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ON INVARIANT SUBMANIFOLDS OF PARACONTACT
(κ, µ)-SPACES
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Abstract

The object of the present paper is to deduce some necessary and suffi-
cient conditions for invariant Submanifolds of paracontact (κ, µ)-spaces to
be totally geodesic. We also establish that a totally umbilical invariant
submanifold of a paracontact (κ, µ)-manifold is also totally geodesic. Some
more necessary and sufficient conditions for a submanifold of a paracontact
(κ, µ)-manifold to be totally geodesic have been deduced using parallelity and
pseudo parallelity of the second fundamental form. In the last section we ob-
tain some results on paracontact (κ, µ)-manifold with concircular canonical
field.
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1 Introduction

Submanifold theory is a major branch of differential geometry and plays an im-
portant role in the development of the subject. Among all submanifolds, invariant
submanifolds are very interesting and useful. The study of invariant submanifolds
is a growing topic of research in differential geometry. B. Y. Chen [4],[5] has done
many works in this line. Invariant submanifolds has been studied by several au-
thors [8],[11]. Paracontact[1] metric manifolds have become a thurst of research
in the field of metric geometry. Recently, Cappelletti-Montano et. al. [2] intro-
duced a new type of paracontact geometry the so-called para-contact metric (κ, µ)
spaces, where κ and µ are real constants.
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In modern analysis, the geometry of submaniofolds have become a subject of
growing interest for its significant applications in applied mathematics and theo-
retical physics. For instance, the notion of invariant submanifold is used to discuss
properties of non-linear autonomous system. Also, the notion of geodesic plays an
important role in the theory of relativity. For totally geodesic submanifolds, the
geodesics of the ambient manifolds remain geodesics in the submanifolds. Hence,
totally geodesic submanifolds have also importance in physical sciences.There has
been several papers on Riemannian manifolds which admit concircular vector fields
and also concurrent vector fields. Recently B. Y. Chen and S. W. Wei studied
Riemannian submanifolds with concircular canonical vector field in [3].

The present paper is organized as follows: After the introduction in Section
1, we give the required preliminaries in Section 2. In Section 3 we show that if an
odd-dimensional submanifold of a paracontact (κ, µ)-manifold is invariant then it
is totally geodesic. The converse is also true. In Section 4 we give an example.
Recurrent submanifolds of paracontact metric (κ, µ) manifolds have been studied
in Section 5. Totally umbilical submanifolds of a paracontact (κ, µ)-manifolds
have been studied in Section 6. The Section 7 contains the study of submanifolds
whose second fundamental forms satisfy some parallelity and pseudo symmetry
conditions. In the last section we establish some results on submanifolds of a
paracontact metric (κ, µ) manifolds with concircular canonical field.

2 Preliminaries

A smooth manifold M̃2n+1 is said to admit an almost para contact structure
(φ, ξ, η) if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η
satisfying
φ2X = X − η(X)ξ, η(ξ) = 1, for any vector field X ∈ χ(M̃), the set of all

differentiable vector fields on M̃ . For such manifolds we also have
(i) φ(ξ) = 0, η ◦ φ = 0,
(ii) the tensor field φ induces an almost paracontact structure on each fibre of
D = ker(η), that is the eigen distributions D+

φ and D−φ of φ corresponding to the
eigen values 1 and −1, respectively, have same dimension n.

An almost paracontact structure is said to be normal if and only if the (1,2)-
type torsion tensor Nφ = [φ, φ]−2dη⊗ξ vanishes identically, where [φ, φ](X,Y ) =
φ2[X,Y ] + [φX, φY ] − φ[φX, Y ] − φ[X,φY ]. An almost paracontact manifold
equipped with a pseudo-Riemannian metric g such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ) (1)

for all X,Y ∈ χ(M), is called almost paracontact metric manifold, where signa-
ture of g is (n+1, n). An almost paracontact structure is said to be a paracontact
structure if g(X,φY ) = dη(X,Y ) with the associated metric g. For an almost
paracontact metric manifold (M2n+1, φ, ξ, η, g) admits a φ-basis, that is a pseudo-
orthonormal basis of vector fields of the form {ξ, E1, E2, ..., En, φE1, φE2, ....., φEn},
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where ξ, E1, E2, ..En are space-like vector fields and the vector fields φE1, φE2, ..φEn
are time-like.

