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DRAZIN INVERSE: REPRESENTATION, APPROXIMATION,
CONTINUITY AND ILLUSTRATIONS
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Abstract

In this paper, we present some characteristics and expressions of the
Drazin inverse for matrices and bounded linear operators in Banach spaces.
We give a survey of some of results on the continuity of the Moore-Penrose
and Drazin inverse, direct technics for computing the Drazin inverse are dis-
cussed, they are based on Euler-Knopp Method and characterized in terms
of a limiting process. The examples presented are for illustrative purposes,
some of which are provided for testing the considered iterative processes.
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1 Introduction and preliminary results

The main theme of this paper is the study of a generalized inverse introduced
by M. P. Drazin, and its generalization due to J. J. Koliha. Cm×n denotes the set
of all m × n matrices, with complex entries, equipped with the Euclidean norm.
Suppose that (Aj)j∈N is a sequence ofm×nmatrices, and A ∈ Cm×n, then (Aj)j∈N
converges to A if and only if the entries of Aj converge to the corresponding entries
of A, as j →∞. Let A ∈ Cm×n, Penrose has proved in [15] that the system:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA
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has a unique solution, which he called the Moore-Penrose inverse of A and denoted
by X = A†. Let us recall that for any A ∈ Cm×n, we have (A†)† = A, (A∗)† =
(A†)∗, (A∗A)† = A†(A†)∗, but in general, A†A 6= AA†.

Contrary to the usual inverse of a square matrix, it is well known that the
Moore-Penrose inverse of a matrix is not necessarily a continuous function of the

elements of the matrix. Indeed, let A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
, for each

ε > 0, we have (A+ εB)† =

(
1 0
0 ε

)−1
=

(
1 0
0 ε−1

)
, hence (A+ εB) → A,

but (A+ εB)−1 has no limit when ε→ 0+.

The following theorem gives necessary and sufficient conditions for the conti-
nuity of the Moore-Penrose inverse of matrix.

Theorem 1. ([15]) Let A,Aj , j ∈ N, be m × n complex matrices such that

lim
j→∞

Aj = A. Then, lim
j→∞

A†j = A† if and only if there exists q ∈ N for which

rankAj = rankA, for all j ≥ q.

Let B(X) be the algebra of all bounded linear operators on a complex Banach
space X, ‖.‖ represents the norm of X. For A ∈ B(X), write N(A), R(A), σ(A),
ρ(A) and r(A), as the null space, the range, the spectrum, the resolvent set and
the spectral radius of A, respectively. For λ ∈ ρ(A), (λ − A)−1 is the resolvent
operator of A. I denotes the identity operator on X and A∗ is the adjoint operator
of A. By σ′(A) we denote the set of all non-zero elements of σ(A). By isoσ(A) we
define the set of all isolated spectral points of A. If M is a subspace of X, then A|M
denotes the restriction of A to M. It is well known (see e.g. [3]) that A ∈ B(X)
has closed range if and only if there exists a unique operator A† ∈ B(X), the
Moore-Penrose inverse of A, which satisfies the following properties:

AA†A = A, A†AA† = A†, (AA†)∗ = AA† and (A†A)∗ = A†A.

In general, if lim
j→∞

Aj = A uniformly, (Aj)j∈N, A ∈ B(X), and each Aj has a closed

range, then A need not have a closed range.

Example 1. Let X = l2 the space of square-summable complex sequences. Define
Aj , j ∈ N∗, and A on l2 by:

Aj(x1, x2, ..., xj , xj+1, ...) =

(
x1,

x2
2
, ...,

xj
j
, 0, 0, ...

)
,

A(x1, x2, ..., xj , xj+1, ...) =

(
x1,

x2
2
, ...,

xj
j
,
xj+1

j + 1
, ...

)
.

Each Aj is of finite rank and thus with closed range and Moore-Penrose invertible
operator. It is also clear that the sequence (Aj)j∈N∗ is uniformly convergent to
A as j → ∞. But the limit A does not have a closed range in l2 because A is a
compact operator.
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The continuity of the Moore-Penrose inverse of an operator on Hilbert spaces
has been studied by Izumino [7]. If X is a Hilbert space, let (Aj)j∈N be a sequence

in B(X), A ∈ B(X), and lim
j→∞

Aj = A. If A†j , for all j ∈ N, and A† exist, it is

shown in [7] that the following four conditions are equivalent:

(1) lim
j→∞

A†j = A†. (2) sup
j∈N

∥∥∥A†j∥∥∥ <∞.
(3) lim

j→∞
A†jAj = A†A. (4) lim

j→∞
AjA

†
j = AA†.

