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RESULT ON UNIQUENESS OF ENTIRE FUNCTIONS
RELATED TO DIFFERENTIAL-DIFFERENCE POLYNOMIAL

Sujoy MAJUMDER*! and Jeet SARKAR?

Abstract

In the paper, we use the idea of normal family to investigate the unique-
ness problems of entire functions when certain types of differential-difference
polynomials generated by them sharing a non-zero polynomial. Also we ex-
hibit one example to show that the conditions of our results are the best
possible.
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1 Introduction, definitions and results

In the paper by meromorphic functions we shall always mean meromorphic
functions in C. We adopt the standard notations of value distribution theory (see
[6]). For a non-constant meromorphic function f, we denote by T'(r, f) the Nevan-
linna characteristic of f and by S(r, f) any quantity satisfying S(r, f) = o{T'(r, f)}
as r — oo possibly outside a set of finite linear measure. A meromorphic function
a is called a small function with respect to f, if T'(r,a) = S(r, f). The order of f
is denoted and defined by

. log T'(r,
p = p(f) = limsup gl(f)-
r—>00 ogr
For a € CU {oo}, we define
, N(r,a; f)
da; f)=1-1 —
(a; f) 0 SUp
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Let f and g be two non-constant meromorphic functions. Let a be a small function
with respect to f and g. We say that f and g share a CM (counting multiplicities)
if f—a and g—a have the same zeros with the same multiplicities and we say that
f and g share a IM (ignoring multiplicities) if we do not consider the multiplicities.

Let k e NU{0} U{oo}. For a € CU{oco} we denote by Fj(a; f) the set of all
a-points of f where an a-point of multiplicity m is counted m times if m < k and
k41 times if m > k. If Ex(a; f) = Ex(a;g), we say that f and g share a with
weight k. We write f and g share (a, k) to mean that f and g share a with weight
k. Also we note that f and g share a IM or CM if and only if f and g share (a,0)
or (a,o0) respectively.

Let b be a small function of both f and g. We denote by Ng(r, f = b = g)
the reduced counting function of the common zeros of f — b and g — b with the
same multiplicities. We say that f and g share (b, 00), if

N(r,b; f) = Ng(r,f =b=g) = O(logr) asr — 00
and  N(r,b;g) — Ng(r,f =b=g) = O(logr) as r — oo.

Let f be a transcendental meromorphic function and n € N. Many authors have
investigated the value distributions of f™f’. In 1959, W. K. Hayman (see [5],
Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and n € N such
that n > 3. Then f™f' =1 has infinitely many solutions.

The case n = 2 was settled by Mues [11] in 1979. Bergweiler and Eremenko
[1] showed that ff’ — 1 has infinitely many zeros.

For an analogue of the above result, Laine and Yang [7] investigated the value
distribution of difference products of entire functions in the following manner.

Theorem B. Let f be a transcendental entire function of finite order, n € N and
c € C\{0}. Then forn > 2, f"(z)f(z+c) assumes every non-zero value infinitely

often.

In 2010, X. G. Qi, L. Z. Yang and K. Liu [13] proved the following uniqueness
result.

Theorem C. Let f and g be two transcendental entire functions of finite order,
n € C\ {0} and n € N such that n > 6. If f"(2)f(z +n) and ¢g"(2)g(z + n)

share (1,00), then either fg = t; or f = tag for ti,ta € C\ {0} such that
t’iH‘l — tg-i—l = 1.

Let

1

P(z)=anz" +an—12"" " +...+ap (1.1)

be a non zero polynomial, where a,(# 0),an—1,...,ay are complex constants. We
denote I'y,I's by I't = mq + me,'s = mq1 4+ 2my respectively, where my is the
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number of simple zeros of P(z) and mg is the number of multiple zeros of P(z).
Let d = ged(MAo, A1y ...y An), where \j =n+1ifa; =0, \; =i+ 1 if a; # 0.

In 2011, L. Xudan and W. C. Lin [16] considered the zeros of one certain type
of difference polynomial and obtained the following result.

Theorem D. Let f be a transcendental entire function of finite order and n €
C\{0}. Then forn >T1, P(f(2))f(z+n)—a(z) = 0 has infinitely many solutions,
where a(z)(# 0) is a small function with respect to f.

In the same paper the authors also proved the following uniqueness result
corresponding to Theorem D.

Theorem E. Let f and g be two transcendental entire functions of finite order,
n € C\{0} andn € N such thatn > 2T's+1. If P(f(z))f(z+n) and P(g(z))g(z+n)

share (1,00), then one of the following cases hold:
(i) f =tg, where t® = 1;
(i) R(f,g) =0 where R(w1,ws) = P(w1)wi(z +n) — P(w2)wa(z +n);

(iii) f = e and g = €, where a, B are non-constant polynomials and o + 8 =
c € C satisfying aZe"tDe = 1.

We recall the following example due to L. Xudan and W. C. Lin [16].

Example 1. Let P(z) = (2—1)%(2+1)821, f(2) =sinz, g(z) = cosz and n = 2.
It is easily seen that n > 2U9+1 and P(f(z))f(z+n) = P(g9(2))g(z+n). Therefore
P(f(2)f(z+n) and P(g(2))g(z+n) share 1 CM. It is also clear that R(f,g) = 0,
where R(wy,wy) = P(wy)wi(z +n) — P(we)wa(z +n) but f # tg fort € C\ {0}
satisfying t™ = 1, where m € Z*.

From the above example, we see that f and g do not share (0, 00). Regarding
this one may ask the following question.

Question 1. What can be said about the relationship between f and g, if f and
g share (0,00) in Theorem E ?

Keeping the above question in mind, recently W. L. Li and X. M. Li [8] proved
the following results.

Theorem F. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,00), n € C\ {0} and n € N such that n > 2I'o + 1. If
P(f(2)f(z4+n) and P(g(2))g(z +n) share (1,00), then one of the following two
cases hold:

(i) f =tg, where t® = 1;

(ii) f=e“ and g = ce™®, where a is a non-constant polynomial and c € C\ {0}
satisfying a2c™t1 = 1.
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Theorem G. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,00), n € C\{0} and n € N such that n > 3I'1+2Iy+4.
If P(f(2))f(z+mn) and P(g(z))g(z+n) share (1,0), then one of the following two
cases hold:

(i) f =tg, where t® = 1;

(ii) f=e“ and g = ce™®, where « is a non-constant polynomial and ¢ € C\ {0}
satisfying a2c"t = 1.

Regarding Theorems F and G, P. Sahoo and S. Seikh [14] asked the following
question.