In a paracontact metric manifold we define a symmetric, trace-free (1,1)-tensor
field h = 1

2£ξφ satisfying
φh+ hφ = 0, hξ = 0, (2)

∇̃Xξ = −φX + φhX, for all X ∈ χ(M̃), (3)

where ∇̃ is the Levi-Civita connection of the pseudo-Riemannian manifold. Notic-
ing that the tensor h vanishes identically if and only if ξ is a killing vector field and
in such case (φ, ξ, η, g) is said to be a K-paracontact structure. An almost para-
contact manifold is said to be para-Sasakian if and only if the following condition
holds

(∇̃Xφ)Y = −g(X,Y )ξ + η(Y )X (4)

for any X,Y ∈ χ(M). A normal paracontact metric manifold is para-Sasakian
and satisfies

R(X,Y )ξ = −(η(Y )X − η(X)Y ) (5)

for any X,Y ∈ χ(M), but unlike contact metric geometry (5) is not a sufficient
condition for a paracontact manifold to be para-Sasakian. It is clear that every
para-Sasakian manifold is K-paracontact, but the converse is not always true.

Finally, we recall the definition of paracontact metric (κ, µ)-manifolds:

A paracontact metric manifold is said to be a paracontact (κ, µ)-manifold if
the curvature tensor R̃ satisfies

R̃(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) (6)

for all vector fields X,Y ∈ χ(M) and κ, µ are real constants.

This class is very wide containing the para-Sasakian manifolds as well as para-
contact metric manifolds satisfying R̃(X,Y )ξ = 0 for all X,Y ∈ χ(M).

In particular, if µ = 0, then the paracontact metric (κ, µ)-manifold is called
N(κ)-paracontact metric manifold. Thus for a N(κ)-paracontact metric manifold
the curvature tensor satisfies the following relation

R̃(X,Y )ξ = κ(η(Y )X − η(X)Y ) (7)

for all X,Y ∈ χ(M).

In a paracontact metric (κ, µ)-manifold (M2n+1, φ, ξ, η, g), n ≥ 1, the following
relations hold [2]:

h2 = (κ+ 1)φ2, (8)

(∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX) (9)
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for κ 6= −1.

Let M be a submanifold immersed in an n-dimensional pseudo-Riemannian
manifold M̃ . We denote by the same symbol g the induced metric on M . Let
TM be the tangent bundle of M and T⊥M is the set of all vector fields normal
to M . Then Gauss and Weingarten formulae are given by [2]

∇̃XY = ∇XY + σ(X,Y ), (10)

∇̃XN = −ANX +∇⊥XN (11)

for any tangent vector fields X,Y of M and normal vector fields N of M , where
∇⊥ is the connection in the normal bundle. The second fundamental form σ and
AN are related by

g(ANX,Y ) = g(σ(X,Y ), N). (12)

It is also noted that σ(X,Y ) is bilinear, and since ∇fXY=f∇XY, for a C∞

function f on a manifold we have

σ(fX, Y ) = fσ(X,Y ). (13)

Let us now recall the following:

Definition 1. Let, M̃ be an n-dimensional paracontact (κ, µ)-spaces and M be

a submanifold of M̃ . The submanifold M of M̃ is said to be invariant if the
structure vector field ξ is tangent to M , at every point of M and φX is tangent to
M for any vector field X tangent to M , at every point on M , that is, φTM ⊂ TM
at every point on M .

Definition 2. A submanifold of a paracontact (κ, µ)-spaces is called totally geodesic
if σ(X,Y ) = 0, for any X,Y ∈ TM .

