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COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES
OF STARLIKE FUNCTIONS OF COMPLEX ORDER
ASSOCIATED WITH A HYPERBOLIC DOMAIN
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Abstract

In this paper, we obtain the coefficient inequalities for functions in certain
subclasses of Janowski starlike functions of complex order which are related
starlike functions associated with a hyperbolic domain. Our results extend
the study of various subclasses of analytic functions. Several applications of
our results are also mentioned.
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1 Introduction

Let A denote the class of functions analytic in U = {2z : |z2| < 1} and having
a Taylor series expansion of the form

f(z) :z+Zan" cn > 0. (1)
n=2

Let 8§ denote the subclass of A of analytic and univalent functions in U. Also, let
8*(n) and C(n) denote the familiar subclasses of A consisting of functions which
are respectively starlike of order 1 and convex of order n in U. The class P denotes
the class of functions of the form p(z) = 1+p12+p2z?+p3z3+--- that are analytic
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in U and such that Re(p(z)) > 0 for all z in U. For detailed study of various
subclasses of univalent function theory, we refer to [5].

The functions p,(2) plays the role of extremal functions related to the hyper-
bolic domains (see [14, 21]) and is given by

1+ bz
w(z) = (142 — 2a, 2
Pa(z) = (1+20) /12 = 20 e)
where )
1+4a — 4o
b=1» = 0
(@) (1+2a)? ~’ «-

the branch of the square root /w being chosen such that Rey/w > 0. Clearly,
Pa(z) € P is analytic with the expansion of the form

pa(z):1+LlZ+L222+"' 5 (L]:p](a)’]zlv 27 37"‘)7 (3)
where )
1+4 14+4a)(1+4
le( + 4a) and L2:( +4a)(1 4+ 4o+ 8a”)
142« 2(1 4 2a)3

In [21], Stankiewicz and Wisniowska defined SH(«) as the class of functions
f € A satisfying the condition

ZJ{(S) — % (\/5 - 1)

< V2Re (i{;i?)—i-?a(\@—l),

for some o > 0. Note that f € SH(«) if and only if Z}C(S) lies in the hyperbolic
domain

Qa) ={w=u+iv: v’ <dau+u® u>0}

which is included in the right half-plane and is symmetric to the real axis with a
vertex at the origin. Equivalently, a function f € SH(«) if and only if

2f (2)
f(2)

where < denotes the subordination. The function p,(z) maps the unit disk con-
formally onto the domain Q(«a) such that p,(0) = 1 and p/,(0) > 0. The class
SH(«) was motivated by the study of uniformly convex and uniformly starlike
functions (see [6, 9, 10, 17]).

Now we briefly recall the g-calculus and the notations which are required
for our study. Quantum calculus (g¢-calculus and h-calculus) is common classical
calculus without the notion of limits. Here, h represents Planckis constant, while ¢
represents quantum. Due to its application in a variety of branches such as physics,
mathematics, the area of g-calculus has gained great importance for researchers.
The first study on g-calculus was systematically established by Jackson [8] as
g-derivative is merely a ratio which is given by

flgz) = f(2)
(¢-1)z =

= pa(z)a

qu(z) =
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Note that lim,_,;- D, f(z) = f'(2). Notations and symbols play a very impor-
tant role in the study of ¢g-calculus. Throughout this paper, we let

nlg=> ¢, [0l4=0, (¢€C)
k=1

and the g¢-shifted factorial by

<m@n={L n=0

(1-a)(1—aq)...(1—ag" '), n=1,2,....

In [7], Ismail et. al. introduced the class 8} to be the class of functions which
satisfy the condition

(f €8).

zDef(2) 1 ‘ < 1
flz)  1=q| 7 1=¢
Equivalently, a function f € 87 if and only if the following subordination condition
(see [13, 20])
2Dy f(2) - 1+2
f(z) 1—gz
holds. It can easily be seen that if ¢ — 17, 87 reduces to the well-known class of
starlike functions.