The Drazin inverses of the elements of Cn×n and B(X) have been intensively
studied by authors such as Ben-Israel and Greville [1] and King [8], one may also
refer to [[5], [17]] for some interesting applications about the Drazin inverse in
singular differential and difference equations, Markov chain, numerical analysis,
... In this paper, we shall give, by analogy with the Moore-Penrose inverse, repre-
sentation and computational procedures for the Drazin inverse. Let’s recall some
well-known results obtained for the Drazin inverse of a square matrix and the
Drazin inverse of a bounded linear operator.

Let A ∈ Cn×n, with k = ind(A) the smallest positive number such that
rankAk+1 = rankAk, the Drazin inverse of A is defined to be the unique matrix
X ∈ Cn×n that satisfying the following equations:

XAX = X,AX = XA and Ak+1X = Ak. (1)

It is denoted by X = AD. In particular, a square matrix always has Drazin inverse
and if ind(A) = 0, then A is invertible and AD = A† = A−1. Campbell and Meyer
gave in [5] an explicit expression of the Drazin inverse of a square matrix via its
canonical form representation.

Theorem 2. Let A ∈ Cn×n is such that ind(A) = k > 0, then there exists a
non-singular matrix P such that:

A = P

(
C 0
0 N

)
P−1 (2)

where C is non-singular and N is nilpotent of index k.
Furthermore, if P,C and N are any matrices satisfying the above conditions,

then:

AD = P

(
C−1 0

0 0

)
P−1. (3)

Proof. Let B = {e1, ..., er, er+1, ..., en} be a basis for Cn such that {e1, ..., er} is a
basis for R(Ak) and {er+1, ..., en} is a basis for N(Ak), k = ind(A) > 0. R(Ak) and
N(Ak) are invariant subspaces for A and Ak

(
N(Ak)

)
= {0} , on the other hand

A restricted to R(Ak), C = A|R(Ak), is invertible and its restriction to N(Ak),
N = A|N(Ak), is nilpotent of degree k. So, we obtain the block form for A if

P = [e1, ..., en] . We can easily verify that the matrix AD given by (3) satisfies the
three equations (1) and then by uniqueness AD is necessarily the Drazin inverse
of A.
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A first application of this representation is the following result:

Proposition 1. Let A ∈ Cn×n, then AADA = A if and only if ind(A) ≤ 1.

Proof. If ind(A) = 0, then A is invertible, AD = A−1 and AADA = AA−1A = A.
Suppose that in(A) ≥ 1. Then by virtue of the canonical form representation

(2) of A and the corresponding expression (3) of AD, we have AADA = A if and
only if N = 0. But N = 0 is equivalent to ind(A) = 1.

Several methods and efficient algorithms have been given for computation of
Moore-Penrose inverse of singular matrices and bounded linear operators with
closed range, where this generalized inverse can be represented as the limit of a
sequence of matrices or operators, respectively. The principle is to construct an
iterative process of computing a sequence that converges to the generalized inverse.
In what follows we explain this process for the Drazin inverse of a matrix and for
a bounded linear operator and we estimate the corresponding error bounds. We
also study the continuity of the generalized Drazin inverse.

The purpose of Section 1 is to present definitions and results that will be used
throughout the paper. In Section 2, we recall and discuss some computational
procedures for the Drazin inverse of a square matrix. The aim of Section 3 is to
investigate the continuity of Drazin inverse in finite-dimensional case. Necessary
and sufficient conditions for the continuity of the Drazin inverse of a matrix are
given. In Section 4, we present the Drazin inverse (generalized Drazin inverse) of
an operator, its uniqueness, existence, and some basic properties. We give also a
representation theorem and a computational procedure of the Drazin inverse. In
Section 5, we discuss some remarkable properties of the generalized Drazin inverse
and we study its continuity in B(X). The results of each section are described in
detail and interpreted by interesting examples.

2 Computational procedure for the Drazin inverse of
a matrix

For A ∈ Cn×n, AD can be computed recursively by the well known algorithms
[6]. We have chosen to explain here the procedure developed by [17] for the com-
putational of Drazin inverse and corresponding error bound. Wei and Wu found
in [17] a specific expression and computational procedures for Drazin inverse,
they have established the following formula for A ∈ Cn×n with real spectrum and
ind(A) = k :

AD = lim
j→∞

Sj

(
Ã
)
Al, (4)∥∥∥AD − Sj (Ã)Al∥∥∥

P

‖AD‖P
≤ max

x∈σ(Ã)
|Sj(x)x− 1|+ O (ε) , ε > 0,

where (Sj(x))j∈N is a family of continuous real valued functions on an open set Ω

such that σ
(
Ã
)
⊂ Ω ⊂ ]0,∞[ , with lim

j→∞
Sj(x) = 1

x uniformly on the spectrum
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σ
(
Ã
)

of Ã =
(
Al+1

)
|R(Ak)

for l ≥ k, P is an invertible matrix such that P−1AP

is the Jordan canonical form of A and ‖A‖P =
∥∥P−1AP∥∥ .