Definition 3. The second fundamental form σ is said to be recurrent, respectively,
2-recurrent if the following conditions hold :

(∇Wσ)(Y,Z) = A(W )σ(Y,Z), (14)

(∇U∇Wσ)(Y,Z) = B(U,W )σ(Y, Z), (15)

where A is a 1-form on M and B is 2-form on M .

3 Invariant submanifolds of paracontact metric (κ, µ)
manifolds

Proposition 1. Let, M be an invariant submanifold of a paracontact metric
(κ, µ) manifold. Then there exists two differentiable orthogonal distributions D
and D⊥ on M such that

TM = D ⊕D⊥⊕ < ξ >, and φ(D) ⊂ D⊥, φ(D⊥) ⊂ D.



On invariant submanifolds of paracompact (κ, µ)-spaces 549

Proof. The proof is similar to the analogue proof in [13].

Proposition 2. For an invariant submanifold M of a paracontact metric (κ, µ)
manifold, for the two differentiable tangent vector fields X,Y of M , we have
σ(X,ξ) = 0,
σ(X,φY) = φσ(X,Y) = σ(φX,Y).

Proof. The proof is similar to the analogue proof in [13].

Theorem 1. Every odd dimensional invariant submanifold of a paracontact met-
ric (κ, µ) manifold is totally geodesic.

Proof. The proof is similar to the analogue proof in [13].

Now we shall show that the converse is true irrespective of dimension.

Theorem 2. Every totally geodesic submanifold of a paracontact metric (κ, µ)
manifold is invariant.

Proof. Let, the submanifold be totally geodesic. So, σ(X,Y )=0 for X,Y ∈TM .
Now we know that

∇̃XY = ∇XY + σ(X,Y ). (16)

Putting Y = ξ, we have from above

∇̃Xξ = ∇Xξ + σ(X, ξ). (17)

Again, for paracontact metric (κ, µ) manifold, we get

∇̃Xξ = −φX + φhX. (18)

Since σ(X,ξ)=0, then from (17) and (18) we get

−φX + φhX = ∇Xξ. (19)

From (19) it is clear that φX∈TM . So, the submanifold is invariant.

Theorem 3. An invariant submanifold of a paracontact metric (κ, µ) manifold
is also a paracontact metric (κ, µ) manifold provided it is odd dimensional.

Proof. Let M̃ be a paracontact metric (κ, µ) manifold. And also let, M be an

invariant submanifold of M̃ .
We shall prove that, M is also a paracontact metric (κ, µ) manifold.

Since, M̃ is a paracontact metric (κ, µ) manifold, we get

(∇̃Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX), (20)

where ∇̃ is the Levi-Civita connection of the pseudo-Riemannian manifold.
By covariant differentiation, we get

(∇̃Xφ)Y = ∇̃XφY − φ(∇̃XY ). (21)
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Again, by (10)

∇̃XφY = ∇XφY + σ(X,φY ), ∇̃XY = ∇XY + σ(X,Y ). (22)

Combining (21) and (22), we get,

(∇̃Xφ)Y = ∇XφY + σ(X,φY )− φ(∇XY + σ(X,Y )). (23)

Suppose the submanifold is odd dimensional. Then by Theorem (1),
σ(X,Y ) = 0, for any X,Y ∈ TM .
From (23), we get

(∇̃Xφ)Y = ∇XφY − φ(∇XY ) = (∇Xφ)Y. (24)

Hence, we get from (20)

(∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX).

This shows that the invariant submanifold M is also paracontact metric (κ, µ)
manifold. Hence, the theorem follows.

4 Examples

In this section we would like to construct an example of a five-dimensional
paracontact metric (κ, µ) manifold and there on an example of three-dimensional
invariant submanifold of the manifold. The example is taken from [12].

Let us consider the 5-dimensional manifold M̃={(x, y, z, w, s)∈R4|s 6= 0},
where (x, y, z, w, s) are the standard coordinates in R5.

The vector fields {X1, Y1, X2, Y2, ξ} are linearly independent at each point of M̃ ,
such that

[ξ,X1] = X1 + Y1, [ξ, Y1] = −Y1, [X1, Y1] = 2ξ,

[X2, Y2] = 2(ξ + Y2), [X1, Y2] = X1 + Y1, [Y1, Y2] = −Y1.

