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MEROMORPHIC SOLUTIONS OF HIGHER ORDER
NON-HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS

Benharrat BELAIDI*! and Rachid BELLAAMA?

Abstract

In this paper, we investigate the growth of meromorphic solutions of non-
homogeneous linear difference equation

An(2)f(z 4 )+ + A(2) f(z + 1) + Ao (2) f(2) = Anta(2),

where A,41(2),---, A (2) are (entire) or meromorphic functions and c¢;
(1,---,n) are non-zero distinct complex numbers. Under some conditions
on the (lower) order and the (lower) type of the coefficients, we obtain esti-
mates on the lower bound of the order of meromorphic solutions of the above
equation. We extend early results due to Luo and Zheng.
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1 Introduction and statement of main results

Throughout this paper, we assume that the reader is familiar with the fundamen-
tal results and the standard notations of the Nevanlinna theory of meromorphic
functions [6, 9, 17].

In the following, we recall some fundamental definitions which are used later.

Definition 1. (/6, 9, 17]) Let f be a meromorphic function. Then, the order p(f)
of f is defined by

logT
p(f) = lim supiOg (r. f)
r—too  logr

)
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where T'(r, ) is the characteristic function of Nevanlinna (see [6, 9, 17]). If f is
entire function, then the order of f is defined as

log T log log M
p(f) = lim SUPLM = lim Supw
rotoo  logr r—+00 log r

where M (r, f) = max,—, [ f(2)|.

Definition 2. (6, 9, 17]) Let f be a meromorphic function. Then, the lower
order u(f) of f is defined by
log T'(r, f)

u(f) = lim inf ="

If f is entire function, then the lower order of f is defined as

.. cloglog M(r, f)
——— " = |liminf —2>—""~,
r—+oo  logr r—+400 log r

Definition 3. (/2, 9]) Let f be a meromorphic function of order (0 < p(f) < o).
Then, the type T(f) of f is defined by

o T(r, f)
T(f)—lgigop R

If f is entire function, then the type Tpr(f) of f with order (0 < p(f) < o) is
defined as
o log M (r, f)
™(f) = 11{Ig§gop o)
Definition 4. ([, 10]) The lower type 7(f) of a meromorphic function f with
lower order (0 < p(f) < 00) is defined by

T )
7(f) = liminf =75

If f is entire function, then the lower type T);(f) of f with lower order (0 <
wu(f) < o0) is defined as

0 (f) = liminf 2220 )

r——400 rﬂ(f)

Definition 5. ([11]) Let f be a meromorphic function. Then, the exponent of

convergence of pole-sequence A % of f is defined by

A (1) = lim supilogN(r’ f),

f r—+400 logr

where N(r, f) is the integrated counting function of poles of f in {z:|z| < r}.
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Definition 6. ([9, 17]) For a € C = CU {oo}, the deficiency of a with respect to
a meromorphic function f is defined as

mir, ia N T, la
5(“’f>:99i¥T(mj}>>:1—lifi&pT<<&>>’ "o
_pem(n ) N (r, f)
Yoo =iy = TG

Recently, many articles focused on complex difference equations [1, 4, 13, 14]. The
back-ground for these studies lies in the recent difference counterparts of Nevan-
linna theory. The key result here is the difference analogue of the lemma on the
logarithmic derivative obtained by Halburd-Korhonen [7, 8] and Chiang-Feng [5],
independently. Several authors have investigated the properties of meromorphic
solutions of complex linear difference equation

An(2)f(z+cn) + An1(2) f(z +en1) +- -+ A1(2) f(z+ 1) + Ao(2) f(2) = 0 (1)

when one coefficient has maximal order or among coefficients having the maximal
order, exactly one has its type strictly greater than others and achieved some
important results (see e.g. [5, 12, 18, 19]). Very recently [15], Luo and Zheng
have studied the growth of meromorphic solutions of (1) when more than one
coefficient has maximal lower order and the lower type strictly greater than the
type of other coefficients, and obtained the following Theorems 1 and 2.