Consider the following sequence with parameter α > 0 :

Sj(x) = α

j∑
m=0

(1− αx)m , (5)

which can be viewed as the Euler-Knopp transform of the series
∞∑
j=0

(1− x)j .

Clearly, lim
j→∞

Sj(x) = 1
x uniformly on any compact subset of the set:

Eα = {x : |1− αx| < 1} =

{
x : 0 < x <

2

α

}
. (6)

Lemma 1. If A ∈ Cn×n with ind(A) = k, Ã =
(
Al+1

)
|R(Ak)

for l ≥ k, and the

spectrum of A is real, then σ
(
Ã
)
⊂
[

1

‖AD‖l+1 , ‖A‖l+1
]
.

Proof. Let {λ1, ..., λr} be the nonzero eigenvalues of A where rank(Ak) = r.

Hence, 0 < λl+1
i ∈ σ

(
Ã
)
⊆ σ

(
Al+1

)
, i = 1, ..., r. It is clear that ind(Al+1) = 1

and 1
λl+1
i

∈ σ
((
AD
)l+1

)
and thus 1

λl+1
i

≤
∥∥AD∥∥l+1

, i = 1, ..., r. Therefore, λ ≥
1

‖AD‖l+1 for every λ ∈ σ
(
Ã
)
. Moreover, since

∥∥Al+1
∥∥ =

∥∥∥(Al+1
)
|R(Ak)

∥∥∥ , we have∥∥∥Ã∥∥∥ ≤ ‖A‖l+1 and then λ ≤ ‖A‖l+1 for every λ ∈ σ
(
Ã
)
.

Since, by Lemma 1, σ
(
Ã
)
⊂
]
0, ‖A‖l+1

]
, if we choose the parameter α such

that 0 < α < 2
‖A‖l+1 , and

]
0, ‖A‖l+1

]
⊆ Eα then we have the representation:

AD = α

∞∑
j=0

(
I − αAl+1

)j
Al. (7)

Let us pose:

Aj = α

j∑
m=0

(
I − αAl+1

)m
Al. (8)

Then A0 = αAl, Aj+1 =
(
I − αAl+1

)
Aj + A0, j ∈ N, and by construction

lim
j→∞

Aj = AD. Now, remark that the sequence of functions (Sj(x))j∈N satisfies:

xSj+1(x)− 1 = (1− αx) (xSj(x)− 1) , j ∈ N, (9)

hence,

|xSj(x)− 1| = |1− αx|j+1 ≤

[
max

(∣∣∣1− α ‖A‖l+1
∣∣∣ , ∣∣∣∣∣1− α

‖AD‖l+1

∣∣∣∣∣
)]j+1

(10)
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which tends to 0 as j → ∞ if x ∈ σ
(
Ã
)

and 0 < α < 2
‖A‖l+1 , and estimates

by virtue of (4) the variation of the errors. So, we have shown the following
approximation result.

Theorem 3. Let A ∈ Cn×n with ind(A) = k, Ã =
(
Al+1

)
|R(Ak)

for l ≥ k, and

the spectrum of A is real. Then the sequence (Aj)j∈N defined by (8) converges to

the Drazin inverse AD of A if 0 < α < 2
‖A‖l+1 . Furthermore, the error bound is:

∥∥Aj −AD∥∥P
‖AD‖P

≤ βj+1 + O (ε) , ε > 0

where β = max
(∣∣∣1− α ‖A‖l+1

∣∣∣ , ∣∣∣1− α

‖AD‖l+1

∣∣∣) < 1.

Remark 1. We can significantly improve the convergence speed of this process
using other iterative methods as Newton–Raphson method, Newton–Gregory in-
terpolation formula, Hermite interpolation, ... (see e.g. [17]).

Example 2. We use the iterative algorithm previously developed to compute the
Drazin inverse of the singular matrix:

A =

 1 1 1
1 1 1
1 1 1

 .

It is easy to see that the minimal polynomial of A is given by λ3 − 3λ2, hence
σ(A) = {0, 0, 3} and A2 = 3A. An easy computations show that ind(A) = 1 and
that the Drazin inverse of A is given by 1

9A. So we can choose α = 10−2 and l = 1,

since ‖A‖2 = 27. Then the iterations are given by:

A0 = αA =

 0, 01 0, 01 0, 01
0, 01 0, 01 0, 01
0, 01 0, 01 0, 01

 ,

Aj+1 = BAj +A0, B =
(
I − αA2

)
= (I − 3A0) , j ∈ N.

Thus,

B = (I − 3A0) =

 0, 97 −0, 03 −0, 03
−0, 03 0, 97 −0, 03
−0, 03 −0, 03 0, 97

 ,

and

Aj =
(
Bj +Bj−1 + ...+ I

)
A0 =

j∑
m=0

BmA0, j ∈ N.
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The matrix B is diagonalizable, B = S−1DS, where S is a non-singular matrix
and D is diagonal:

S =

 −0, 3333 0, 6667 −0, 3333
−0, 3333 −0, 3333 0, 6667
0, 3333 0, 3333 0, 3333

 , S−1 =

 −1 −1 1
1 0 1
0 1 1

 ,

and D =

 1 0 0
0 1 0
0 0 0, 91

 .