Recently in [15], the authors defined the following ¢-differential operator
QT(CLl,bl; q, Z)f : U — U given by

I (ar,b15 ¢, 2)f =24 > (1= A+ Alnjg)™ Tneaz”, (4)
n=2
(m € No=NU{0} and A > 0),

where
I — (a1;¢)n-1(a2;Q)n-1- .- (ar; @)n—1
(QQ Q>n—1(b1§ Q)n—l e (bs§ Q)n—l
Remark 1. For a detailed study and applications of the operator g\ (a1, b1; ¢, 2)f,
refer to [15] and the references provided therein. We let 2™V f denote the well-

known Salagean derivative operator (see [18]), which is a special case of the oper-
ator 35 (a1,b1; q, 2) f.

Throughout our present discussion, to avoid repetition, we lay down once and
for all that -1 < B< A<1,z€UandTI, is real.

(gl <1).

Motivated by the class SH(«), we define the following.

Definition 1. For p,(z) defined as in (2), a function f € k—Sﬂf;\”g’(’y; ay, b1; A, B)
if and only if

14 1<qu [3% (a1, 015 ¢, 2)f] 1) - (A+Dpa(z) —(A-1)
v\ d(a1,015 0, 2)f (B+1)pa(z) = (B~ 1)’
where v € C\ {0}, k>0 and 0 < a < 1.

(feA) (5)
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Remark 2. Ifwelet A=1,B=-1,y=140i, m=0,r =2,s =1,a; =
bi,as = q and ¢ — 17, the class k— SJ—C)‘ M(y; a1, b A, B) reduces to the class
SH(a).

Definition 2. Let 82‘,’21(7;@, b1; A, B) denote the class of functions f € A sat-
isfying the inequality

1 ( 2Dy [35(a1,b1; q, 2)f] ) (A+1)
14— =LA —1
* < J0(a1,b15 q, 2) f B 1

where p(z) = 12, q € (0, 1), v € C\ {0}.

—qz’

Remark 3. The study of classes k— SU‘CA (y;a1, by A, B) and Sq’a (v;aq, b1; A, B)
was motivated by the Noor and Malik [12/ For geometrical interpretation and pur-
pose to study such conic region, refer to [2, 12, 20] and the references provided
therein. Several well-known classes (just to name a few) a-spiral functions, con-
vex a-spiral functions, starlike functions of complex order and convex functions
of complex order can be obtained as special cases our class Sq, (v; a1, b; A, B).

By definition of subordination, a function f € A is said to be in
8y i (v; a1, bi; A, B) if and only if

12D, e b 4, )\ (A+ Du(e) 2+ (4 Dgu(z)
1+7< T (o, b 0, ) 1) B w121 (B D)’

(¢ € (0, 1), ZEU),
| <

where w(z) is analytic in U and w(0) = 0, |w(z)

2 Coefficient inequalities

We need the following Lemma to prove our main result in this section.

Lemma 1. /23] Suppose that (A — B)y(14+q) —{B(1+q)+ (1 —¢)} ([n]; — 1)|—
4([n]g —1) > 0.

(A— B) (1+q)? |y P

+§j{ (1 +0) = {B(L+q) + (1= )} (In)y = D = 4 (nl, — 1}
2 17T LA=B) 1+ a)y— (= U~V [BU+a) +(1-g]

X‘%{Qzll 2 ([l — 1) }

Sl [lU-Bater- (-1 IBO+)+(-q)P
=1, - P :

where g € (0, 1), vy € C\ {0}, n € N\ {0}.
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Theorem 1. Let the function f(z) defined by (1) be in the class
Sya(via1, bis A, B) and let Ly = [(A— B)y(1+q) — {B(1 +q) + (1 = )} ([n], — 1)|-
4([nfg = 1)