Theorem 1. ([15]) Let Aj(z)(j = 0,...,n) be entire functions, and let k,l €
{0,1,...,n}. If the following three assumptions hold simultaneously:

(1) maX{M(Ak)vp(Aj)7j 7é kvl} =p=< :UJ(AI) < OO,/A(AZ) > 0;
(2) Tar(A1) > Tar(Ag), when p(Ar) = p(Ag);

(3) max{mur(4)) : p(4;)) = w(A),j # kI} = 71 < Tp(A), when p(A) =
max{p(A;),§ # k, 1}

Then every meromorphic solution f # 0 of (1) satisfies p(f) > u(4;) + 1.

Theorem 2. ([15]) Let Aj(z)(j = 0,...,n) be meromorphic functions, and let
k.l €{0,1,....,n}. If the following four assumptions hold simultaneously:

(1) max{p(Ak), p(4;),7 # k,1} = p < p(A;) < o0, p(4;) > 0;
(2) 07(A1) > 7(Ak), when (A1) = p(Ag);

() mus{r() £ p) = DT 41y = < DA, when 4 = (o4, 7
k,l};

(4) 6 (00, A)) = 6 > 0.
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Then every meromorphic solution f Z 0 of (1) satisfies p(f) > u(A4;).

The purpose of this paper is to extend the results of Theorems 1 and 2 for the
complex non-homogeneous linear difference equation

An(2)f(z4cn) +An—1(2) f(z+cn-1)+- -+ A1(2) f(z+c1) + Ao (2) f(2) = Anta (?))-
2

We mainly obtain the following two results.

Theorem 3. Let Aj(2)(j =0, ...,n+1) be entire functions, and letk,l € {0,1,...,n+
1}. If the following three assumptions hold simultaneously:

(1) max{u(Ag), p(4;),5 # k, 1} = p < p(A;) < oo, u(4r) > 0;
(2) Tar(Ar) > 727 (Ak), when p(Ar) = p(Ag);

(3) max{ra(Ay) 5 p(Ag) = p(A), § # K} = m < Tyr(AD), when u(A)) =
max{p(4;), j # k,1}.

Then every meromorphic solution f of (2) satisfies p(f) > u(A;) if Any1 Z 0.
Furthermore, if Ap+1 = 0, then every meromorphic solution f # 0 of (2) satisfies
p(f) = p(A)) +1.

Theorem 4. Let A;j(z)(j =0,...,n+ 1) be meromorphic functions, and let k,l €
{0,1,...,n+ 1}. If the following five assumptions hold simultaneously:

(1) max{u(Ay), p(Ay), j # k. 1} = p < u(Ay) < o0, u(Ay) > 0;
(2) T(A) > 7(Ax), when p(Ay) = u(Aw);

(3)
> 7(Aj) < 7(4)) < 400
p(AJ):H’(Al)>07.77ék7l
when p(A;) = max{p(4;),j # k,1};
(4)

> T(Aj) + 7(Ag) < T(A)) < Ho00
P} =p(A1)>0, k]

when (A1) = i (Ay) = max{p(4y), j £ K 1}
(5) A (Ail) < u(A) < oc.
Then every meromorphic solution f of (2) satisfies p(f) > u(A;) if Any1 Z 0.

Furthermore, if An+1 = 0, then every meromorphic solution f # 0 of (2) satisfies
o) = u(A) + 1.
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2 Some Auxiliary Lemmas

The proofs of our results depend mainly on the following lemmas.

Lemma 1. ([5]) Let f be a meromorphic function of finite order p, and let
c1,c2(c1 # c2) be two arbitrary complex numbers. Let € > 0 be given, then there
exists a subset By C (1,4+00) with finite logarithmic measure such that for all
|z| =7 ¢ [0,1] U E1, we have

z+c1)

exp{=r") < ‘;Ez + ¢2) < exp{r”77).

Lemma 2. ([6]) Let f be a meromorphic function, ¢ be a non-zero complex con-
stant. Then we have that for r — +00

(1+o(W)T(r —lef, f(2)) <T(r, f(z+¢)) < (L+o(L)T(r + |c], f(2))-

Lemma 3. (/3]) Let f be a meromorphic function of finite order p. Then for
any given € > 0, there exists a set Es C (1,4+00) having finite linear measure and
finite logarithmic measure such that for all z satisfying |z| = r ¢ [0,1] U Ey and
sufficiently large v, we have

exp{—r""} < [f(2)] < exp{r""}.

