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MEROMORPHIC SOLUTIONS OF HIGHER ORDER
NON-HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS
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Abstract

In this paper, we investigate the growth of meromorphic solutions of non-
homogeneous linear difference equation

An(z)f(z + cn) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = An+1(z),

where An+1 (z) , · · · , A0 (z) are (entire) or meromorphic functions and cj
(1, · · · , n) are non-zero distinct complex numbers. Under some conditions
on the (lower) order and the (lower) type of the coefficients, we obtain esti-
mates on the lower bound of the order of meromorphic solutions of the above
equation. We extend early results due to Luo and Zheng.
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1 Introduction and statement of main results

Throughout this paper, we assume that the reader is familiar with the fundamen-
tal results and the standard notations of the Nevanlinna theory of meromorphic
functions [6, 9, 17].

In the following, we recall some fundamental definitions which are used later.

Definition 1. ([6, 9, 17]) Let f be a meromorphic function. Then, the order ρ(f)
of f is defined by

ρ(f) = lim sup
r→+∞

log T (r, f)

log r
,

1∗ Corresponding author, Department of Mathematics, Laboratory of Pure and Applied
Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem-(Algeria), e-mail:
benharrat.belaidi@univ-mosta.dz

2Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of
Mostaganem (UMAB), B. P. 227 Mostaganem-(Algeria), e-mail: rachidbellaama10@gmail.com
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where T (r, f) is the characteristic function of Nevanlinna (see [6, 9, 17]). If f is
entire function, then the order of f is defined as

ρ(f) = lim sup
r→+∞

log T (r, f)

log r
= lim sup

r→+∞

log logM(r, f)

log r
,

where M(r, f) = max|z|=r |f(z)|.

Definition 2. ([6, 9, 17]) Let f be a meromorphic function. Then, the lower
order µ(f) of f is defined by

µ(f) = lim inf
r→+∞

log T (r, f)

log r
.

If f is entire function, then the lower order of f is defined as

µ(f) = lim inf
r→+∞

log T (r, f)

log r
= lim inf

r→+∞

log logM(r, f)

log r
.

Definition 3. ([2, 9]) Let f be a meromorphic function of order (0 < ρ(f) <∞).
Then, the type τ(f) of f is defined by

τ(f) = lim sup
r→+∞

T (r, f)

rρ(f)
.

If f is entire function, then the type τM (f) of f with order (0 < ρ(f) < ∞) is
defined as

τM (f) = lim sup
r→+∞

logM(r, f)

rρ(f)
.

Definition 4. ([4, 10]) The lower type τ(f) of a meromorphic function f with
lower order (0 < µ(f) <∞) is defined by

τ(f) = lim inf
r→+∞

T (r, f)

rµ(f)
.

If f is entire function, then the lower type τM (f) of f with lower order (0 <
µ(f) <∞) is defined as

τM (f) = lim inf
r→+∞

logM(r, f)

rµ(f)
.

Definition 5. ([11]) Let f be a meromorphic function. Then, the exponent of

convergence of pole-sequence λ
(

1
f

)
of f is defined by

λ

(
1

f

)
= lim sup

r→+∞

logN(r, f)

log r
,

where N(r, f) is the integrated counting function of poles of f in {z : |z| ≤ r} .
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Definition 6. ([9, 17]) For a ∈ C = C ∪ {∞}, the deficiency of a with respect to
a meromorphic function f is defined as

δ (a, f) = lim inf
r→+∞

m
(
r, 1
f−a

)
T (r, f)

= 1− lim sup
r→+∞

N
(
r, 1
f−a

)
T (r, f)

, a 6=∞,

δ (∞, f) = lim inf
r→+∞

m (r, f)

T (r, f)
= 1− lim sup

r→+∞

N (r, f)

T (r, f)
.

Recently, many articles focused on complex difference equations [1, 4, 13, 14]. The
back-ground for these studies lies in the recent difference counterparts of Nevan-
linna theory. The key result here is the difference analogue of the lemma on the
logarithmic derivative obtained by Halburd-Korhonen [7, 8] and Chiang-Feng [5],
independently. Several authors have investigated the properties of meromorphic
solutions of complex linear difference equation

An(z)f(z+ cn) +An−1(z)f(z+ cn−1) + · · ·+A1(z)f(z+ c1) +A0(z)f(z) = 0 (1)

when one coefficient has maximal order or among coefficients having the maximal
order, exactly one has its type strictly greater than others and achieved some
important results (see e.g. [5, 12, 18, 19]). Very recently [15], Luo and Zheng
have studied the growth of meromorphic solutions of (1) when more than one
coefficient has maximal lower order and the lower type strictly greater than the
type of other coefficients, and obtained the following Theorems 1 and 2.