Bm = S−1DmS, m ∈ {0, 1, ..., j} ,

Aj = S−1
j∑

m=0

DmSA0 = S−1

 (j + 1) 0 0
0 (j + 1) 0
0 0 αj

SA0,

where αj =
j∑

m=0
(0, 91)m = 1−(0,91)j+1

0,09 , j ∈ N.

Aj =

 −(j + 1) −(j + 1) αj
(j + 1) 0 αj

0 (j + 1) αj

 0 0 0
0 0 0

0, 01 0, 01 0, 01

 =
αj
100

A.

Since lim
j→∞

αj =
∞∑
m=0

(0, 91)m = 100
9 , it follows that lim

j→∞
Aj = 1

9A = AD.

3 Continuity of the Drazin inverse of a matrix

The Drazin inverse of a matrix is not necessarily a continuous function of the
elements of the matrix. In particular, It is easy to produce examples to show that
Theorem 1 is not valid for the Drazin inverse (see [4]).

Example 3. 1) Let:

Aj =

 1 0 0
0 0 1

j

0 0 0

 , A =

 1 0 0
0 0 0
0 0 0

 .

Then, lim
j→∞

Aj = A, lim
j→∞

ADj = AD, but rank(Aj) > rank(A), for all j ∈ N∗.

2) Let:

Aj =


1
j 1 0 0

0 0 0 0
0 0 0 1
0 0 0 0

 , A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
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Then,

ADj =


j j2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , AD = 0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Thus, lim
j→∞

Aj = A, rank(Aj) = rank(A) and ind(Aj) = ind(A) for all j ∈ N∗,

but lim
j→∞

ADj 6= AD.

Define the core-rank of A ∈ Cn×n as rank of the matrix Ak where k = ind(A).
It is showed in [4] an analogous result, to that of Moore Penrose (Theorem 1), for
the Drazin inverse of a square matrix.

Theorem 4. ([4]) Suppose that Aj , A ∈ Cn×n, j ∈ N, are such that lim
j→∞

Aj = A.

Then, lim
j→∞

ADj = AD if and only if there is q ∈ N such that core-rank of Aj is

equal to core-rank of A for all j ∈ N, j ≥ q.

Similarly, from the Jordan canonical form for Aj and A, A = C + N, Aj =
Cj + Nj , where C,N,Cj , Nj ∈ Cn×n, C and Cj are non-singular and N and Nj

are nilpotent, for every j ∈ N, it is immediate to give necessary and sufficient
conditions for the continuity of the Drazin inverse of a matrix. If lim

j→∞
Aj = A,

lim
j→∞

ADj = AD ⇐⇒ ∃q ∈ N : rank(Cj) = rank(C) for j ≥ q.

4 Remarkable properties and computational procedure
for the GD-inverse

Recall that if A ∈ B(X), then a(A) and d(A), respectively the ascent and the
descent of A, is the smallest non-negative integer k such that N(Ak) = N(Ak+1)
and R(Ak) = R(Ak+1). If no such k exists, then a(A) = ∞ and d(A) = ∞. It
is well known that if the ascent and the descent of an operator are finite, then
they are equal. AD ∈ B(X) is the Drazin inverse of A ∈ B(X) if ADA = AAD,
ADAAD = AD and AADA = A+Q where Q is a nilpotent operator on X. AD is
unique. The concept of Drazin invertible operators has been generalized by Koliha
[9] by replacing the nilpotent operator Q in the equation AADA = A + Q by a
quasi-nilpotent operator. In this case, AD is called a generalized Drazin inverse
(GD-inverse) of A and noted AGD. Invertible operators, right invertible operators
and left invertible operators are GD-invertible operators. We define the Drazin
index of A by:

ind(A) =


0 if A is invertible
k if Q = A

(
ADA− I

)
is nilpotent of index k

∞ if Q = A
(
ADA− I

)
is quasi-nilpotent.
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Note that a square matrix always has Drazin inverse. But, if X is an infinite-
dimensional complex Banach space, then it is well known that an operator A ∈
B(X) has a Drazin inverse AD if and only if it has finite ascent and descent (in
such a case, the index of A is equal to the ascent of A), or equivalently if and only
if 0 is a pole of its resolvent operator, which is also equivalent to the fact that
A = R ⊕N where R is invertible and N is nilpotent. A has a GD-inverse if and
only if 0 is an isolated point of its spectrum or A = R⊕Q where R is invertible and
Q is quasi-nilpotent, or equivalently if and only if there is a bounded projection P
on X (the generalized Drazin idempotent of A) such that R = A|R(P ) is invertible
operator and Q = A|N(P ) is quasi-nilpotent operator (see [[11], [9], [12], [14],