Question 2. What happen if one consider the difference polynomials of the form
(P(f(2))f(z+mn))k, where k e NU{0} ?

Keeping the above question in mind, in 2016, P. Sahoo and S. Seikh [14] proved
the following results.

Theorem H. Let f be a transcendental entire function with finite order and
a(z)(#£)0 be a small function with respect to f. Let n € C\ {0}, k € NU{0} and
n € N. Then forn > Ty +kma, (P(f(2))f(z+n))* —a(z) = 0 has infinitely many
solutions.

Theorem I. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,00) and n € C\ {0}. Let k € NU{0} and n € N such
that n > 2y + 2kmo + 1. If P(f(2))f(z +n) and P(g(z))g(z +n) share (1,00),
then one of the following two cases hold:

(i) f =tg, where t® = 1;

(ii) f = e and g = ce”®, where a is a non-constant polynomial and ¢ € C\ {0}
satisfying a2c™ ! = 1.

Theorem J. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,00) and n € C\ {0}. Let k € NU{0} and n € N such
that n > 3I'1 4+ 2I'y + bkmo + 4. If P(f(2))f(z +n) and P(g9(2))g(z +n) share
(1,0), then one of the following two cases hold:

(i) f =tg, where t® = 1;

(ii) f=e“ and g = ce™®, where a is a non-constant polynomial and c € C\ {0}
satisfying a2c™t1 = 1.

In 2017, S. Majumder and R. Mandal [10] executed some errors in the proof of
Theorems I and J which were discussed in Section 1 [10]. Also in the same paper
S. Majumder and R. Mandal [10] asked the following question.

Question 3. Can one replace the condition “f and g share (0,00)” in Theorems
I and J by weaker one ¢
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Keeping the above question in mind, S. Majumder and R. Mandal [10] obtained
the following results which not only rectified Theorems I and J but also improved
and generalized Theorems I and J.

Theorem K. Let f and g be two transcendental entire functions of finite order
such that f and g share (0,00)s, ¢; € C (j = 1,2,...,s) be distinct and let
EeNU{0},neN, pj e NU{0} (j=1,2,...,5) such that n > 2I'y + 2kmy + 0,
where o = ijl w; > 0. Suppose that P has at least one zeros of multiplicities at
least k +1 and 6(0; f) > 0 when k > 1. If (P(f(2)) [[;=1(f(z + )M R — p(z)
and (P(g(2)) [Tj=1(g9(z + ¢;))H) ) — p(z) share (0,2), where p(z) is a non-zero
polynomial with deg(p) < n + o — 1, then one of the following cases hold.

(i) f(z) = tg(z) for t € C\ {0} such that t¢ = 1, where d is the GCD of the
elements of J, J={p€l:a,#0} and I ={o,0+1,...,n+0}.

(i) If k = 0, then f(z) = e*®) and g(z) = te=**) where a(z) is a non-constant
polynomial and t € C\ {0} such that a2t"T7 = 2.

(iii) If p & C, then f(z) = e*®) and g(z) = €’?), where a and B are two non-
constant polynomials such that no(z )—i—Zj Lja(z4c¢g) = c [§ p(z)dz+bi,

np(z) + Z; 1Bz +¢) = Cfo 2)dz 4 by, by,ba,c(# 0) € C such that
02a2€bl+b2 - 1.

(iv) If p(z) = b € C\ {0}, then f(2) = c1e® and g(z) = coe™%, where cy, c2, d(#
0) € C such that (—1)ka2(c1c2)" o (d(n + 0))?F = b2.

Theorem L. Under the same situation in Theorem K if further n > %Fl + 2T +
Skma + S0 and (P(f() IT;o1(f(z + ¢))*)® = p(2) and (P(g(2) TT}_1(g(= +
¢j))*)*) — p(2) share (0,1), then conclusions of Theorem K hold.

Theorem M. Under the same situation in Theorem K if further n > 3I'1 + 20"y +
bkmy + 40 and (P(f(2)) [Tj=1 (f(z + ¢;))*)*) = p(2) and (P(9(2)) [Tj—(9(= +
¢i)H)F) — p(2) share (0,0), then conclusions of Theorem K hold.

Remark 1. It is easy to see that the conditions “f and g share (0,00),” and
“(0; f) > 07 in Theorem K are sharp by the following example.

Example 2. [16] Let P(z) = (z — 1)%(z + 1)%2!, f(2) = sinz, g(2) = cosz and
n = 2m. Clearly f and g do not share (0,00). and 5( f) =0. Also it is easily seen
that n > 2T9+2kmo+1 and (P(f(z ))f(z+77)) = (P(g(2))g(z+n))*). Therefore
(P(f(2))f(z +n)® and (P(g9(2))g(z + n)*) share (1,00), but conclusions of
Theorem K do not hold.

Theorems K, L and M suggest the following questions as an open problems.

Question 4. Can one remove the condition “deg(p) < n+ o — 1”7 in Theorems
K-M ?
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Question 5. Can one deduce generalized results in which Theorems K-M will be
included ?

Throughout the paper we use the following notations:
For two transcendental entire functions f, g and ¢y € C, we define fi(z) = f(z)—co
and ¢1(z) = g(z) — co. For z1 = z — ¢p, we define
n n
P(z) = Zai(z —cp+ ) = Zal 21+ co)’
i=0 =0

-1

n
= al,nzl +a1n—12 +...+a0= Pl(zl)a say

where a;; € C (i = 0,1,...,n) and a1, = a,. Also throughout the paper
we define F1(z) = [[;_ 1( (z+¢) —co) = [[io1(filz + ¢;))" and Gi(z) =
[T5=1(9(2 +¢;) —co)s =T[;=1(91(2 + ¢;))*, where ¢; € C\ {0} are distinct for
j=12,...,s and p; € NU{0} such that o = 3%_, u; > 0.

2 Main results

Now taking the possible answers of the above Questions 4 and 5 into backdrop
we obtain the following results.

Theorem 1. Let f and g be two transcendental entire functions of finite order
such that f and g share (co,00)s, where cg € C and let k € NU{0} and n € N such
that n > 2I's+2kmo+0. Suppose that Py has at least one zeros of multiplicities at
least k+1 and 6(co; f) > 0 when k > 1. If (Pi(f1)F1)® —p and (Py(g1)G1)®) —p
share (0,2), where p is a non-zero polynomial, then one of the following cases
hold.

(1) f—co=t(g—co) fort € C\ {0} such that t¢ = 1, where d = ged(o + p :
pe{0,1,...,n} withay, # 0).

(2) when p & C, then one of the following cases holds.