(a) If Ly <0, then

ol A-BUtaly]
S A A A Ul - D T

(b) If L, > 0, then

1
ci |< - i
1S T g,

L (A-B)(1+q)y— (n—1,— D[B1+q) + (1 - q) |
<11 2 ([, — 1) ©)

n=2

(¢) If Ly, >0 and Liy1 <0 fork=2,3,...,j—2,
< :
T =N+ A (g — 1) ((K]g — DT

Xkﬁll(z‘l B+gy—(n-1, -1 [BO+q¢)+1-9)]|
2

n=2
(10)

The bounds in (8) and (9) are sharp for all admissible A, B, v € C\ {0} and for
each j.
Proof. Since f(z) € 8;‘;&”(7; ay, b1; A, B), the inequality (6) gives
2 [Z-Dq [Hg\n(alv bl; q, Z)f] - 3S\n(a17 bl; q, Z)f] = {(A - B)’Y(l + Q)HT(ah bl; q, Z)f
(11)
+ [B(1+q) + (1= q)][3X(a1,b1; g, 2) f — 2Dq (33 (a1,b15 ¢, 2) )]} w(z).

Equation (11) may be written as

Z 29, —1) 2" = {(A —B)y(1+q)z
(12)
+ Z [(A=B)y(1+q) —{B(1+q) + (1 - q)}([n)y — DI ann}w(z%
where Q, = [1 — XA+ A[n],]" I'y. Equivalently
ZQQ g— 1) cn2" + Z dp 2" —{(A—B)'y(l—i—q)z
n=j+1
j—1
+ > [(A=By(l+4q) — {B(L+4q)+ (1 -q)} ([l — ]2 ann} w(z),
n=2

(13)
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for certain coefficients d,,. Since | w(z) |< 1, we have

J
22(2”([ —1) cp2™ + Z dp 2" ’A B)y(1+q)z
n=2 n=j+1
-1
+> (A=B)y(1+q) = {B(1+q) + (1 =)} (Inly — 1)] 2 cnz"
n=2

(14)
Let z = re?, v < 1, applying the Parseval’s formula (see [3] p.138) on both sides
of the above inequality and after simple computation , we get

> 420 ([nly = 1)? Jeal* ™"+ Z |daf? 72" < (A=B)?*(144)* | v * r*
n=2 n=j+1
j—1
+Y (A=B(1+9) = {B1+q)+ (1 - @)} ([ — DI* Q5 [eal” 7"
n=2

Let r — 17, then on some simplification we obtain

j—1

493 ([l = V* lej* < (A= BP*(1+9)* [y P+ Y _{[(A= B)y(1 +q)- (15)
n=2

[BO+q) + (1 =)} (nly — DP = 4([nlg — 1} Q2feal” G 22
For j = 2, it follows from (15) that

A-B)(1+4q) [7|

el < — . 16
S AR @D T o)
Clearly, if L, > 0 then L, 1 > 0 for n = 2,3, .... Also, if L, < 0 the
Lpy1 <0forn=2,3,...,. If Ly <0, then from the above discussion we can
conclude that L,, <0 for all n > 2. It follows from (15) that
(A-B)(1+q) ||
&5l < ) . (17)
’ 21 =X+ [l (Ulg—1) Ty
If L,—1 > 0, then from the above observation Lo, L3, ..., Lj_2 > 0. From

(16), we infer that the inequality (9) is true for j = 2. We establish (9), by
mathematical induction. Suppose (9) is valid for n =2, 3, ..., (j — 1). Then it
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follows from (15) that
j—1
492 ([jlg = 1?|ejI* < (A= BP(1+)* |7 [P+ D_{I(A= B)y(1+q)—

n=2

{B(1+q)+ (1 —q)}([nlg —1)1* — 4 ([n]g — 1)2} Q2 |en|?
<(A-BP*(1+9)7° |~

+> {IA= B+ @) = {BO+q) + (1 =)} (Inly ~ DI = 4 (nly — 1}
n=2

n

1 | A=-B)A+gy—([-1,—D[BU+q)+(1—-q)]
92{913 2 (s~ 1)° }

Thus, applying Lemma 1, we get

1
I—A+ [j]q)‘]m FJ'

|cj|§[

L (A-B)(1+qy—(n—1, - D[BA+q) + (L —q)|
<11 2(fn], — 1) ’