[13]]). ⊕ denotes the algebraic direct sum. Note that the GD-inverse AGD of A,
if it exists, is uniquely determined by AGD = R−1 ⊕ 0. Moreover, by the spectral
mapping theorem we have that:

σ(AGD) =

{
1

λ
: λ ∈ σ′(A)

}
∪ {0} , σ′(AGD) =

{
1

λ
: λ ∈ σ′(A)

}
and if r(A) > 0, then dist(σ′(A), 0) = 1

r(AGD)
, where dist is the distance between

a bounded subset of C and 0.

Example 4. 1) Every Drazin invertible operator is GD-invertible. It is also clear
from the definition of a GD-inverse that every quasi-nilpotent operator is GD-
invertible with a generalized Drazin inverse 0.

2) Every quasi-nilpotent operator which is not nilpotent (for example Volterra
operator) is GD-invertible and cannot be Drazin invertible. Indeed, suppose that
A ∈ B(X) is quasi-nilpotent but not nilpotent and Drazin invertible with AD = B.
We have seen before that A is GD-invertible with GD-inverse 0. By the uniqueness
of the GD-inverse we must have that B = 0. Also, because A−ABA is nilpotent,
we have that A is also nilpotent. This is a contradiction.

The following result gives an interesting characterization of Drazin invertible
operators.

Proposition 2. ([9]) Let A ∈ B(X) and k ∈ N, k ≥ 1. Then the following
assertions are equivalent:

1) A is Drazin invertible and ind(A) = k.
2) a(A) = d(A) = k.
3) The resolvent operator (λ−A)−1 has a pole of order k at λ = 0.

Example 5. Let’s check that if A ∈ B(X) is normal, A∗A = AA∗, and if 0 ∈
isoσ(A), then A is Drazin invertible and ind(A) = 1. Indeed, if P is the spectral
projection associated with 0. We know that A and P commute and then A(R(P )) ⊆
R(P ) and σ

(
A|R(P )

)
= {0} . On the other hand, since A|R(P ) is normal operator

on R(P ), we have
∥∥A|R(P )

∥∥ = r
(
A|R(P )

)
= 0, so it follows that AP = 0. The

Laurent series expansion around 0 of the resolvent (λ−A)−1 is given by:

(λ−A)−1 =
∞∑
j=1

Pj
λj

+
∞∑
j=0

Qjλ
j , 0 < |λ| < ε (11)
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where the coefficients Pj and Qj are given by the formulas:

Pj =
1

2πi

∮
0<|λ|<ε

λj−1(λ−A)−1dλ and Qj =
1

2πi

∮
0<|λ|<ε

λ−j−1(λ−A)−1dλ. (12)

It follows from (12), immediately using the functional calculus, that:

P1 = P and Pj = Aj−1P, j ∈ N∗,

hence 0 is a simple pole of (λ − A)−1. Proposition 2 shows that A is Drazin
invertible and ind(A) = 1.

Drazin inverses are not symmetric in general. Let A =

(
0 1
0 0

)
∈ C2×2, A is

Drazin invertible with AD =

(
0 0
0 0

)
, but

(
AD
)D

=

(
0 0
0 0

)
6= A. Our next

result gives the expression of the element
(
AGD

)GD
.

Theorem 5. Let A ∈ B(X). Suppose that A is GD-invertible and that P is the

generalized Drazin idempotent of A. Then
(
AGD

)GD
= A (I − P ) .

Proof. Suppose that A is generalized Drazin invertible and that P is the general-
ized Drazin idempotent of A. If A is invertible then P = 0 and the result obviously
holds.

If 0 ∈ isoσ(A), then P is the spectral projection of A corresponding to 0 and
P = I − AGDA. We show that B = A(I − P ) is the generalized Drazin inverse
of AGD. Using the fact that AP = PA, we have that AGDB = AGDA(I − P ) =
A(I − P )AGD = BAGD. We also have that:

BAGDB = A(I − P )AGDA(I − P ) = A(I − P )AGDA
(
AGDA

)
= A(I − P )

(
AGDAAGD

)
A = A(I − P )AGDA

= A(I − P ) (I − P ) = A(I − P ) = B,

and

AGD −AGDBAGD = AGD −AGDA(I − P )AGD = AGD −AGDA(AGDA)AGD

= AGD − (AGDAAGD)AAGD = AGD −AGDAAGD = 0

is quasi-nilpotent. Hence,
(
AGD

)GD
= B = A (I − P ) . This completes the proof.

As 0 is a simple pole of (λ−A)−1 if and only if AP = 0, we obtain:

Corollary 1. Let A ∈ B(X) and 0 ∈ isoσ(A). Then
(
AGD

)GD
= A if and only

if 0 is a simple pole of (λ−A)−1 .