Let, g be the Pseudo-Riemannian metric defined by

g(ξ, ξ) = g(X1, Y1) = 1, g(X2, Y2) = −1,

all other components of the metric are zero.

Let, η be the 1-form defined by

η(Z) = g(Z, ξ) for any Z∈ χ(M̃)
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Let, φ be the (1,1) tensor field defined by

φ(X1) = X1, φ(Y1) = −Y1, φ(X2) = −X2, φ(Y2) = Y2, φ(ξ) = 0.

Then using the linearity of φ and g we have

η(ξ) = 1, φ2Z = Z − η(Z)ξ,

g(φZ, φW ) = −g(Z,W ) + η(Z)η(W ) for any Z,W ∈ χ(M̃).

Then the structure (φ, ξ, η, g) defines an almost para contact structure on M̃ .

Let, ∇̃ be the Levi-Civita connection with respect to the pseudo-Riemannian
metric g.

A straight forward computation gives that hX1 = Y1, hY1 = 0 and hX2 =
hY2 = 0.

Moreover, by basic paracontact metric properties and using Koszul formula,
we can easily calculate the following :

∇̃ξξ = 0, ∇̃ξX1 = 0, ∇̃ξY1 = 0, ∇̃ξX2 = X2, ∇̃ξY2 = −Y2,

∇̃X1ξ = −X1−Y1, ∇̃X1X1 = 0, ∇̃X1Y1 = ξ+ 2Y1, ∇̃X1X2 = 0, ∇̃X1Y2 = 0,

∇̃Y1ξ = Y1, ∇̃Y1X1 = −ξ, ∇̃Y1Y1 = 0, ∇̃Y1X2 = 0, ∇̃Y1Y2 = 0,

∇̃X2ξ = X2, ∇̃X2X1 = 0, ∇̃X2Y1 = 0, ∇̃X2X2 = 0, ∇̃X2Y2 = ξ + 2Y2,

∇̃Y2ξ = −Y2, ∇̃Y2X1 = 0, ∇̃Y2Y1 = Y1, ∇̃Y2X2 = −ξ, ∇̃Y2Y2 = 0,

and thus

R(X1, ξ)ξ = −X1, R(X2, ξ)ξ = −X2,

R(Y1, ξ)ξ = −Y1, R(Y2, ξ)ξ = −Y2,

R(Xi, Xj)ξ = R(Xi, Yj)ξ = R(Yi, Yj)ξ = 0, i, j = 1, 2.

From the above it can be easily seen that M̃5(φ, ξ, η, g) is a paracontact (-1,0)-
space.

Let, f be an isometric immersion fromM to M̃ defined by f(x, y, z) = (x, y, z, 0, 0).

Let, M = {(x, y, z) ∈ R3 | z 6= 0}, where (x, y, z) are the standard coordinates
in R3. The vector fields {X1, Y1, ξ} are linearly independent at each point of M ,
such that
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[ξ,X1] = X1 + Y1, [ξ, Y1] = −Y1, [X1, Y1] = 2ξ.

Let, g be the Pseudo-Riemannian metric defined by

g(ξ, ξ) = 1, g(X1, Y1) = −1,

all other components of the metric are zero.

Let, η be the 1-form defined by

η(Z) = g(Z, ξ) for any Z ∈ χ(M).

Let, φ be the (1,1) tensor field defined by

φ(X1) = X1, φ(Y1) = −Y1, φ(ξ) = 0.

Then using the linearity of φ and g we have

η(ξ) = 1, φ2Z = Z − η(Z)ξ,

g(φZ, φW ) = −g(Z,W ) + η(Z)η(W ) for any Z,W ∈ χ(M).

Then the structure (φ, ξ, η, g) defines an almost para contact structure on M .

A straight forward computation gives that hX1 = Y1, hY1 = 0.
It is obvious that the manifold M under consideration is a submanifold of the
manifold M̃ .