Theorem 1. ([15]) Let Aj(z)(j = 0, ..., n) be entire functions, and let k, l ∈
{0, 1, ..., n}. If the following three assumptions hold simultaneously:

(1) max{µ(Ak), ρ(Aj), j 6= k, l} = ρ ≤ µ(Al) <∞, µ(Al) > 0;

(2) τM (Al) > τM (Ak), when µ(Al) = µ(Ak);

(3) max{τM (Aj) : ρ(Aj) = µ(Al), j 6= k, l} = τ1 < τM (Al), when µ(Al) =
max{ρ(Aj), j 6= k, l}.

Then every meromorphic solution f 6≡ 0 of (1) satisfies ρ(f) ≥ µ(Al) + 1.

Theorem 2. ([15]) Let Aj(z)(j = 0, ..., n) be meromorphic functions, and let
k, l ∈ {0, 1, ..., n}. If the following four assumptions hold simultaneously:

(1) max{µ(Ak), ρ(Aj), j 6= k, l} = ρ ≤ µ(Al) <∞, µ(Al) > 0;

(2) δτ(Al) > τ(Ak), when µ(Al) = µ(Ak);

(3) max{τ(Aj) : ρ(Aj) = µ(Al), j 6= k, l} = τ1 < δτ(Al), when µ(Al) = max{ρ(Aj), j 6=
k, l};

(4) δ (∞, Al) = δ > 0.
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Then every meromorphic solution f 6≡ 0 of (1) satisfies ρ(f) ≥ µ(Al).

The purpose of this paper is to extend the results of Theorems 1 and 2 for the
complex non-homogeneous linear difference equation

An(z)f(z+cn)+An−1(z)f(z+cn−1)+· · ·+A1(z)f(z+c1)+A0(z)f(z) = An+1 (z) .
(2)

We mainly obtain the following two results.

Theorem 3. Let Aj(z)(j = 0, ..., n+1) be entire functions, and let k, l ∈ {0, 1, ..., n+
1}. If the following three assumptions hold simultaneously:

(1) max{µ(Ak), ρ(Aj), j 6= k, l} = ρ ≤ µ(Al) <∞, µ(Al) > 0;

(2) τM (Al) > τM (Ak), when µ(Al) = µ(Ak);

(3) max{τM (Aj) : ρ(Aj) = µ(Al), j 6= k, l} = τ1 < τM (Al), when µ(Al) =
max{ρ(Aj), j 6= k, l}.

Then every meromorphic solution f of (2) satisfies ρ(f) ≥ µ(Al) if An+1 6≡ 0.
Furthermore, if An+1 ≡ 0, then every meromorphic solution f 6≡ 0 of (2) satisfies
ρ(f) ≥ µ(Al) + 1.

Theorem 4. Let Aj(z)(j = 0, ..., n+ 1) be meromorphic functions, and let k, l ∈
{0, 1, ..., n+ 1}. If the following five assumptions hold simultaneously:

(1) max{µ(Ak), ρ(Aj), j 6= k, l} = ρ ≤ µ(Al) <∞, µ(Al) > 0;

(2) τ(Al) > τ(Ak), when µ(Al) = µ(Ak);

(3) ∑
ρ(Aj)=µ(Al)>0, j 6=k,l

τ(Aj) < τ(Al) < +∞

when µ(Al) = max{ρ(Aj), j 6= k, l};

(4) ∑
ρ(Aj)=µ(Al)>0, j 6=k,l

τ(Aj) + τ(Ak) < τ(Al) < +∞

when µ(Al) = µ (Ak) = max{ρ(Aj), j 6= k, l};

(5) λ
(

1
Al

)
< µ(Al) <∞.

Then every meromorphic solution f of (2) satisfies ρ(f) ≥ µ(Al) if An+1 6≡ 0.
Furthermore, if An+1 ≡ 0, then every meromorphic solution f 6≡ 0 of (2) satisfies
ρ(f) ≥ µ(Al) + 1.
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2 Some Auxiliary Lemmas

The proofs of our results depend mainly on the following lemmas.

Lemma 1. ([5]) Let f be a meromorphic function of finite order ρ, and let
c1, c2(c1 6= c2) be two arbitrary complex numbers. Let ε > 0 be given, then there
exists a subset E1 ⊂ (1,+∞) with finite logarithmic measure such that for all
|z| = r /∈ [0, 1] ∪ E1, we have

exp{−rρ−1+ε} ≤
∣∣∣∣f(z + c1)

f(z + c2)

∣∣∣∣ ≤ exp{rρ−1+ε}.