Lemma 4. ([4, 10]) Let f be an entire function with u(f) < co. Then for any
given (> 0), there exists a subset E3 C (1,+00) with infinite logarithmic measure
such that for all r € Es, we have

. loglog M(r, f
u(f) = Jim 1()
r 0 ogr
rekg

and
M(r f) < exp{r“(f)“}.

Lemma 5. ([4, 16]) Let f be an entire function with 0 < p(f) < oo. Then for
any given (> 0), there exists a subset Ey C (1,+00) with infinite logarithmic
measure such that for all v € E4, we have

o logM(n /)
Tulf) = B s
reky

and
M(r, f) < exp{(zas(f) + &)r*}.

Lemma 6. ([5]) Let f be a meromorphic function of finite order p(f) < oo, and
let c1,ca two complex numbers distinct. Then for each € > 0 we have

o (7 TETC)N o pin-14e
(’f(z+cz)> o
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Lemma 7. ([4, 18]) Let f be a meromorphic function with pu(f) < co. Then for
any giwen (> 0), there exists a subset Es C (1,400) with infinite logarithmic
measure such that for all r € E5, we have

T(r,f) < ph(H)te,

Lemma 8. ([4, 15]) Let f be a meromorphic function with 0 < u(f) < co. Then
for any given (> 0), there exists a subset Fg C (1,+00) with infinite logarithmic
measure such that for all r € Eg, we have

T(r, f) < (z(f) +e)rh).

3 Proof of Theorem 3

Proof. If f has infinite order, then the result holds. Now we suppose that p(f) <
oo. We divide (2) by f(z+ ¢;) to get

n

—Ai(2) = Z Aj(z)M+Ak (2) M+Ao( ) f(z) Apt1 (2)

=17kl fz+a) fz+a) YTeta) fGta)
(3)
Therefore
< f flz+¢) f (z +ck)
|Ai(2)] Sj:%;kl z)| Fz+ ) )| Gt
f(Z n—+1 )
R ey ‘fz+q) @)

It follows by Lemma 1 that for any (> 0), there exists a subset £y C (1,400)
with finite logarithmic measure such that for all |z| =r ¢ [0, 1] U Ey, we have

<opr ) [FEES) cappetey, G2 6)

‘f(2+61)

By Lemma 2, we have

p(f(z+a))=p <f(2’1+01)

) — o(f).

Then by Lemma 3, for the above e, there exists a subset Fo C (1,+00), having
finite logarithmic measure such that for all z satisfying |z| = r ¢ [0,1] U E2 and
sufficiently large r, we have

< exp{rtV¥ey, (6)

e

In the following, we divide the proof into four cases:
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(i) We suppose that p < u(A;).
By the definition of p(A;) for the above ¢ and sufficiently large 7, we have

|4 (2)] < exp{rp(Aj)JrE} <exp{r’*e}, j # kL. (7)

By the definition of p(A4;), for sufficiently small £ > 0 and sufficiently large r, we
have

|4; (2)] = exp{r#A=e). (8)

By the definition of p(Ax) and Lemma 4, for any given (> 0), there exists a
subset E3 C (1,+00) with infinite logarithmic measure such that for all r» € Ej,
we have

|4 (2)] < exp{r#A0+e), (9)

By substituting (5)-(9) into (4), for all z satisfying |z| = r € E3\ ([0, 1]UE1 U Es),
we obtain

exp{r“(Al)_s} < (n —1)exp{rte} exp{rp(f)_1+5} + exp{r“(A’“)"’a} exp{rp(f)_1+€}

+exp{r”+5}exp{r”(f)+5}. (10)

Now, we may choose sufficiently small € satisfying 0 < 3¢ < u(A;) — p, we deduce
from (10) that for |z] =r € E3\ ([0,1] U E1 U Ey), r — 400

exp{r#(Al)*QE} < exp{rp(f)ﬁ},

that is, u(A;) < p(f) + 3¢, since € > 0 is arbitrary, then p(f) > u(A;).