n=2
which completes the proof of (9).
Now if we assume that Ly > 0 and Ly <0 for k=2,3,..., 57— 2. Then
LQ, Lg, ey Lk—l > 0 and Lk+2, L]H_g, ey Lj,Q < 0. Then (15) giVGS

k
493 ([l = D? lej < (A= BP*(1+9)* |7 P+ _{l(A=B)(1+4)
=2

—{B(1+q) + (1=} (llg— VP =4 (), =1’} OF |aaf

j—1

+ Y {[(A ~B)(1+q)y = [B(L+q) + (1 - )] ({lg - DI

I=k+1
~4([llg = 1} 9} al?
<(A=-BP(1+q)? |y

k
+y {[(A — B)(1+q)y = [B(1+q) + (1 - @) ([l - D]
=2

~4([ll,~1)°} OF .

On substituting upper estimates for cs, cs, ..., ¢ obtained above and simplifying,
we obtain (10).
Also, the bounds in (8) are sharp for the functions fx(z) given by

(A—B)y
2(1 + Bz)B3G-1) if B #0,

Hm a 7b ; q7 Z 'Z =
)\( 1,01 )fk( ) Zexp()\(?’yl) Zk—l) ifB:O.
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The bounds in (9) are sharp for the functions f(z) given by

(A—B)y

z(14+ Bz) B if B#0,
zexp(Avyz) if B=0.

IN'(ar,b15 ¢, 2)f = {

O]

Remark 4. It can be seen that Theorem 1 extends the results obtained by various
authors, for example see [4, 19, 22, 23].

Ifweletm=1,r=2, s=1, a1 = b1, ag =qand g — 1, we get the following
result obtained by Ghosh and Vasudevarao in [4].

Corollary 1. Let f € A satisfy the condition

/

1 zAﬁ%@+u—Aﬁuﬂ O Lea
MRl ORI IC R =

Also, let L, =|(A—B)y—B(n—1)|—4(n—-1).

(a) If Ly <0, then
(A-B)[7]

L+AG -1 -1)

|Cj’ < [

(b) If L, > 0, then

| i I<

[1+A0G -1

I 1 (A=B)y—(n—2)B
[1|( EZ—g) ) B |

n=2

(¢) If Ly, > 0 and Ly <0 fork=2,3,...,j—2,

k+1

a1l A-Br -2
n=2

L+ AG-D](G -1

|C]"§[

The bounds in (a) and (b) are sharp for all admissible A, B, v € C\ {0} and for
each j.

Corollary 2. [23] Let f € A, satisfy the subordination condition

) zf/(z) ] 14+ Az
(1+ztan6)m—ztanﬂ =< B2

(z €U).
Then forn > 2,

e P cos B — jB’

G+1)

n—2
|(A-B)
len| <
1l

where || < w/2.
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Ifweset A=1-2n(0<n<1), B=-1,m=0and ¢ — 1~ in Corollary 2,
we get the following result.

Corollary 3. [11] Let f € A satisfy the condition

f(2)
Re( 02) ) > ncos f.

Then

J+1

n—2 i —iB .
e < H (‘2(1 n)e cosﬁ—i—j‘) . (18)
j=0

The coefficient estimates in (18) are sharp.

Ifwelet A\=1,r=2,s=1,a1=bjandas=q, A=1,B=—-M and g — 1~
in Theorem 1, we have

Corollary 4. [1] Let the function f(z) defined by (1) satisfy the condition

-~ 77 f(2)
vy L+9W@

v

- M| <M.