Remark 1. By Theorem 1, every odd dimensional invariant submanifold of a
paracontact (κ, µ) manifold is totally geodesic. So, a natural question arises that
whether an even dimensional invariant submanifold is totally geodesic. We answer
this question in the following sections.

5 Recurrent submanifolds of paracontact metric (κ, µ)
manifolds

A submanifold is called recurrent, if its second fundamental form is recurrent.
To prove the main theorem, first we prove an important lemma.

Lemma 1. Let, M be an invariant submanifold of a paracontact metric (κ, µ)
manifold. Then for X, ξ ∈M

σ(X, ξ) = 0 and ∇Xξ = −φX + φhX.

Proof. From equation (10), we get

∇̃XY = ∇XY + σ(X,Y ). (25)
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Putting, Y=ξ, we have

∇̃Xξ = ∇Xξ + σ(X, ξ). (26)

Again, for paracontact metric (κ, µ) manifold, we get

∇̃Xξ = −φX + φhX. (27)

Combining (26) and (27), we get

−φX + φhX = ∇Xξ + σ(X, ξ). (28)

Since, the submanifold is invariant then φX ∈ TM . Now comparing the tangential
and normal component, we have

σ(X, ξ) = 0 and ∇Xξ = −φX + φhX.

Theorem 4. Let, M be a submanifold of a paracontact metric (κ, µ) manifold
tangent to ξ. If M is invariant and recurrent then M is totally geodesic whatever
be the dimension of the submanifold.

Proof. For recurrent submanifolds we get

(∇̃Xσ)(Y, Z) = A(X)σ(Y, Z), (29)

where, A is a 1-form on M .
Again, by covariant differentiation we have

(∇̃Xσ)(Y, Z) = ∇⊥Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ). (30)

Combining (29) and (30) we get

∇⊥Xσ(Y,Z)− σ(∇XY, Z)− σ(Y,∇XZ) = A(X)σ(Y, Z). (31)

Taking Z = ξ in (31) we have

∇⊥Xσ(Y, ξ)− σ(∇XY, ξ)− σ(Y,∇Xξ) = A(X)σ(Y, ξ). (32)

Using Lemma 1, in equation (32) we have

σ(Y,∇Xξ) = 0. (33)

Again by Lemma 1 σ(Y,−φX + φhX) = 0. So, σ(X,Y ) = 0.
Hence M is totally geodesic.

The converse part of the theorem is also true. The proof of the converse part
is trivial.

Remark 2. All results in [15], has analogue in case of submanifolds of paracon-
tact metric (κ, µ) manifold. All the proofs are similar to the proof of the above
theorem.
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6 Totally umbilical submanifolds of paracontact met-
ric (κ, µ) manifolds

Definition 4. A submanifold of a paracontact metric (κ, µ) manifold is called
totally umbilical if it satisfies

σ(X,Y ) = g(X,Y )H. (34)

Here σ is second fundamental form of the submanifold, g is the induced metric,
H is mean curvature vector. X,Y are tangent to M [6].

In this section, we shall prove the following:

Theorem 5. A totally umbilical invariant submanifold of a paracontact metric
(κ, µ) manifold is totally geodesic whatever be the dimension of the submanifold.

Proof. From Codazzi equation [6] we get

R̃⊥(X,Y )Z = g(Y,Z)∇⊥XH − g(X,Z)∇⊥YH. (35)

Here R̃ is the curvature tensor of the ambient manifold and R̃⊥ is its normal part.
Putting Z = ξ in (35), we obtain

R̃⊥(X,Y )ξ = η(Y )∇⊥XH − η(X)∇⊥YH. (36)

Now from (6), we know

R̃(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ). (37)

Here κ and µ are constant. Since the right hand side of (37) is tangential to the
submanifold, we get

R̃⊥(X,Y )ξ = 0. (38)

By virtue of (36) and (38)

η(Y )∇⊥XH = η(X)∇⊥YH. (39)

Replacing X by φX in the above equation, we have

∇⊥φXH = 0. (40)