(ii) We suppose that max{p(A4;),j # k,l} = a < p(Ay) = p(A), 7 (A) >

T (Ag)-

By the definition of p(A;) for any given (> 0) and sufficiently large r, we have
|45 (2)] < exp{r"A)*e} < exp{rote}, G # kL (11)

By the definition of 7,,(A4;), for sufficiently small € > 0 and sufficiently large r,
we have

|41 (2)] = exp{(zp (A1) — ) r A0} (12)

By the definition of 7,,(Ay) and Lemma 5, for any given (> 0), there exists a
subset 4 C (1,400) with infinite logarithmic measure such that for all r € Ej,
we have

Ak (2)] < exp{(zar(Ap) + &) 0} = exp{(Tyy (Ay) + &) rA0). (13)

By substituting (5), (6) and (11)-(13) into (4), for r € |z| =r € E4\ ([0,1]U E1 U
Es), we have

exp{ (T (A;) — &) P A} < (n — 1) exp{r* ™} exp {,r,p(f)—l—i-a}

+exp{ (7 (Ax) +¢€) r“(Al)} exp {rp(f)_“ra} + exp{'ro“rs} exp {r”(f)+5} . (14)
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Now, we may choose sufficiently small €, 0 < 2e < min{u(4;) — a,73,(4;) —
T (Ag)}, then from (14) for r € E4\ ([0, 1)U Ey U E») sufficiently large, we obtain

exp{ () (A1) — Tar(Ar) — 28)rH A5} < exp{rrH)Te),

that is, u(A;) < p(f) + 2¢, since € > 0 is arbitrary, then p(f) > pu(A4;).

(iii) We suppose that p(Ax) < max{p(A4;),j # k,l} = p(A4;) and max{ma(4;) :
p(A;) = u(Ay),j # k,1} =71 < 1);(A;). By the definitions of p(A;) and 7(A4;),
for any given € > 0 and sufficiently large r, we have

14; (2)] < exp{rPAitel <exp{rHAd=e1 if p(A;) < u(Ay), j# Kk,
! B exp{(71 + ¢€) r“(Az)}’ if P(Aj) — (A, j# kL.

Then, by substituting (5), (6), (9), (12) and (15) into (4), for all z satisfying
|z| =r € E3\ ([0,1] U E1 U E») sufficiently large, we have

exp{(7y/(4;) —¢) r“(Al)} <0 (exp{(ﬁ +e) r“(Al)} exp {rp(f)_1+8}>
+0 (exp{r“(Al)_a} exp {rp(f)_1+€}>

+ exp{r* A+ Y exp {rp(f)_l"’a} + exp{(r1 + &) r*“} exp {rp(f)+€} . (16)
Now, we may choose sufficiently small ¢ satisfying
0 < 2e <min{u(A;) — p(Ak), 7o (A1) — 71},
then from (16) for sufficiently large r € E3 \ ([0, 1] U E1 U E»), we get
exp{ (T (A)) — 71 — 2&) A=} < exp {r”(f)+a} ,

that is, u(A;) < p(f) + 2¢, since € > 0 is arbitrary, then p(f) > u(A;).
(iv) We suppose that max{p(4;),j # k,l} = p(Ax) = pn(A;) and

max{7Tyr(Ar), Tar (A7) : p(Aj) = p( A1), j # k, 1} = 72 < Tpr(Ar).
Then, by substituting (5), (6), (12), (13) and (15) into (4), for all z satisfying
|z| =7 € Eq\ (]0,1] U E1 U Es) sufficiently large, we obtain

exp{ (7T (4;) —¢) r“(Al)} <0 (exp{(Tg +¢) 7’“(‘41)} exp {rp(f)*lﬁ})
+0 (exp{r”(Al)*e} exp {rp(f)*He})

+exp{ (T (Ar) + &) 4} exp {Tp(f)flﬂ} +exp{(r2 + ) r* W} exp {rp(f)+g} :
(17)

(15)