(2)(i) f(z)—co=e"?) and g(z)—co = eP?), where a and B are non-constant
polynomials such that na( )+ 25 1,uj a(z + ¢j) = c [y p(z)dz + by,
nf(z) + 35 wiB(z 4 ¢j) = —c [5 p(2)dz + bz, b1, b2, c(# 0) € C such
that c2a2etrtb2 = —1;

(2)(ii) f(z)—co = h(2)e** and g(z)—co = th(z ) ~9% where h is a non-constant
polynomial and a,t € C\{0} such that a? t”+‘7h2n( YITi2, h(2+c)))? =

P*(2).

(8) when p(z) = b, then one of the following cases holds.

j=1

(3)(i) f(z) —co = e*®) and g(z) — cg = te=*?) where a is a non-constant
polynomial and t € C\ {0} such that a2t"T7 = b?;

(3)(ii) f(z) —co = c1e™* and g(z) — co = cae™N?, where c1,c2,d1 € C\ {0}
such that (—1)ka2 (c1c2)" 7 (dy(n + o)) = b2.
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Theorem 2. Under the same situation in Theorem 1 if further n > %Fl 4209 +
3kma+ 30 and (Pi(f1)F1)® —p and (Pi(g1)G1)®) — p(z) share (0,1), then con-
clusions of Theorem 1 hold.

Theorem 3. Under the same situation in Theorem 1 if further n > 31'1 4+ 2I'y +
5kma+4o and (PL(f1)F1)® —p and (Py(g1)G1)*) —p share (0,0), then conclusions
of Theorem 1 hold.

Remark 2. It is easy to see that the conditions “f and g share (c,00),” and
“(c; f) > 07 in Theorem 1 are sharp by the following example.

Example 3. Let f(z) =sinz+e¢, g(z) =cosz+ec, Pi(z) =(z—c—1)%z—c+
1)%(z — )t and n = 2m. Clearly f and g do not share (c,00)«. Note that
ez _ e?? + 2cie” —1 (e — a)(e* — B)

—— 4+ c= — = — 5ay.
2iel? 2iel? 2iel? ’

f(z) =sinz+c=
Clearly o, 8 # 0. Also we have T(r,f) = 2 T(r,e*) + S(r,e?). Since e* #

0,00, it follows that N(r,a;e?) ~ T(r,e?) and N(r,B;€e?) ~ T(r,e?). Therefore
N(r,c; f) = N(r,a;€®) + N(r, 3;e%) ~ 2 T(r, e%). Consequently

o N(ref) o N )+ N(r, B e”)
S f)=1-1 = 1-1 i i
(e f) msup =) P2 AT (r ) + 5(r, )
2T iz
= 1-—limsup (r.e%) =0

r—o00 21°(1, %) + S(r, el?)

Also we see that n > 2Dy + 2kmez + 1 and (Pi(f(2) — o)(f(z +n) — c))(k) =

(Pl(Q(Z) —c)(g(z+n) — C)(k”). Therefore (Pl(f(z) —o)(f(z+n) — C))(k) and
(Pi(g(2) = e)(g(z+n) — c))(k) share (1,00), but the conclusions of Theorem 1 do
not hold.

3 Lemmas

Let h be a meromorphic function in C. Then A is called a normal function if
there exists a positive real number M such that A (z) < M V z € C, where

W)
) = TGP

denotes the spherical derivative of h.

Let F be a family of meromorphic functions in a domain D C C. We say
that & is normal in D if every sequence {f,}, C F contains a subsequence which
converges spherically and uniformly on the compact subsets of D (see [15]).

For two non-constant entire functions F' and G we define the auxiliary function

H as follows Jo% oF! el 2G"
Hz(F’_F—1>_<G/_G_1>. Y
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Lemma 1. [17] Let f be a non-constant meromorphic function and let a, (% 0),
an-1, ... , ag be meromorphic functions such that T(r,a;) = S(r, f) for i =
0,1,2,....,n. Then T(r,anf™ + an_1f" 1+ ... +arf +ag) = nT(r, f) + S(r, f).

Lemma 2. [3] Let f be a meromorphic function of finite order p and let ¢ € C\{0}
be fized. Then for each € > 0, we have

n(n5557) (i) -0

Lemma 3. [}] Let f be a non-constant meromorphic function of finite order and
ce C. Then

N(r,0; f(z +0))
and  N(r,0; f(z +¢))

Lemma 4. Let f be a transcendental entire function of finite order and n € N.
Then for each ¢ > 0, we have T'(r, P(f1)F1) = (n + o) T(r, f1) + O(rP=1+¢).

(r,0; f(2)) + S(r, f)

<N
< N(r,0; f(2)) + S(r, ).

Proof. Proof follows directly from Lemma 2.6 [10]. O

Lemma 5. [9] Let h be a non-constant meromorphic function such that N(r,0;h)+
N(r,00;h) = S(r,h). Let f = aghP+a1hP~ +.. .4a, and g = bohd+b1hd~1+. . .+b,
be polynomials in h with co-efficients ag, a1, ..., ap,bo, b1, ..., by being small func-

tions of h and agboa, # 0. If ¢ < p, then m(r, %) = S(r,h).

Lemma 6. Let f and g be two transcendental entire functions of finite order,
k
ke NU{0} and n € N such that n > 2I'y + 2kmg + 0. Let F' = (G TE VL VAR

G = M, where « is a small function of f and g. If H = 0, then one of
the following two cases holds.

(i) (Pi(f1)F0)r)® = (Pr(g1)G1)™),

(ii) (Pi(f1)F1)® (Py(g1)G1)W) = o2,
where (Py(f1)F1)® — a and (P1(g1)G1)® — a share (0,00).

Proof. Proof follows directly from Lemma 2.8 [10]. O

Lemma 7. Let f and g be two transcendental entire functions of finite order
such that f and g share (cp,00)«. Let k € NU{0} and n € N such that n >
2my 4 2kmg + 0. If (PL(f1)F1)® = (Py(g1)G1)™), then f —co = t(g — ¢g) for
t € C\ {0} such that t¢ = 1, where d = ged(o+p : p € {0,1,...,n} with a1, # 0).

Proof. Suppose (Py(f1)F1)*) = (Pi(g1)G1)®). Using Lemma 2.9 [10], one can
easily obtain

S S

Pi(f1(2) [T(11(z + )" = Pr(ga(2) [ (9102 + ¢))¥. (3:2)

Jj=1 Jj=1
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Let h = 2%' Now by putting fi = hgy into (3.2), we get

S

angt(z) | B"(2) [J(h(z + )" — 1 (3.3)
j=1

s

tarn1g) " ) [ @ [L G+ ey 1] + .
j=1

S S

tari01(2) | b(2) [J(h(z + ) =1 | +aro | [J(h(z + ) —1
j=1 j=1

Il
e

First we suppose h € C\ {0}. Now from (3.3), we get

a1 gt (R = 1) + a1 197 (BT 2) = 1) +
o tain (h”Jrl —1) +ao(h” —1)=0,

which implies that h? = 1, where d = ged(o +p:p € {0,1,...,n} with a1, # 0).
Thus f — c¢o = t(g — co) for a constant ¢ such that ¢t = 1, where d = ged(o +p :
p€{0,1,...,n} with a;, # 0).