In the following we give a representation theorem for the Drazin inverse of a
linear operator in Banach space and the corresponding error bound.
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Theorem 6. Let A ∈ B(X) be Drazin invertible of index k and R(Ak) is closed.

Define Ã =
(
AkA∗2k+1Ak+1

)
|R(Ak)

. If Ω is an open set such that σ
(
Ã
)
⊂ Ω ⊂

]0,∞[ and (Sj(x))j∈N is a sequence of continuous real valued functions on Ω with

lim
j→∞

Sj(x) = 1
x uniformly on σ

(
Ã
)
, then:

AD = lim
j→∞

Sj

(
Ã
)
AkA∗2k+1Ak.

Furthermore, for any ε > 0, there is an operator norm ‖.‖∗ on X such that:∥∥∥Sj (Ã)AkA∗2k+1Ak −AD
∥∥∥
∗

‖AD‖∗
≤ max

x∈σ(Ã)
|Sj(x)x− 1|+ O (ε) .

Proof. It’s clear that σ
(
Ã
)

= σ
(
AkA∗2k+1Ak+1

)
= σ

((
A2k+1

)∗ (
A2k+1

))
⊂

]0,∞[ , since Ã is positive and boundedly invertible. Using functional calculus, we
have:

lim
j→∞

Sj

(
Ã
)

= Ã−1.

It then follows from [2] that:

lim
j→∞

Sj

(
Ã
)
AkA∗2k+1Ak = Ã−1AkA∗2k+1Ak = AD.

To obtain the error bound, we note that:

AkA∗2k+1Ak = ÃAD,

Sj

(
Ã
)
AkA∗2k+1Ak −AD =

(
Sj

(
Ã
)
Ã− I

)
AD.

We also know that for any ε > 0, one can define a new norm ‖.‖∗ on X with the
formula:

‖x‖∗ =

√√√√ m∑
j=0

(
‖Ajx‖
M j

)2

,

where M = r(A) + ε and m ∈ N has been chosen as the first integer such that

‖Am‖1/m < M. It is easy to see that this norm is equivalent to the original norm
and it induces a norm on B(X) such that ‖A‖∗ < r(A) + ε. Thus,∥∥∥Sj (Ã)AkA∗2k+1Ak −AD

∥∥∥
∗
≤

∥∥∥Sj (Ã) Ã− I∥∥∥
∗

∥∥AD∥∥∗
≤

(
max
x∈σ(Ã)

|Sj(x)x− 1|+ O (ε)

)∥∥AD∥∥∗ .
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Now we explain the Euler-Knopp Method for computational of the Drazin
inverse of a bounded operator and the way to get the corresponding error bound.

First we need the following result concerning lower and upper bounds for σ
(
Ã
)
.

Lemma 2. Let A ∈ B(X) be Drazin invertible of index k and R(Ak) is closed.

Then, for all λ ∈ σ
(
Ã
)

:

1∥∥∥(A2k+1)
†
∥∥∥2 ≤ λ ≤ ‖A‖4k+2 .

Proof. For all λ ∈ σ
(
Ã
)
, λ > 0 and λ ∈ σ

((
A2k+1

)∗ (
A2k+1

))
. Furthermore,

it’s clear that ind
((
A2k+1

)∗
A2k+1

)
= 1 and

1

λ
∈ σ

(((
A2k+1

)∗
A2k+1

)†)
= σ

((
A2k+1

)†((
A2k+1

)†∗))
.

Thus,

1

λ
≤
∥∥∥∥(A2k+1

)†((
A2k+1

)†∗)∥∥∥∥ =

∥∥∥∥(A2k+1
)†∥∥∥∥2 and λ ≥ 1∥∥∥(A2k+1)

†
∥∥∥2 .

On the other hand, since
∥∥∥(AkA∗2k+1Ak+1

)
|R(Ak)

∥∥∥ ≤ ∥∥AkA∗2k+1Ak+1
∥∥ , we obtain∥∥∥Ã∥∥∥ ≤ ‖A‖4k+2 so what λ ≤

∥∥∥Ã∥∥∥ ≤ ‖A‖4k+2 for all λ ∈ σ
(
Ã
)
.

Consider now the sequence (Sp(x))p∈N and the set Eα, α > 0, defined respec-

tively in (5) and (6). By Lemma 2, we get σ
(
Ã
)
⊆
]
0, ‖A‖4k+2

]
. So, if we choose

the parameter α, 0 < α < 2
‖A‖4k+2 such that σ

(
Ã
)
⊆
]
0, ‖A‖4k+2

]
⊂ Eα, then

we obtain the following representation of the Drazin inverse AD of A :

AD = α
∞∑
j=0

(
I − αAkA∗2k+1Ak+1

)j
AkA∗2k+1Ak.