Now, we may choose sufficiently small ¢ satisfying
0< 2 < IM(AI) — T2,
then from (17) for sufficiently large |z| =r € E4\ ([0,1] U E1 U E), we get

expl(22(A1) — 72— 22) PH0~2) < exp {0

that is, u(A;) < p(f) + 2¢, since € > 0 is arbitrary, then p(f) > pu(A4;).
Further, if A,+1 = 0, then by Theorem 1, every meromorphic solution f # 0 of
(2) satisfies p(f) > u(A;) + 1. O
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4 Proof of Theorem 4

Proof. If f has infinite order, then the result holds. Now, we suppose that p(f) <
oo. It follows by (2) and Lemma 2 that

n+1
T(r, Ai(2)) = m(r, Ai(2)) + N(r, A4i(2)) < Y m(r, A5(2)) + m(r, A(2))
J=0,5#k,l
Y miyr 7f(2+6j) mir 7f(2) miyr 71
+j:%# <7f(2+01)>+ <’f(z+cl))+ <’f(z+cz)>
n+1
+N(r, Ai(2) +0(1) < > T(r, Aj(2)) + T(r, A(2)) + N(r, Ai(2))
J=0,57#k,l

L1 ~ o ( fere)Y ()

+T<’f<z+cl>>+j:%, (Feres) +m (it Eeg) +ow
n+1
< Y T(rAj(2) + T, Ar(2)) + N(r, Ai(2))
J=0,37k,l

r C z Y miyr 7f(2+0j) mi\r 7']0(2)

Hal ))+F§;¢l (’f(z+cz)>+ (’f(z+cz)>+o(1)
n+1
< Y T(rAj(2) + T, Ar(2)) + N(r, Ai(2))
J=0,37k,l
; ST AOLAGRAE)A S U (O
+2T(2,f)+j_%‘# (’f(z—l—cl)>+ <,f(z+q)>+0(1). (18)

By Lemma 6, for any given (> 0), we have

m <r, f(f(Z)> _ O(Tp(f)flJrs), m <r, JM) — O(Tp(f)*lﬁ)? j#l

z4q) fz+¢)
(19)
By the definition of )\(Ail), for the above ¢ and sufficiently large r, we have
1
N (r, A < P (F)F (20)

(i) We suppose that p < pu(A;).
By the definition of p(A;) and p(f) for the above € and sufficiently large r, we
have

T(r, Aj) < rPATe <ppte oLl (21)

T(r, f) < rP)+e, (22)
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By the definition of p(A4;), for sufficiently small £ > 0 and sufficiently large r, we
have
T(r, A)) > rHAD=e, (23)

By the definition of pu(Ax) and Lemma 7, for any given (> 0), there exists a
subset E5 C (1,+00) with infinite logarithmic measure such that for all r» € Es,

we have
T(r, Ay) < riAnte, (24)

By substituting (19)-(24) into (18) for sufficiently large r € E5, we obtain

T/J,(A[)*E S nrp+€ + TH(Ak)+€ + T)\(Ail>+€ —+ 2 (27’)p(f)+8 + O(Tp(f)71+€)' (25)

Now, we may choose sufficiently small € satisfying

0 < 3¢ < min {N(Al) —p, (A — A </11z> } )

we deduce from (25) that for |z| =r € E5, r — 400
pi(A)—2¢ < rp(f)+8’
that is, u(A;) < p(f) + 3¢, since € > 0 is arbitrary, then p(f) > u(A4;).
d

Further, if A,41 = 0, then by substituting (19)-(21), (23) and (24) into (18) for
sufficiently large r € E5, we obtain

PiAD=E < (1 — 1) ppbe fpu(Ai)te | ,A(A%)*‘f + O(rP) =142y, (26)

Now, we may choose sufficiently small ¢ satisfying

0 < 3¢ < min {M(Al) — py (Ar) — A <fllz> } ;

we deduce from (26) that for |z| =r € E5, r — 400

pi(A) =28 < pp(D=1+e

that is, u(A;) < p(f) — 1+ 3¢, since € > 0 is arbitrary, then p(f) > u(A4;) + 1.
(ii) We suppose that max{p(A4;),j # k,1} = o < p(Ag) = p(4;), 7(4;) > 7(Ag).
By the definition of p(A;), for any given ¢(> 0) and sufficiently large r, we have