Next we suppose h ¢ C. Since f; and g; share (0,00),, it follows that h is a
non-constant meromorphic function such that N(r,0;h) + N(r,00;h) = O(logr)
as 1 — 00. Also we note that p(h) < max{p(f),p(g9)} < oo, i.e., h is of finite
order.

Suppose that h is a rational function. Let Pi(f1) = a1, f]". Then from (3.3), we
get

S

1

h”(z)]l;[l(h(z +e)) =1, ie., K(z) = T oG o) (3.4)
Let
h1
h=go (3.5)

where h; and hg are two nonzero relatively prime polynomials. From (3.5), we
have

T'(r,h) = max{deg(hi),deg(h2)}logr + O(1). (3.6)
Now from (3.4), (3.5) and (3.6), we have

n max{deg(h1),deg(ha)} logr (3.7)
= T(r,h") 4+ O(1)

s

T(r, [J(h(z + ¢)*) + O(1)

j=1
o max{deg(h1),deg(h2)} logr + O(1).

IN

IN
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We see that max{deg(hz),deg(hs)} > 1. Since n > o, we arrive at a contradiction
from (3.7).

Let Pi(f1) # a1nf{"- Suppose a1 is the last non-vanishing term of P;(z1), where
p€{0,1,...,n—1}. Then from (3.3), we have

s

arngl " (2) | B"(z) [ (h(z + )" —1 (3-8)
j=1

S

Farnagt ) [ @ [+ ey —1 ) + .
7j=1

S

tarpgi(z) | W) [[ 0 + ey -1
j=1

S

—a1p | BP(2) [J(h(z + )" — 1

Jj=1

Now from Lemma 1 and (3.8), we get (n —p) T(r,g1) = S(r,g1), which is a
contradiction.
Next we suppose that h is a transcendental meromorphic function. We claim that

W (2) [J(h(z + ey # 1.
j=1
If not, suppose

S

W (z) [J(h(z + ¢)" =1, e, h"(2) =

J=1

[[5=1(h(z +¢j))hs
Now by Lemmas 1, 2 and 3, we get

nT(r,h) = T(r,h")+ S(r,h)
1
-7 ( T+ )

Zu] (1,05 h(z + ¢5)) —i—Zu; <h(zl+cj)>+5(r,h)

7=1

1
<  N(r,0;h(2)) + + S(r, h)
Zu Zuj ("35)

< oT(r,h)+ S(r,h),

) + S(r,h)

IN

which is a contradiction.

Let Pi1(f1) = a1,f]". Then from (3.3), we get h"(2) [15_;(h(z +¢;))* =1, which

j=1
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is a contradiction.
Let Pi(f1) # a1nf{'. Suppose a1 is the last non-vanishing term of P;(z1), where
p€{0,1,...,n—1}. Then from (3.8), we have

vyt W T (e + ) — 1
R T6) e
W) T (A + ) 1
P Ty (G + ) 1
W Tz + ) 1 _

T T (e ) — 1

(3.10)

+a1pr191(2)

n—p
—a1n91 ’

where p € {0,1,...,n—1}. Let

R (2) [Ty (h(z + )" — 1
W (2) [T (h(z + ¢j))t = 10

where i = p,p+1,...,n — 1. Then we have

TT_, (A=)

H;(z) NS C
i\?) = s z+ci))Hi ’
hn+a(z) szl(}?;(;) 51 -1

Since h is a transcendental meromorphic function, we have S(r,h) + O(logr) =
S(r,h). Now using Lemma 2, we get

Pl

J=1

Yo (i)

< Zuj (S(r,h) +O(logr)) = S(r, h).
j=1

IN

IN

This implies that [[5_, <h(;(+z§j))uj € S(h). Since n+ o > i + o, using Lemma 5,

we get m(r, H;) = S(r,h), where i =p,p+1,...,n— 1.

Also Lemma 4 and (3.2) yield T'(r, f1) + S(r, f1) = T(r,q1) + S(r,91). Since
= i%, it follows that T'(r,h) < 2T(r,¢g1) + S(r,g1) and S(r, h) can be replaced

by S(r,g1). Therefore m(r, H;) = S(r,g1), where i = p,p+1,...,n — 1. For the

sake of simplicity we assume that a;,—1 # 0. Then from (3.10), we have

—a1n9) ¥ = al,nflg?ipilanl + ..t aipr91Hpp1 +arpHy, (3.11)
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where p € {0,1,...,n — 1}. Now from (3.11), we obtain

(n —p)m(r, g1)

< m (r, —al,ng?_p> +0(1)

= m (’I", al,nflg?_p_lanl +o+ al,erlngerl + al,pHp) + O(l)

< m (r,al,n_w?_p_lHn_l +...F al,p+1ngp+1) + S(r, g1)

< m(r,g1) +m (7“, al,nflg?7p72Hn71 +...F al,p+1Hp+1> + S(r, 91)
< m(r,g1) +m (h a1n-19y P P Hyo1 .o+ al,p+291Hp+2> + S(r,g1)
< 2m(r,g1)+m (7‘7 al,n—lg?ipi?)Hn—l +...+ al,p+2Hp+2> +S(r,91)
<

S (n_p_ 1)m(rvgl)+8(rvgl)'

This intimates that m(r,g1) = S(r,g1). Since g1 is a transcendental entire func-
tion, N(r,00;91) = 0 and so T'(r,¢1) = m(r,¢91) = S(r, ¢91), which is a contradic-
tion. This completes the proof. O

Lemma 8. [21] Let F be a family of meromorphic functions in the unit disc A
such that all zeros of functions in F' have multiplicity greater than or equal to [
and all poles of functions in F have multiplicity greater than or equal to j and o be
a real number satisfying —l < a < j. Then F is not normal in any neighborhood
of zo € A, if and only if there exist

(i) points z, € A, z, — 20,
(i1) positive numbers py, p, — 07 and
(iii) functions f, € F,

such that p,® fr(zn + pnC) — g(C) spherically locally uniformly in C, where g is a
non-constant meromorphic function. The function g may be taken to satisfy the
normalisation g7 () < g7 (0) = 1(¢ € C).