Again by covariant differentiation of (34), we see that

∇⊥Wσ(X,Y )− σ(∇WX,Y )− σ(X,∇WY ) = g(X,Y )∇⊥WH. (41)

If the submanifold is invariant, then putting Y = ξ in the above equation and
using Proposition 2, equations (40) and (41) we immediately get

σ(X,−φW + φhW ) = 0.
Hence,

σ(X,W ) = 0.
So, the submanifold is totally geodesic. This completes the proof.
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7 Submanifolds of a paracontact metric (κ, µ) mani-
folds with parallel semi parallel and pseudo parallel
second fundamental form

Definition 5. The second fundamental form σ of a submanifold of a paracontact
metric (κ, µ) manifold is called parallel if ∇σ=0.

Definition 6. The second fundamental form σ of a submanifold of a paracontact
metric (κ, µ) manifold is called semi parallel if R̃(X,Y ).σ=0.

Definition 7. The second fundamental form σ of a submanifold of a paracontact
metric (κ, µ) manifold is called pseudo parallel if

(R̃(X,Y ).σ)(U, V ) = fQ(g, σ)(X,Y, U, V ),

where f denotes a real valued function on M̃ .
Here Q is given by

Q(E, T )(X,Y, Z,W ) = −(X ∧E Y )T (Z,W ) − T ((X ∧E Y )Z,W ) − T (Z, (X ∧E
Y )W ),

(X ∧E Y )Z = E(Y,Z)X − E(X,Z)Y
for a (0,2) tensor E and an arbitrary tensor T .

For details about parallel and pscudo symmetric tensor, we refer [9], [10].

Submanifolds of trans-Sasakian manifolds with such properties have been stud-
ied in the paper [7]. Following the similar method of the paper [7] we obtain the
following

Theorem 6. An invariant submanifold of a paracontact metric (κ, µ) manifold
is totally geodesic if and only if the second fundamental form of the submanifold
is parallel, whatever be the dimension of the submanifold.

Proof. Since σ is parallel, we have

(∇Wσ)(X,Y ) = 0,
which implies

∇⊥Wσ(X,Y )− σ(∇WX,Y )− σ(X,∇WY ) = 0. (42)

Putting Y = ξ in the above equation and applying Proposition 2 we obtain

σ(X,∇W ξ) = 0. (43)

So from Lemma 1 and the above equation (43) we obtain

σ(X,−φW + φhW ) = 0. (44)
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Hence,

σ(X,W ) = 0.
So the submanifold is totally geodesic. The converse part is trivial. Hence the
result.

Theorem 7. An invariant submanifold of a paracontact metric (κ, µ) manifold
is totally geodesic if and only if the second fundamental form of the submanifold
is semi-parallel, whatever be the dimension of the submanifold.

Proof. Since σ is semi-parallel, we have

(R̃(X,Y ).σ)(U, V )=0,
which implies

R̃⊥(X,Y )σ(U, V )− σ(R̃(X,Y )U, V )− σ(U, R̃(X,Y )V ) = 0. (45)

Putting V = ξ = Y and using Lemma 1 we get from equation (45)

σ(U, R̃(X, ξ)ξ) = 0. (46)

Now from (6), we know

R̃(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ). (47)

Here κ and µ are constant.
The above equation implies

R̃(X, ξ)ξ = κφ2X + µhX. (48)

From (46) and (48) we get

σ(X,U) = 0.
Thus the submanifold is totally geodesic. The converse part is trivial. Hence the
result.

Theorem 8. An invariant submanifold of a paracontact metric (κ, µ) manifold
is totally geodesic if and only if the second fundamental form of the submanifold
is pseudo parallel, whatever be the dimension of the submanifold.