T(r, Aj) < pPlADTe < pote 5L g ] (27)

By the definition of 7(A;), for sufficiently small € > 0 and sufficiently large r, we
have
T(r, Ay) > (1(A;) — &) P, (28)

By the definition of 7(Aj) and Lemma 8, for any given £(> 0), there exists a
subset Eg C (1,+00) with infinite logarithmic measure such that for all r» € Eg,
we have

T(r, Ax) < (T(Ag) + ) rA%) = (7(Ag) 4 ) P4, (29)
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By substituting (19), (20), (22), (27)-(29) into (18), for sufficiently large r € Fg,
we obtain
(2(Ar) — &) A0 < np® T 4 (2(Ay) + €) )

)T g 24 ooty (30)

Now, we may choose sufficiently small € satisfying

0 < 2 < min {,u,(Al) —a,7(A) — T(Ag), n(Ay) — A (;) } :

then from (30) for r € Es sufficiently large, we get
(T(A)) — 7(Ag) — 25)7'“(‘41)*5 < pp)te

that is, u(A;) < p(f) + 2¢, since € > 0 is arbitrary, then p(f) > u(A;).
Further, if A,4; = 0, then by substituting (19), (20), (27)-(29) into (18) for
sufficiently large r € Eg, we obtain

(T(A) — &) 0 < (n = 1) 4 (2(Ag) + &) PN

—l—r)‘(’%l)ﬁ + O(rP)=1He), (31)

Now, we may choose sufficiently small ¢ satisfying

0 < 2¢ < min {M(Al) — o, (A1) — 7(Ag), (A4 — A (;) } ,

we deduce from (31) that for |z| =r € Eg, r — +0
((Ar) — (Ag) — 25)7’”(‘45)_8 < pp)—lte

that is, u(A;) < p(f) — 1 + 2¢, since € > 0 is arbitrary, then p(f) > u(4;) + 1.
(iii) We suppose that p(Ay) < max{p(4;),j # k,l} = p(4;) and

> T(A;) < T(4A)) < +oo0.
p(Aj):iu(Al)>07j7ék’l

Then, there exists a set J C {0,1,...,n + 1}\{k,{} such that for j € J, we

have p(A4;) = p(A;) with Y 7(4;) = 71 < 7(4;) and for j € {0,1,...,n +
jed

1\ (JU{k,1}), we have p(A;) < pu(A;). Hence, for any given ¢ > 0 and suffi-

ciently large r, we have

T (r,Aj) < (1(A;) + )P je g (32)

and
T (r, Aj) < et 5 {0,1,...,n + 1\ (JU{k,1}). (33)
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Then, by substituting (19), (20), (22), (24), (28), (32) and (33) into (18), for all
z satisfying |z| = r € F5 sufficiently large, we obtain

(1(4) —¢) PHAD) < Z (1 (4;) +¢) (A 4 Z pr(A)—e | i(Ar)+e
i€s F€{0, 1, n+ 1\ (JU{ k,1})

() 40 (2P D+ L O D=159) < (1 4 me) (A 10 (0= ) i)

G g 2rptDre L ot 1ey, (34)
Now, we may choose sufficiently small ¢ satisfying

WA — plAy) 7(A) -7 1A -2 (4)

0 <e<mi ) ) )
9 min B a1 5

then from (34) for sufficiently large |z| = r € E5, we get
(T(A)) — 71 — (n+ 1) ) prA) == < ppF)be,

that is, u(A;) < p(f) + 2¢, since € > 0 is arbitrary, then p(f) > u(A;).
Further, if A,4; = 0, then by substituting (19), (20), (24), (28), (32) and (33)
into (18) for sufficiently large r € Es5, we obtain

(r(4;) — &) T < (1 + (n — 1) ) r* ) 1 O <rN(Al)—E> 4 pH(AR)+e

G o(etn-1+ey, (35)