Lemma 9. [2] Let f be a meromorphic function on C with finitely many poles.
If f has bounded spherical derivative on C, then f is of order at most 1.

Lemma 10. [6] If f is an integral function of finite order, then
> d(a, f) <50, ).
a#0o

Lemma 11. [[6/, Lemma 3.5] Suppose that F' is meromorphic in a domain D
and set f = %/ Then forn € N,

Fn)
F

_ n(n_l)
BRI

fanf/ + anfnfo// + bnfnf4(f/)2 4 Pn—S(f)y
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where a, = %n(n —1)(n—-2), b, = %n(n —1)(n—2)(n—3) and P,_3(f) is a

differential polynomial with constant coefficients, which vanishes identically for
n < 3 and has degree n — 3 when n > 3.

Lemma 12. Let f and g be two transcendental entire functions of finite or-
der such that f and g share (co,00)« and 6(co, f) > 0. Let k € N U {0},
neN, u e NU{0} (7 =1,2,...,s) and p be a non-zero polynomial. Suppose

(Pl(fl)Fl)(k) (Pl(gl)Gl)(k) = p?, where (Pl(fl)Fl)(k) —p and (Pl(gl)Gl)(k) —-p
share (0,00). Now

(1) when p & C, then one of the following cases holds.

(1)(i) f(z)—co=e"?) and g(z)—co = e, where a and B are non-constant
polynomials such that na(z) + Y25_) pje(z 4+ ¢;) = ¢ 5 p(2)dz + b,
nfB(z) +325_1 1Bz +¢j) = —c Jo p(2)dz + ba, by, by, c(# 0) € C such
that c2a2eb+b? = —1;

(1)(ii) f(z)—co = h(2)e** and g(z)—co = th(z)e™**, where h is a non-constant
polynomial and a,t € C\{0} such that a%t”+”h2"(z)(H§:1 h(z+cj))? =

2
p(2)-
(2) when p(z) = b, then one of the following cases holds.

(2)(i) f(z) —co = e*® and g(z) — co = te=*?) where o is a non-constant
polynomial and t € C\ {0} such that a2t"7 = b?;

(2)(ii) f(z) —co = c1e™? and g(z) — co = cae™ %, where cy1,cz,d; € C\ {0}
such that (—1)¥a2 (c1c2)" 7 (dy(n + o)) = b2.

Proof. Suppose
(PL(f1)F1)") P (Pr(g1) G = p. (3.12)

Using Lemma 2.12 [10], one can easily prove that (Py(f1)F;)* and (P (g1)G1)®
share (0,00). Now we want to show that P;(z1) = a1 n27.
First we suppose k = 0. Then from (3.12) we get

Pi(f1)FiPi(g1)G1 = p. (3.13)

From (3.13), we have N(r,0; Pi(f1)) = O(logr). Clearly Pi(z1) can not have
more than one distinct zeros otherwise we get a contradiction from the second
fundamental theorem. Hence we conclude that P (z1) has only one zero and so we
may write Pi(f1) = a1,,(fi —a)", where a € C. Since f; and g; are transcendental
entire functions of finite order, from (3.13) we obtain that

f1(2) = ()" 4 a, gi(2) = as(2)e™ 4 a (3.14)

Fi(2) = a3(2)e®® and G1(2) = ay(z)e™), (3.15)
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where «aq, as, ag, ay are non-zero polynomials and 1, 82, 83, B4 are non-constant
polynomials. Now from (3.14) and (3.15), we have

H (al(z +¢j)ePrEte) 4 a) - az(z)e®
j=1

and so we have N (r, —a; o (z + ¢1)eP13Te)) = O(log ). Now using Lemma 1, we
get from the second fundamental theorem that

T (r, em(zm))

= T (ra(z+ea)e ) 45 (ran(z+)e )

< N (ro0a1(e+e)e? G0 £ (1,0;01(z + )l
N (r, —a;au(z + Cl)eﬁl(erc:l)) L g (r, oz + cl)eﬁl(ercl))

= Ologr)+ S (r’ ar(z + Cl)eﬁl(z—f—m)) -9 (T, oz + Cl)eﬁl(z-i-cl)) ’
which is impossible. Hence a = 0 and so Pj(z1) = a1 ,27. Therefore

(anf?Fl)(ang?Gl) =D

Next we suppose k € N. Here it is given that Pj(z1) = a1 27 +a17n_1z?_1 4.+
ai,1z1 + a1,0. Suppose that

Pl(zl) = (21 — a,)m(bllzlll + 511,12111_1 + ...+ bz + bo), (3.16)

where m +1; =n and a1, = bj,. Let 29 = 2z; — a. Then (3.16) becomes

Pl(zl) = Zgl(dllzél + dll—IZél_l 4+ ...+ dizg + do), } (3‘17)
i.e., Pl(zl) = Z;nPQ(ZQ),
where PQ(ZQ) = dllzél + dll_lzélil + ...+ dyzo + dy. Clearly
Pi(f1) = f5"Pa(fa). (3.18)

By the given condition, since P; has at least one zero of multiplicity at least
k 4+ 1 when k € N, for the sake of simplicity we may assume that m > k. Since
Pi(f1) = f3"Pa(f2) and m > k, from (3.12) we conclude that the zeros of both fo
and go are the zeros of p. As the the number of zeros of p is finite, it follows that
fo as well as go have finitely many zeros. Therefore fy takes the form fo = hge®,
where hg is a non-zero polynomial and « is a non-constant polynomial.

Note that f5 = f] = (hy + hoa')e®. Therefore 6(0, f1) = 1 and d(a, f1) = 1. Since
5(0, f1) > 0, then by Lemma 10 we conclude that a = 0 and so f; = hge®. Also
in that case we have Py(f1) = f7* (b, fi + by, 1 f2 ™+ ... 4 by f1 + bo).
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Now we claim that b; =0 for ¢ = 0,1,...,l; — 1. If not, for the sake of simplicity
we may assume that by, ,by # 0. Let

S

Hi(2) = W () [[(h(z + )

Jj=1

and  &(z) = (m+1i)a +Zuj a(z + ¢j),

where i = 0,1,...,1. Clearly f{"*(2)Fi(2) = H;(2) &), where i = 0,1,...,1.
Then by induction we have

(st m) ™ = (el 60 90,90, 9 o, (3.19)

Wherem(Z ,...,f(k Hi, K, ..., 5

Z( )), 1=0,1,...,1; are differential polyno-
mials in &, ¢/, ..., ") 36,90, 5P,

If possible suppose
0 (gg,g;’,...,g§k),9{i,:}cg,...,%§k)) =0,i=0,1,...,0%.