Let

B 2u(n — 1) Re ()
G‘[m~wvu—urww%1+m]

(form=1,3,...,j—1).
(a) If2u(n—1)Re {7} > (n—1)2(1—u)— | v |? (1+u), then, forj =2,3,...,G+2

wﬂéjmuﬂlﬂ£1|u+uw+wn—mu| (19)
and for j > G +2
1 G+3
1< S —ayiay s L1 0w+ o2

(b) If 2u(n — 1) Re {7} < (n — 1)%(1 — u) — |v]*(1 + u), then

j>2. (20)

1 1
hereu=1—— (M >—2
wnere u < D)

The inequalities (19) and (20) are sharp.
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To prove our next result, we need the following Lemmas.

Lemma 2. [16] Let f(z) = > 72 | anz" be analytic in U and g(z) = Y -7, by2" is
analytic and convex in U. If f(z) < g(2), then |ay| < |b1], forn=1,2, ...

Lemma 3. Let the function p,(z) be defined as in (2) and let p(z) = 1 +
dooc Pz be in P satisfy the condition

(A+ Dpalz) = (A1)

) =2 B Dpalz) = (B-1)'

(21)

Then
A— B)(1+ 4o
pof < A BLAD),
(14 2)

(n>1). (22)
Proof. From (21), we have

o 2
§) < g1 |1 g |14 5 oqre) + (G gm) 4

A-1 B+1 A+1
“B-1 [1+<B—1_A—1> a(?)

(B+1)? (A+1)(B+1) S
+QB—D?<A—D@—M)[“”'* }

Using pa(2) = 1 + L1z + Loz? + L3z + Lyz* 4 --- in the above condition and
simplifying, we get

< 2B+ [ 2n(A - B)(B+1)™!
p(Z)‘<Z(B_1)n+[Z (B—l)n+1 Liz+---
n=1 n=1
The series .7 %))711 and Y 07, A( BB)l(;Bnﬂ) converges to 1 and 7(’4;3 )

respectively. Hence

(A-B)(1 +4a)z+

2(1 + 2a) (23)

p(z) <1+

Since p(z) € P and the superordinate function in (23) is convex in U, the result
follows on applying Lemma 2 to (23). O

Theorem 2. Let f € k — 83{2”21(7;611, b1; A, B), then forn > 2,

1 2 |(A— B)(1+4a)y — 2(1 + 2a)([j + 1], — 1)B|
el < T AT, II 20+ 20) ([ + g — D

(24)
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Proof. By the definition of k — 85‘(2:’”(7; ay, bi; A, B), we have

[0}

- 1<qu (0% (a1, b1; ¢, 2)f]

Iv(ar,bis g, 2)f 1) =p(2) (25)

where p(z) € P and satisfies the subordination condition

(A+ Dpa(z) = (A-1)
(B + Dpa(z) = (B—1)

p(z) <

Equivalently (25) can be rewritten as

o0

Z [1 =X+ Alnfg]™ ([nlg — 1) Tnenz"
n=2
=v|z+ Z [1— X+ Al ]™ Fncnz”] [Z pnz"] .
n=2
On equating the coefficient of 2™, we get

(1= A+ All)™ (g — 1) Taca
=v{Pn—1 + P21 = A+ A2]g]" Taco+ -+ +p1[I1 = A+ A[n—1]g]" Tp1cpn_1}.

On computation, we have

n—1
el < T Xy T o A+ A el
(et

Using (22) in the above inequality, we have (for ¢; = 1)

1

Y(A = B)(1 + 4o — 1 m
eal < hi(4 = B){1 + 4o) 1= A+ Al — 4™ Tl

T 2(1420)[1 = A+ An]g" ([n)g — 1) Ty

1

<

(26)
Taking n = 2, in (26), we get

‘C ’< "7|(A_B)(1+4Oé)
=291+ 2a) [T = A+ A[2]]" T2

and for n = 3 in (26), we get

[7[(A = B)(1 +4a)
2¢(1+q)(1+2a) [1 = A+ A[3]g]" T3

I7[(A = B)(1 +4a) 14 [7[(A = B)(1 +4a)
T 21+ q)(1+2a) [1 = A+ A[3]g]" T3 29(1 + 2cv)