Setting Aj = α
j∑

m=0

(
I − αAkA∗2k+1Ak+1

)m
AkA∗2k+1Ak, we have the following

iterative procedure for the Drazin inverse:

A0 = αAkA∗2k+1Ak and Aj+1 =
(
I − αAkA∗2k+1Ak+1

)
Aj , j ∈ N.

Therefore, lim
j→∞

Aj = AD. For the error bound, we note that from (9) and (10),

we have |xSj(x)− 1| = |1− αx|j+1 ≤ βj+1 −→
j→∞

0, if x ∈ σ
(
Ã
)
, 0 < α < 2

‖A‖4k+2
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and β = max

{∣∣∣1− α ‖A‖4k+2
∣∣∣ , ∣∣∣∣∣1− α∥∥∥(A2k+1)

†
∥∥∥2
∣∣∣∣∣
}
< 1. It follows from the above

inequality and Theorem 6, the error bound:∥∥Aj −AD∥∥∗
‖AD‖∗

≤ βj+1 + O (ε) , ε > 0.

Note that this approximation generalizes to infinite-dimensional case the result
obtained on the square matrices in Theorem 3.

Example 6. Let A ∈ B(X) be selfadjoint, A∗ = A, and 0 ∈ isoσ(A). Then A has
closed range and is Drazin invertible with ind(A) = 1. Let’s use the iterative proce-

dure developed previously with 0 < α < 2
‖A‖6 and β = max

{∣∣∣1− α ‖A‖6∣∣∣ , ∣∣∣∣1− α

‖(A3)†‖2
∣∣∣∣} <

1. So, lim
j→∞

Aj = AD where A0 = αA5, Aj+1 =
(
I − αA6

)
Aj , j ∈ N, and the error

bound
‖Aj−AD‖∗
‖AD‖∗

≤ βj+1 + O (ε) , ε > 0.

5 Continuity of the GD-Drazin inverse

Drazin inversion is not continuous in general, we illustrate this in the following
example.

Example 7. Let A ∈ B(l2) be a weighted shift with weight sequence:

0, 0,−1, 0, 0,−1, 0, 0,−1, ...

so that A is nilpotent of index 3. Then A is Drazin invertible and with AD = 0.
Let Aj = A+ 1

j I, for all j ∈ N∗. Then, for each j ∈ N∗ :

Aj
(
jI − j2A+ j3A2

)
=
(
jI − j2A+ j3A2

)
Aj = I.

Thus Aj is invertible and hence Drazin invertible with:

ADj = A−1j =
(
jI − j2A+ j3A2

)
, j ∈ N∗.

It is clear that Aj −→ A as j →∞ in B(l2), but the unbounded sequence
(
ADj

)
j∈N∗

does not converge to AD = 0.

Rakocevic investigate in [16] the continuity of the Drazin inverse of a bounded
linear operator on Banach space, i.e. the continuity of the maps A −→ AD and
A −→ AGD, A ∈ B(X), he generalized the continuity result of [7] to Drazin inverse
in the following way. Let (Aj)j∈N be a sequence in B(X), and let lim

j→∞
Aj = A.

Suppose that A and Aj , have Drazin inverses AD and ADj respectively. Then the
following conditions are equivalent:

(1 ) lim
j→∞

ADj = AD. (2 ) sup
j∈N

∥∥ADj ∥∥ <∞. (3 ) lim
j→∞

ADj Aj = ADA.
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Furthermore, by virtue of Banach-Steinhaus theorem, we can easily deduce, as a
generalization, an equivalent result when (Aj)j∈N converges to A strongly.

It is interesting to study the continuity of the GD-inverse. We are now ready
to present the main result of this section, it is due to Koliha and Rakocevic [10],
nevertheless, the proof below is direct and of a technical nature.

Theorem 7. Let (Aj)j∈N be a sequence in B(X), and let lim
j→∞

Aj = A. Suppose

that A and Aj have generalized Drazin inverses AGD and AGDj , and let P and Pj
be the spectral projections corresponding to 0, of A and Aj , respectively, for every
j ∈ N. Then the following conditions are equivalent:

(i) lim
j→∞

AGDj = AGD.

(ii) sup
j∈N

∥∥∥AGDj ∥∥∥ <∞.
(iii) sup

j∈N

∥∥∥r (AGDj )∥∥∥ <∞.
(iv) inf

j∈N
dist(σ′(Aj), 0) > 0.

(v) There exists an r > 0 such that B̃(0, r) ⊆ ρ(A) ∩
∞⋂
j=0

ρ(Aj), where B̃(0, r)

is the open ball excluding the center 0 and with radius r.
(vi) lim

j→∞
AGDj Aj = AGDA.

(vii) lim
j→∞

Pj = P.

Proof. (i) =⇒ (ii). Follows from the fact that convergence implies boundedness.