Then from (3.19), we have f{””Fl = p1, where p; is a polynomial such that
deg(p1) < k — 1. Therefore T (7“, f{"“Fl) = O(logr) and so by Lemma 4, we get
T(r, f1) = O(logr)+O (r*='*¢) for all € > 0, which contradicts the fact that fi is

a transcendental entire function. Hence 7); ( NS ,f JHi, H ,ﬂ{gk)> Z 0,
1=20,1,...,l;. Therefore

PE® = (e a4t R) T (3:20)
l1

= > Catrm)®

=0

l1
= D mie
=0
S

= exp ma(z)—l—Zaz—i—cj xzm
j=1

Note that H; and & are polynomials for ¢ = 0,1,...,[; and so n; are also poly-
nomials for ¢ = 0,1,...,[;. Since fi is a transcendental entire function, it fol-
lows that T'(r,n;) = (r f) for i = 0,1,...,1;. Also from (3.12), we see that
N(r,0; (P (f1)F1)®) = O(log r) and so from (3.20), we have

N(r,0; mlella + .o+ me* +n) < S(r, f1). (3.21)

Since gy, €194 .. +n1e” is a transcendental entire function and ng is a polynomial,
it follows that 7 is a small function of ;"1 +...+ne® Now in view of Lemma
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1, (3.21) and using second fundamental theorem for small functions (see [19]), we
obtain

LT f) = WT(re) = T (rme®+...+me) +S(r fi)

< N (r0;m e 4. + mea)
+N (T, O;m, € + ... 4 me® + 770) +S(r, f1)

< (L=1)T(r, f)+ S(r, f1),

which is a contradiction. Hence b; = 0 for ¢ = 0,1,...,l; — 1 and so Pi(f;) =
a1nf{'. By the given condition, since P has at least one zero of multiplicity
at least kK + 1 when k& € N, it follows that n > k 4 1. Therefore (3.12) yields
(anf7 F1)*) (angt G = p?.
Thus in either cases we have

(an fIF) ) (ang? G1® = p?, (3.22)

where (a, f7F1)® and (a,g7G1)*) share (0,00). Let z, be a zero of f; of multi-
plicity ¢ and z, be a zero of g; of multiplicity r. Clearly z; will be a zero of f{'
of multiplicity ng and z, will be a zero of g of multiplicity nr. Since f; and ¢;
are transcendental entire functions, it follows that z; and z, must be the zeros
of (anflF1)® and (a,g7G1)*) of multiplicities at least ¢ — k(> ng — k > 1)
and 7| — k(> nr — k > 1) respectively. Since (a,f7'F1)* and (a,g97G1)* share
(0,00), it follows that z, = z;. Hence f; and g¢; share (0,00). Consequently F}
and G share (0,00) and so a,, f{'F1 and a,g] Gy share (0, 00).

We consider the following cases.

Case 1. Suppose 0 is a Picard exceptional value of both f; and g;. Since f1 # 0
and g1 # 0, so we can take

£1(2) = € and gy (2) = ), (3.23)

where v and 8 are two non-constant entire functions. Since f; and g; are of finite
order, both « and 8 are non-constant polynomials. Let

a1(z) =na(z) + Z,uja(z +¢;) and Bi(z) =n B(z) + Zu]ﬂ(z +cj). (3.24)

j=1 j=1

We now consider the following sub-cases.

Sub-case 1.1. Let deg(p) =1 € N. Following sub-cases are immediately.
Sub-case 1.1.1. Let kK = 0. Note that a,f['F; # 0 and a,g7'G1 # 0. Since
deg(p) > 1, from (3.22) we arrive at a contradiction.

Sub-case 1.1.2. Let £ = 1. Then from (3.22), we get

a2a) e TP = p2. (3.25)
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Also from (3.25), we can conclude that oy + 81 = ¢; € C and so o) + 8] = 0.
Thus from (3.25), we get a2el oy 8] = p?. By computation we get

o (2) = ep(z) and B1(2) = —cp(z), where c € C\ {0}. (3.26)
Hence
a1(z) = eQ(z) + by and B1(2) = —cQ(z) + be, (3.27)
where Q(z fo z)dz and by, by € C. Finally we take f and g as

F(2) — co = e*® and g(z) — g = *©?)

such that na(2)+327_ pja(z+e;) = c [§ p(2)dz+b1, nB(2)+ 351 1Bz +¢;) =

—c [ p(2)dz + by, where by, by € C and ¢ € C\ {0} such that aZc?e” ™02 = —1.
Sub-case 1.1.3. Let £ € N\ {1}. Then from (3.22), we see that a; + 51 € C, i.e.,
oy = —f31. Therefore deg(a;) = deg(f1). If possible suppose deg(a1) = deg(p1) =
1. Then clearly (a,f7F1)*) # 0 and (a,g7?G1)™® # 0. Since deg(p) > 1, we get
a contradiction from (3.22). Hence deg(c;) = deg(f1) > 2. Now from (3.23) and
Lemma 11, we see that

(anfi ) = (e + b a2y 4 pia(al) ) e

Similarly we have

(ang?Gl)(k)
k(k—1) 4_ _
_ <nk(61)k+(2)nk 1(61)]6 2/31,+Pk2(/31)> 651
-1
— <(_1)knk(a/1)k_ ]f(k2 )nk—l(_l)k—Q( )k 2 ”+Pk; 2( )) 661.
Since deg(ay) > 2, we observe that deg(( NE) > k deg()) and so ()20 is
either a non-zero constant or deg((a})*~2a%) > (k — 1) deg(a}) — 1. Also we see

that
I\k k—2 o /
deg ((a))") > deg ((0})* %01 ) > deg (Pya(ah) (or deg (Pa(—a}))).
Let
oy (2) = ezt +er 127 F L+ e,
where eg, e1,...,e(# 0) € C. Then we have

(af(2))" = ej2" + ey~

it—1
e 12"+,
where ¢ € N. Therefore we have

(anf{lFl)(k) = (nkefzkt + knkef_let,lzkt_l +...+ (D1 + Dﬂzkt—t—1 +.. ) e
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and
(angtG)® = <( Dfnkel M (—1)Fknkel—te, 1M1 4

+((—1)kD1 v (—1)k_1D2)zkt_t_1 ¥ ) o,

where D1, Dy € C such that Dy = @mk—lef—l. Since (anf'F1)® and
(ang?G1)®) share (0, 00), we have

nkel M 4 knFelle, 1Ml 4 4 (D + Do) ML 4 (3.28)
= d*(( )knkekzkt 4+ (=1)FknPelte, (M4

F((~1FDy + (<11 Dp) R L)

where dj € C\ {0}. From (3.28), we get Dy =0, i.e., @tnk_leffl = 0, which
is impossible for k > 2.