Now, we may choose sufficiently small € satisfying

0 <& < min { p(Ar) — p(Ag) 7(A) — 7 (A — A (E) }
2 S ; ’

we deduce from (35) that for |z| =r € E5, r - 400
(T(4A)) — 71 — ne) rHAD=e < prlf)=lde
that is, u(A4;) < p(f) — 1 + 2¢, since € > 0 is arbitrary, then p(f) > u(4;) + 1.
(iv) We suppose that max{p(A;),j # k,l1} = p(Ax) = n(4;) and
> T(4;) + 7(Ag) < 7(A)) < +oo.
P(A)=(A)>0, k]

Then, by substituting (19), (20), (22), (28), (29), (32) and (33) into (18), for all
z satisfying |z| = r € Fj sufficiently large, we have

(T(A) — &) A <3 (7 (4)) + ) A 4 S (A=
jeJ 50,1, nt TN (JU{ k1})
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+(z(4r) +¢) rAD 4 ?")‘<A%>+5 +2 (27a)p(f)+a + O(rp(f)_]_+€)

< (71 + T(AR) + (n 4+ 1) £) 140 4 O (p(40=)

IAC ) R (2r)PTe L O(rp)—1te), (36)

Now, we may choose sufficiently small ¢ satisfying

T(A) — i — (A HA) - A (A%)

O< < i 9 Y
= mm n+2 2

then from (36) for sufficiently large |z| = r € Eg, we get
(T(A) — 11 — T(A1) — (n+ 2) &) pAD = < ppf)Fe

that is, u(A;) < p(f) + 2¢, since € > 0 is arbitrary, then p(f) > pu(A4;).
Further, if A,4; = 0, then by substituting (19), (20), (28), (29), (32) and (33)
into (18), for sufficiently large r € Eg, we obtain

(T(4)) — ) rHA) < (71 + 7(Ap) 4 ne) rMA) + O (rM(Az)—5)

_H«)‘(Aiz)—ka + O(rp(f)_Ha). (37)

Now, we may choose sufficiently small € satisfying

(A) - — (4 HA) =M (4)
n+1 ’ 2 ’

0 < e < min

we deduce from (37) that for |z| =r € Eg, r — 400
(T(A) =71 = T(Ag) = (n+ 1) &) rA=e < pplD)71Fe,

that is, u(A;) < p(f) — 14 2¢, since € > 0 is arbitrary, then p(f) > u(4;)+1. O

5 Examples

Example 1. Consider the non-homogeneous difference equation with entire coef-
ficients

A3(2)f(z+V/m) + Aa(2) f(z = V) + A1(2) f (2 + \f) +A0(2) f(2) = Aa(2). (38)

Case 1. max{p(A;), u(Ax) : j # Lk} < pu(4;). In (38), for

Ag(z) =1, A (2) = e Wrtsm,
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Ay (2) = =26V Ay (z) = e TS 4 (2) = €

9

we have
max{p(Aj) (j=0,1,4), p(A2)} =1 < p(A43) = 2.

As we see, the conditions of Theorem 8 are verified. The function

f (Z) _ e4(z2—w)—8ﬁz
is a solution of equation (38) which satisfies p(f) =2 > u(As) = 2.

Case 2. max{p(A;): j # k,l} < u(Ar) = p(A4;), 7a7(A1) > 73 (Ag). In (38), for

Ay (2) =€, A (2) = 62(1—4\/77)4-3#’ As (2) = _9p2(148y/m)—12m + ez2+16\/?rz7

A3 (Z) — e—4z2+z+87r _ ez2+167r7 A4 (Z) — €z7
we get
max{p(4;) (j =0,1,4)} =1 < p(A2) = p(A3) =2, 1)(A2) =1 <4=1)/(43).
Obviously, the conditions of Theorem 3 are satisfied. The function
f (Z) — 64(z2—7r)—8ﬁz
is a solution of equation (38) and satisfies p(f) =2 > u(As) = 2.

Case 3. u(Ar) < max{p(A4;),j # k,1} = p(A;) and max{my(4;) : p(4;) =
:U(Al)aj 7é kal} =7 < IM(AZ)' In (38)7 f07“

Ag(z) =1, Aj(z) = e WWretsm

2

Ay (z) = —2e3VT12T 0 Aq(2) = e 38T Ay (z2) =€,
we have
1(Ag) = 0 <max{p(4;) (j =1,2,4)} =2 = pu(As),
v (Ag) =1 <3 =1),(A3).
Hence, the conditions of Theorem 8 are verified. The function
f(2) = 64(2277r)78ﬁz
is a solution of equation (38) satisfying p(f) u(Asz) = 2.