|ea] < (141 = A+ AR2Jg)" Tafeal)
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If we let n =3, in (24), we have
1 [M(A—B)(l—i—éla)
1 =X+ A3l I3 2¢(1 + 2a)
y (A= B)y(1+4a) —2(1+ 2a)(q)Bq
2(1+2a)q(1 +q)

|03§[

¢t [ B
T I=X+ A3 s 2¢(1 4+ 2c)
A= B[ +4a) +2(1 + 204)((1)|B|]
2(14+2a)q(1 + q)

7(A = B)(1 + 4a) HI(A = B)(1+40)
= 2¢(1+q)(1+2a)[1— A+ A[3],]" T3 2q¢(1 + 20) '
Hence the hypothesis of the theorem is true for n = 3.
Now let us suppose (24) is valid for n = 2, 3, ...r. On using triangle inequality

n (24), we get
1
1= A+ A[rfg]™ (Irlg = DTy

r—2 .
(A B)(1+ 4a)}y] + 21+ 20)([j + 1l — 1
" (H W2+, -1 ) '

|Cr| <

Jj=0

By induction hypothesis, we have

r—1

(A = B)(1 + 1) .
ST 3 L A+ AT (i~ T 2 1A =2 Trgler|

1 i—f(A—B)(1+4a)|'y|+2(1+2a)([j+1]q—1)'

S A AT L 21+ 20)( + 2~ 1)

From the above inequality, we have

1:[ (A= B)(1 +4a)[y[+2(1 +2a)([j + 1], = 1)
o 20 20) ([ +2)g = DL = A+ A[r 4+ 1g)" Frpy

S hl( —B)(A+4a) (A= B)(1+4a)ly|+2(1+2a)([r]y — 1)
T2142a)([rlg—1) " 214 2a)(r+ 1 — 1[I =X+ Ar+1]]" Tr
r—1
XY L= A+ Alr = 4l Trjler]
j=1

_ V[(A— B)(1 + 4a)
S 2(1+2a) [L= A+ A+ 1" ([r + 1] = 1) Trga
r—1
ferl [L= A+ A" T+ > [1 = A+ A[r = 1] Tl
j=1
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_ 7[(A = B)(1 + 4a)
20 +20) [1 = A+ A[r+ 1" (r+ 1] — 1) T

'
X Z (L= A+ A+ 1= 3lg)™ Trga—jleria—jl,
=1

implies that inequality is true for n = r + 1. Hence the proof of the Theorem. [

If we choose vy =1/(14+itanp), \=1,r=2,s=1,a; =bj,aa =¢q, m =0
and ¢ — 17 in Theorem 2, we get the following

Corollary 5. Let f € A, satisfy the subordination condition

. ) e (At Dpa(z) = (A1) ;
(1+itanp) ) t /B<(B+1)pa(z)—(3—l)’ (z € U).
Then for n > 2,
rcnrsﬁ B)(L+ da)e cos  — jB]

2(1+2a)(j + 1)

where |G| < /2.

If we choose vy =140, m=0,r=2,s=1,a; =b;, a0 =qand ¢ — 17 in
Theorem 2, we get the following, ( for an analogous result see [12]).

Corollary 6. For a function p,(z) defined as in (2). Let f € A satisfy the

condition
2 (2)  (A+Dpa() = (4~ 1)
f(z)  (B+Dpalz) = (B-1)

then

|C’<H|A B)(1+ 4a) — 25 B|
2(1+2a)(j + 1) ’

If we choose m =A=1,r=2,s=1, a; = by, as = qgand ¢ — 1~ in Theorem
2, we get the following.

Corollary 7. For a function p,(z) defined as in (2). Let f € A satisfy the

condition
e (zf() (A+ pa(z) = (A1)
~

<

1) (B+1)pa(z) — (B —1)
then

H A B (14 4a) —25B|
(1+2a)(j+1)
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