Sub-case 1.2. Let p(z) =b € C\ {0}. Since n > k, we have f; # 0 and ¢g; # 0.
In this case also we have fi(z) = e®*) and g1(z) = €#(*), where a and § are
non-constant polynomials. We now consider the following two sub-cases.
Sub-case 1.2.1. Let £k = 0. Now from (3.22) and (3.23), we have

a2 exp{n(a(z +Zu] a(z+¢) + B(z+¢)} =b.

Therefore we must have n(a(z)+5(2))+> i pj(a(z+c¢j)+B(z+¢;)) € C and so
a(2) + B(z) € C. Finally we can take fi(z) and g (z) as follows f(z) — co = e*(?)
and g(z) — co = te=*®), where o is a non-constant polynomial and ¢t € C\ {0}
such that a2t"t7 = b2

Sub-case 1.2.2. Let kK = 1. Considering Sub-case 1.1.2 one can easily conclude
that deg(a) = deg(f81) = 1, i.e., deg(a) = deg(f) = 1. Finally observing (3.22),
we can take f(2) — co = c1e™? and g(z) — cg = coe™4%, where c1, ¢, d; € C such
that (—1)*a2(c1co)" 7 (d1(n + o))k = b2,

Sub-case 1.2.3. Let k € N\ {1}. Then from (3.22), we see that

(an ST F1)*) # 0 and (ang?G1)® # 0. (3.29)

Again from (3.22), we see that oy + 1 € C, i.e., o) = —f]. Therefore deg(a;) =
deg(1). Suppose deg(ay) = deg(fB1) > 2. Considering Sub-case 1.1.3 one can
easily get

k(k — 1)nk—1

(anfi F)® = (n*(a)* + =5 (0h)" 20 + P_s(ah) ) e

and
(ang?Gl)(k)

_ <(_1)knk(a/1)k_ k:(k:2— 1)nk71(_1)k72( 20 1 Py s(—a )> &bt
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where

k(k—1
B =D i (a2 + Pyafaf)

and (_l)knk(a/l)k o k(kz_ 1)nk71(_1)k72( )k 2, +Pk 2( )

are non-constant polynomials. Then from (3.29), we arrive at a contradiction.
Hence deg(a;) = deg(f1) = 1 and so deg(a) = deg(8) = 1. Finally observing
(3.22), we can take f(z) —co = cie®? and g(z) —co = coe™¥*, where ¢y, c2,d; € C
such that (—1)%a2 (c1c2)" 7 (di(n + 0))?* = v2.

Case 2. Suppose 0 is not a Picard exceptional value of f; and ¢;. Since n > k,
from (3.22) we see that zeros of both f; and g; are the zeros of p and so f; and g1
have finitely many zeros. Consequently both f{*F; and ¢gi'G have finitely many
Zeros.

Let H = f] F1, = g7Gy, F = % and G = %. Clearly F' and G have finitely
many poles. Let F = {F,} and § = {G,}, where F,(z) = F(z + w) = I;((er;))
and G,(2) = G(z + w) = ;I((;if)), z € C. Clearly F and G are two families of

meromorphic functions defined on C. We now consider following two sub-cases.
Sub-case 2.1. Suppose that one of the families F and G, say JF, is normal on

C. Then by Marty’s theorem F7#(w) = F#(O) < M for some M > 0 and for all
TF

w € C. Hence by Lemma 9, we have F <— ) is of order at most 1. From

Lemma 4, we have p(f"F1) = p(f1). Now from (3.22), we have
3
o) = (B5) —ptiem) = o (rm)®)

= p(laren®) = piai6n) = p (451
= plg) <1

Since f; and g; are transcendental entire functions having finitely many zeros and
are of order at most 1, we have

f1 = h1e” and g; = hie?, (3.30)

where hj is a non-constant polynomial and «, 8 polynomials of degree 1. Now
from (3.22) and (3.24), we see that a; + 1 € C and so o) + ] = 0. Since «
and S are polynomials of degree 1, without loss of generality we may assume that
a(z) = a1z+b1 and B(z) = azz+ba, where a1 (# 0), b1, az(# 0), b2 € C. Then from
(3.24), we have o} (z) = (n + 0)ay and B](z) = (n+ o)ay. Since fi(z) = —}(2),
it follows that as = —a; and so &/(z) = —p'(z). Now we consider the following
two sub-cases.

Sub-case 2.1.1. Let k = 0. Now observing (3.22), we can take f(z)—co = h(z)e**
and g(z) —co = th(z)e”**, where h is a non-constant polynomial and a,t € C\ {0}
such that a2t 2" (2)([T5; h(z + ¢;))? = p*(2).

7=1
Sub-case 2.1.2. Let k € N. Suppose o/(z) = a1. Therefore §'(z) = —ad/(z)
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—ay. Now from (3.24), we have | (z) = (n+ 0)a; and 1(z) = —(n + 0)a;. Now
from (3.22) and (3.30), we have respectively

k k
(PR = e 37ROy (nah) D = et Y RC (0 + 0)ar) " (R D
i=0 =0
and
(grG1)® =M Y RO (B = e Y TECH (= (n+ 0)ar) T (R,
1=0 1=0

where we define (A7) = h?. Since (f7F;)* and (¢7G1)*) share (0,00), it
follows that
SR ((n+ 0)an) RN D = a5 Y ECH(=1)F (0 + 0)ar) VT ()@, (3.31)
=0 =0
where d € C\ {0}. But from (3.31), we arrive at a contradiction.
Sub-case 2.2. Suppose that one of the families F and G, say F is not normal on
C. Then there exists at least one point zg € A such that F is not normal at zg.
Without loss of generality we may assume that zg = 0. Now by Marty’s theorem
there exists a sequence of meromorphic functions {F(z + w;)} C F, where z € A
and {w;} C C is some sequence of complex numbers such that F#(w;) — oo as
|wj| — oo. Since p has only finitely many zeros, so there exists a r; > 0 such
that p(z) # 0in {z : |z| > r}. Again since f{'F} has finitely many zeros, so there
exists a ro > 0 such that f{'(z)Fi(z) # 0 in {z : |z| > r2}. Let r = max{ri,r2}
and D = {z : |z| > r}. Also since w; — 0o as j — oo, without loss of generality
we may assume that |w;| >+ 1 for all j. Let