—92>
Case 4. max{p(A4;) : j # k,1} = u(Ax) = p(A;) and max{r,;(Ax), Tas(4;) :
p(A]) = :UJ(Al)h] 75 kvl} < IM(Al)' In (38)7 fOT

Ap(2) =™, Ai(z) = e YT,

As (Z) _ *26224_8\/%2_12”, As (Z) _ 6—6227 Ay (Z) _ e—2z2—87r,

we get
max{p(4;) (j =0,1,4)} = u(Az) = u(As) = 2,
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max{7;(A2), Tm(4;5), (7 =0,1,4)} =2 <6 =r1)(A3).
We see that the conditions of Theorem 3 are satisfied. The function

f (Z) — 64(,22—7r)—8\/ﬁz

is a solution of equation (38) which satisfies p(f) =2 > p(Asz) = 2.

Example 2. Consider the non-homogeneous difference equation with meromor-
phic coefficients

2
Ay(2) f(z +in”) + A1 () f (2 + i?) + Ao(2)f(2) = A3 (2). (39)

Case 1. max{p(A;), u(Ax) : j # 1, k} < pu(4;). In (39), for

— 823 12722

A(] (Z) = 6247ri22, A1 (Z) = € - s
cos(%)
Ag (Z) — 6247r3z+87r5i’ A3 (z) _ _6—671'3,2—1'775 SeCQ(ij),
s

we have

max{p(A;), 1(Ao) : j = 2,3} = 2 < p(Ay) = 3.

It’s clear that the conditions of Theorem 4 are satisfied. The function

1) = G

is a solution of equation (39) satisfying p(f) =3 > u(As) = 3.

Case 2. max{p(4;) : j # k,1} = o < p(Ar) = u(A4;), 7 (A1) > 17p(Ag). In
(39), for

A (Z) _ _ez3+127riz2—67r32 + e247riz2’ Ay (Z) — e—%z3+67r32 _ (cot(iz)> ez3+i7r5’
s
A2 (Z) — 6247r3z+87r5i, Ag (Z) — _6127riz2—i775 sec(%),
we have



448 B. Belaidi and R. Bellaama

Obviously, the conditions of Theorem /4 are satisfied. The function

is a solution of equation (39) and f satisfies p(f) =3 > u(A;) = 3.
Case 3. pu(Ay) <max{p(A;),j # k,l} = u(A;) and

Z T(Aj) < 7(A;) < +00.
p(A;)=p(A1)>0, j#k,l
In (39), for
12 .3 .
2Amiz? P —127iz2 46732
AO (Z) =€ ’ Al (Z) = i )
cos(%)
2473 248754 _4,3_ .5,  9,1Z
Az (z) =e , Az(z)=—e 7 sec”(—),
T
we get

A (i) =1<pu(Ar1) =3, p(d2)=1<max{p(4;):j=0,3} = pu(4) =3,

4 12
S (A = rlds) = o <z = 2
p(AJ):M(Al)>Ovj7ék7l

Obuviously, the conditions of Theorem 4 are satisfied. The function

is a solution of equation (39) which satisfies p(f) =3 > u(A;) = 3.
Case 4. max{p(A;),j # k,l} = p(Ar) = p(4;) and

Z 7(A;) + 1(Ag) < 7(A4;) < +o0.
In (39), for
i3 24z e—%23—127ri22+67r3z
Ap (Z) = ¢ n T2 , Ay (z) = - ,
cos(%)
As (2) = e§+24”32+8”5i, As(z) = e sec2(i—z),
T
we have
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> T(4;) + 7(Ak) = 7(A2) + 7(43) + 7 (Ao)
1 4 1 6 12
SetEtaT et =5

Obviously, the conditions of Theorem 4 are satisfied. The function

w

8
en”

sin()

f(z) =

is a solution of equation (39) and f satisfies p(f) =3 > u(A;) = 3.
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