Proof. Since σ is pseudo parallel, we have

(R̃(X,Y ).σ)(U, V ) = fQ(g, σ)(X,Y, U, V ),
which implies

R̃⊥(X,Y )σ(U, V )− σ(R̃(X,Y )U, V )− σ(U, R̃(X,Y )V )

= −f{g(Y, σ(U, V ))X − g(X,σ(U, V ))Y + σ(g(Y,U)X − g(X,U)Y, V )

+σ(U, g(Y, V )X − g(X,V )Y )}. (49)
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Putting V = ξ = Y in equation (49) and applying Lemma 1 we obtain

σ(U, R̃(X, ξ)ξ) = fσ(U, g(ξ, ξ)X − g(X, ξ)ξ). (50)

Now from (6), we know

R̃(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ). (51)

Here κ and µ are constant.
The above equation implies

R̃(X, ξ)ξ = κφ2X + µhX. (52)

From (50) and (52) we get
σ(X,U) = 0.

So, the submanifold is totally geodesic. The converse part is trivial.

8 Submanifolds of a paracontact metric (κ, µ) mani-
folds with concircular canonical field

Definition 8. A vector field Ṽ is called a concircular vector field if it satisfies

∇̃
Z̃
Ṽ = f̃ Z̃ (53)

for any Z̃ tangent to M̃ , where f̃ is real valued function on M̃ . In particular,
if f̃ = 1, then the concircular vector field Ṽ is called a concurrent vector field.
Similarly, if f̃ = 0, then the concircular vector field Ṽ is called a parallel vector
field.

Definition 9. Let, M be a submanifold of M̃ and also let f and V denote the
restriction of f̃ and Ṽ on M . Denote by V T and V ⊥ the tangential and normal
components of V ,respectively. Associated with Ṽ , we simply call V T the canonical
field and V ⊥ the caconical normal field of M .

Lemma 2. Let, M̃ be an n-dimensional paracontact (κ, µ)-spaces with a concir-

cular vector field X̃ and M be a submanifold of M̃ . Then we have

∇ZXT = fZ +AX⊥Z,

∇⊥ZX⊥ = −σ(XT , Z),
for any Z tangent to M .

Proof. From (53) and Gauss and Weingarten formulae, we get,

fZ = ∇̃ZX = ∇̃ZXT + ∇̃ZX⊥

= ∇ZXT + σ(Z,XT ) +∇⊥ZX⊥ −AX⊥Z.

Comparing the tangential part and normal part, we have the required results.
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Proposition 3. The canonical field of M is concircular if and only if the shape
operator AX⊥ in the direction of the canonical normal field X⊥ is proportional to
the identity map.

Proof. Assume that the canonical field XT is concircular. So,
∇ZXT = gZ

for some real valued function g on M .

From above Lemma, we get

fZ +AX⊥Z = gZ

Therefore,
AX⊥ = (g − f)I

Then the shape operator AX⊥ in the direction of the canonical normal field X⊥

is proportional to the identity map.

Conversely, let AX⊥ = hI for some real valued function h on M .
Now, from Lemma 2. we get,

∇ZXT = fZ + hZ = (f + h)Z

Clearly, The canonical field XT is concircular.

Theorem 9. Let, M̃ be a paracontact (κ, µ)-spaces with a concurrent vector field

X̃ and M be a submanifold of M̃ . The canonical field of M is concurrent iff the
shape operator AX⊥ = 0.

Proof. Since X̃ is a concurrent vector field. Hence from the definition of concur-
rent vector field we get,

Z = ∇̃ZX = ∇̃ZXT + ∇̃ZX⊥ = ∇ZXT + σ(Z,XT ) +∇⊥ZX⊥ −AX⊥Z

Comparing the tangential and normal part we get,

Z = ∇ZXT −AX⊥Z (54)

σ(Z,XT ) +∇⊥ZX⊥ = 0 (55)

Since the canonical field is concurrent then from (54), we get

AX⊥ = 0.

Converse part is trivial from (54). Hence, the results follow.

If we consider the submanifold M is totally geodesic, then from (55) we get
∇⊥ZX⊥ = 0, i.e. the canonical normal field X⊥ is parallel in the normal bundle.
So we obtain the following:

Remark 3. Let, M̃ be a paracontact (κ, µ)-spaces with a concurrent vector field

X̃ and M be an invariant submanifold of M̃ . The canonical normal field X⊥ is
parallel in the normal bundle.
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