H(wj + z)
p(wj +2)
Since |w; + z| > |w;| — |z|, it follows that w; + z € D for all z € A. Also since
fl(2)F1(z) # 0 and p(z) # 0 in D, it follows that fi'(w; + 2)F1(w;j + 2) # 0 and
p(wj +2) # 0in A for all j. Observing that F'(z) is analytic in D, so F(wj + z) is
analytic in A. Therefore all F'(w; + z) are analytic in A. Thus we have structured

a family {F(w; + 2)} of holomorphic functions such that F(w; 4+ z) # 0 in A for
all j. Then by Lemma 8, there exist

F(wj+2) =

(i) points z; € A such that |z;| < 1,
(ii) positive numbers p;, p; — 07,
(ili) a subsequence {F(w; + zj + p;()} of {F(w; + 2)}
such that
hi(¢) = p; " F(wj + 2 + pi¢) = h(C),

‘ | B _kH(wj—l—Zj‘i‘,OjC)
1.e., h] (O =P p(wj +z; + ij)

— R(C) (3.32)
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spherically locally uniformly in C, where h(() is some non-constant holomorphic
function such that h#(¢) < h#(0) = 1. Now from Lemma 9, we see that p(h) < 1.
In the proof of Zalcman’s lemma (see [12, 20] ) we see that

1 (3.33)
YRR |
where b; = w;j + z;. By Hurwitz’s theorem we see that h({) # 0. Note that

p(wj + 2z + pi€)
as j — 0o. We now prove that

(B) (s + 2: +
(hj ()™ = o i . i pjgj) — h™((), where k € NU {0}. (3.35)

Clearly (3.35) is true for k = 0. Therefore we have to show that (3.35) is true for
k € N. Note that from (3.32), we have

e 1 (wj + 2 + pi€)
o pwi+ 2+ pi6)
_ !(w; + 2z + pj<)
nL(¢ +p‘k+1p(w1 J T Pj
A0 o+ 2+ 00)
P'(wj + 2 + pi¢)
j( ) jp(wj+zj+ij) J( )
Now from (3.32), (3.34) and (3.36), we observe that

(3.36)

H(wj + 2 + pjC)

1 H'(wj + 2 + pi€)

h'(C).
T w0 ©

Suppose

e HO (W) + 25+ pi€)

@
7 p(wj + 2 + p;C) = RO

Let

HO(w; + 2 + p;Q)
CA(C) = okt i AT PS)
Q) =#; p(wj + 25 + pi¢)

Then G;(¢) — hD(¢). Note that

pfk+l+1 H(Hl)(wj + 25 + piQ)
’ p(wj + 2z + pi¢)
- '(wj + zj + pjQ)
= GM(C) 4 p k1P (Wj +2j + 1 HO
A0 s+ 2+ 010)
p'(wj + z; + pi¢
B G ().
p(wj + zj + p;C)

(3.37)

(wj + 25 + p;C)

= GO +r
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So from (3.34) and (3.37), we see that

R H D (w) + 25 + pi€)

— G5(¢),
? p(wj + 2 + p;iC) i)
ie., ;k+l+1 H(ZH)(% + zn + pjC) N h§l+1)(<)_
p(wj + 25 + p;C)

Then by mathematical induction we get desired result (3.35). Let

(k) _ H® (w; + 2 +PjC)_

i 3.38
From (3.22), we have
H® (w; + 2z + p;Q) HP (wj + 25 + p¢) _ 1
plwi+2;+p¢)  plwj+z+p0)
and so from (3.35) and (3.38), we get
(hi ()™ (i)™ = 1. (3.39)

Suppose k = 0. Therefore from (3.35) and (3.39), we can deduce that ilj(C) —
iL(C ), spherically locally uniformly in C, where il(C ) is some non-constant holo-
morphic function in C.

Suppose k € N. Now from (3.35), (3.39) and the formula of higher derivatives we
can deduce that ﬁj(C) — B(C), spherically locally uniformly in C, where B(C) is
some non-constant holomorphic function in C. Thus in either cases we can deduce
that

P o o Hwitz+e0) s
hi(C) = h(C), e, PR = Q). (3.40)

spherically locally uniformly in C, where iL(C ) is some non-constant holomorphic
function in C. By Hurwitz’s theorem we see that h(¢) # 0. Therefore (3.40) can
be rewritten as

(Ai (O™ — (()™ (3.41)
spherically locally uniformly in C. From (3.35), (3.39) and (3.41), we get
(AP (R(¢)W = 1. (3.42)

Since p(h) < 1, from (3.42), we see that p(h) = p(h®)) = p(h*) = p(h) < 1.
Since h and h are non-constant entire functions such that h 7 0 and h # 0, so we
can take h = e*2 anfi h = 652, where as and 5 are non-constants entire functions.

As p(h) <1 and p(h) <1, as and B2 must be polynomials such that deg(as) =1
and deg(2) = 1 Therefore we can take

h(z) = é1e% and h(z) = ége™ %, (3.43)
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where ¢, é1, 6 € C\ {0} such that (—1)*(¢162)(¢)?* = 1. Also from (3.43), we have

W Flwj+z+p0) W) .
h;(¢) —fi F(wj + zj + p;iC) - h(¢) =6 (3.44)

spherically locally uniformly in C. From (3.33) and (3.44), we get

) Fllwj+z)| 1+ |Fwj+2)P [F(wj+2z)| 14 [F(wj+2z)
T F(w)+2) [F'(wj +25)| [F(wj + )] | F(w; + )
WO _ .
RO ' -l
This shows that lim F(w; + z;) # 0,00 and so from (3.32) we get
j—00
h;(0) = p; *F(w;j + 2;) — 0. (3.45)

Again from (3.32) and (3.43), we have
hj(O) — h(O) = 61. (3.46)

Now from (3.45) and (3.46), we arrive at a contradiction. O

4 Proofs of the Theorems

Proof of Theorem 1. Let F = (Pl(flpw and G = M. Then F and
G share (1,2) except for the zeros of p. When H # 0, we follow the proof of
Theorem 1.3 [10] while for H = 0 we follow Lemmas 6, 7 and 12. So we omit the
detail proof. O

Proof of Theorem 2. Let F and G be defined as in Theorem 1. Then F' and
G share (1,1) except for the zeros of p. When H # 0, we follow the proof of
Theorem 1.4 [10] while for H = 0 we follow Lemmas 6, 7 and 12. So we omit the
detail proof. O

Proof of Theorem 3. Let F and G be defined as in Theorem 1. Then F' and
G share (1,0) except for the zeros of p. When H # 0, we follow the proof of
Theorem 1.5 [10] while for H = 0 we follow Lemmas 6, 7 and 12. So we omit the
detail proof. O
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