
j→∞

F (ωj + zj) 6= 0,∞ and so from (3.32) we get

hj(0) = ρ−kj F (ωj + zj)→∞. (3.45)

Again from (3.32) and (3.43), we have

hj(0)→ h(0) = ĉ1. (3.46)

Now from (3.45) and (3.46), we arrive at a contradiction.

4 Proofs of the Theorems

Proof of Theorem 1. Let F = (P1(f1)F1)(k)

p and G = (P1(g1)G1)(k)

p . Then F and
G share (1, 2) except for the zeros of p. When H 6≡ 0, we follow the proof of
Theorem 1.3 [10] while for H ≡ 0 we follow Lemmas 6, 7 and 12. So we omit the
detail proof.

Proof of Theorem 2. Let F and G be defined as in Theorem 1. Then F and
G share (1, 1) except for the zeros of p. When H 6≡ 0, we follow the proof of
Theorem 1.4 [10] while for H ≡ 0 we follow Lemmas 6, 7 and 12. So we omit the
detail proof.

Proof of Theorem 3. Let F and G be defined as in Theorem 1. Then F and
G share (1, 0) except for the zeros of p. When H 6≡ 0, we follow the proof of
Theorem 1.5 [10] while for H ≡ 0 we follow Lemmas 6, 7 and 12. So we omit the
detail proof.
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