(ii) =⇒ (iii). Suppose that (ii) holds. Since r
(
AGDj

)
≤
∥∥∥AGDj ∥∥∥ ≤ sup

j∈N

∥∥∥AGDj ∥∥∥ <
∞, for all j ∈ N, we obtain that sup

j∈N
r
(
AGDj

)
≤ sup

j∈N

∥∥∥AGDj ∥∥∥ <∞.
(iii) =⇒ (iv). Suppose that k = sup

j∈N
r
(
AGDj

)
<∞. We distinguish the follow-

ing three cases:

Case I: r
(
AGDj

)
= 0 for all j ∈ N. Then σ

(
AGDj

)
= {0} and hence σ (Aj) =

{0} , so dist(σ′(Aj), 0) =∞, for all j ∈ N. It then follows that inf
j∈N

dist(σ′(Aj), 0) =

∞ > 0.

Case II: If r
(
AGDj

)
> 0 for all j ∈ N, then k > 0 and

(
r
(
AGDj

))−1
≥

k−1. Hence, r
(
AGDj

)
= r

(
AGDj AjA

GD
j

)
≤
(
r
(
AGDj

))2
r (Aj) , so that r (Aj) ≥(

r
(
AGDj

))−1
≥ k−1 > 0, for all j ∈ N. Or, for all j ∈ N, dist(σ′(Aj), 0) =(

r
(
AGDj

))−1
≥ k−1 > 0, and hence inf

j∈N
dist(σ′(Aj), 0) ≥ k−1 > 0.

Case III: There is at least one j ∈ N such that r
(
AGDj

)
> 0 and possibly

some other j′ for which r
(
AGDj′

)
= 0. By case II, we have that dist(σ′(Aj), 0) =(

r
(
AGDj

))−1
≥ k−1 > 0 for all j ∈ N satisfying r

(
AGDj

)
> 0. By case I,
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dist(σ′(Aj′), 0) =∞ for all j′ ∈ N such that r
(
AGDj′

)
= 0. Let kj = dist(σ′(Aj), 0).

Then,

inf
{
dist(σ′(Aj), 0) : j ∈ N

}
= inf

{
kj : j ∈ N satisfies r

(
AGDj

)
> 0
}
≥ k−1 > 0,

hence the result follows.
(iv) =⇒ (v). Suppose that M = inf

j∈N
dist(σ′(Aj), 0) > 0. Let r = min (m,M)

where m = dist(σ′(A), 0). By the choice of r and the fact that
∞⋂
j=0

ρ(Aj) =

C\
∞⋃
j=0

σ(Aj), we have that B̃(0, r) ⊆
∞⋂
j=0

ρ(Aj) and B̃(0, r) ⊆ ρ(A).

(v) =⇒ (vi). Suppose that there exists an r > 0 such that B̃(0, r) ⊆ ρ(A) ∩
∞⋂
j=0

ρ(Aj) and show that AGDj Aj −→ AGDA as j →∞.

If A is invertible, so Aj is too for all sufficiently large j ∈ N and AGDj =

A−1j −→ A−1 = AGD as j → ∞. By the continuity of multiplication in B(X), it

follows that AGDj Aj −→ AGDA as j →∞.
Suppose now that 0 ∈ isoσ(A) and P is the spectral projection of A corre-

sponding to 0. Let:

Ω1 =
{
λ ∈ C : |λ| < r

3

}
and Ω2 =

{
λ ∈ C : |λ| > 2r

3

}
.

By hypothesis, Ω1 and Ω2 are open sets containing {0} and σ′(A) respectively,
and hence Ω = Ω1 ∪ Ω2 is an open set containing σ(A). Define f : Ω −→ C by:

f(λ) =

{
1 if λ ∈ Ω1

0 if λ ∈ Ω2
.

Then, f is holomorphic on Ω and P = f(A). The spectral projection Pj of Aj
corresponding to 0, might be 0 for several j ∈ N. Also, by hypothesis, Ω2 is an
open set containing σ′(Aj) for all j ∈ N, so that Pj = f(Aj) for all j ∈ N. It follows
that Pj = f(Aj) −→ f(A) = P as j → ∞ and since AGD = (A + P )−1(I − P )
and AGDj = (Aj + Pj)

−1(I − Pj), we have AGDj Aj −→ AGDA as j →∞.
From the above, it is clear that (vi) is equivalent to assertion (vii).
Finally, we prove that (vii) =⇒ (i). Suppose that (vii) holds. Since Aj+Pj and

A+P are invertible in B(X), for all j ∈ N, and (Aj +Pj) −→ A+P as j →∞, it
then follows that (Aj+Pj)

−1 −→ (A+P )−1 as j →∞. Hence, by the continuity of
multiplication in B(X), AGDj = (Aj +Pj)

−1(I−Pj) −→ (A+P )−1(I−P ) = AGD

as j →∞. This completes the proof.
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