Lemma 2. ([6]) Let f be a meromorphic function, c be a non-zero complex con-
stant. Then we have that for r −→ +∞

(1 + o(1))T (r − |c|, f(z)) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f(z)).

Lemma 3. ([3]) Let f be a meromorphic function of finite order ρ. Then for
any given ε > 0, there exists a set E2 ⊂ (1,+∞) having finite linear measure and
finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E2 and
sufficiently large r, we have

exp{−rρ+ε} ≤ |f(z)| ≤ exp{rρ+ε}.

Lemma 4. ([4, 10]) Let f be an entire function with µ(f) < ∞. Then for any
given ε(> 0), there exists a subset E3 ⊂ (1,+∞) with infinite logarithmic measure
such that for all r ∈ E3, we have

µ(f) = lim
r→+∞
r∈E3

log logM(r, f)

log r

and
M(r, f) < exp{rµ(f)+ε}.

Lemma 5. ([4, 16]) Let f be an entire function with 0 < µ(f) < ∞. Then for
any given ε(> 0), there exists a subset E4 ⊂ (1,+∞) with infinite logarithmic
measure such that for all r ∈ E4, we have

τM (f) = lim
r→+∞
r∈E4

logM(r, f)

log r

and
M(r, f) < exp{(τM (f) + ε)rµ(f)}.

Lemma 6. ([5]) Let f be a meromorphic function of finite order ρ(f) <∞, and
let c1, c2 two complex numbers distinct. Then for each ε > 0 we have

m

(
r,
f(z + c1)

f(z + c2)

)
= O(rρ(f)−1+ε).



438 B. Beläıdi and R. Bellaama

Lemma 7. ([4, 18]) Let f be a meromorphic function with µ(f) <∞. Then for
any given ε(> 0), there exists a subset E5 ⊂ (1,+∞) with infinite logarithmic
measure such that for all r ∈ E5, we have

T (r, f) < rµ(f)+ε.

Lemma 8. ([4, 15]) Let f be a meromorphic function with 0 < µ(f) <∞. Then
for any given ε(> 0), there exists a subset E6 ⊂ (1,+∞) with infinite logarithmic
measure such that for all r ∈ E6, we have

T (r, f) < (τ(f) + ε)rµ(f).

3 Proof of Theorem 3

Proof. If f has infinite order, then the result holds. Now we suppose that ρ(f) <
∞. We divide (2) by f(z + cl) to get

−Al(z) =
n∑

j=1,j 6=k,l
Aj(z)

f(z + cj)

f(z + cl)
+Ak (z)

f(z + ck)

f(z + cl)
+A0(z)

f(z)

f(z + cl)
− An+1 (z)

f(z + cl)
.

(3)
Therefore

|Al(z)| ≤
n∑

j=1,j 6=k,l
|Aj(z)|

∣∣∣∣f(z + cj)

f(z + cl)

∣∣∣∣+ |Ak (z)|
∣∣∣∣f(z + ck)

f(z + cl)

∣∣∣∣
+ |A0(z)|

∣∣∣∣ f(z)

f(z + cl)

∣∣∣∣+

∣∣∣∣An+1 (z)

f(z + cl)

∣∣∣∣ . (4)

It follows by Lemma 1 that for any ε(> 0), there exists a subset E1 ⊂ (1,+∞)
with finite logarithmic measure such that for all |z| = r /∈ [0, 1] ∪ E1, we have∣∣∣∣ f(z)

f(z + cl)

∣∣∣∣ ≤ exp{rρ−1+ε},
∣∣∣∣f(z + cj)

f(z + cl)

∣∣∣∣ ≤ exp{rρ−1+ε}, j 6= l. (5)

By Lemma 2, we have

ρ(f(z + cl)) = ρ

(
1

f(z + cl)

)
= ρ(f).

Then by Lemma 3, for the above ε, there exists a subset E2 ⊂ (1,+∞), having
finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E2 and
sufficiently large r, we have∣∣∣∣ 1

f(z + cl)

∣∣∣∣ ≤ exp{rρ(f)+ε}. (6)

In the following, we divide the proof into four cases:
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(i) We suppose that ρ < µ(Al).
By the definition of ρ(Aj) for the above ε and sufficiently large r, we have

|Aj (z)| ≤ exp{rρ(Aj)+ε} ≤ exp{rρ+ε}, j 6= k, l. (7)

By the definition of µ(Al), for sufficiently small ε > 0 and sufficiently large r, we
have

|Al (z)| ≥ exp{rµ(Al)−ε}. (8)

By the definition of µ(Ak) and Lemma 4, for any given ε(> 0), there exists a
subset E3 ⊂ (1,+∞) with infinite logarithmic measure such that for all r ∈ E3,
we have

|Ak (z)| ≤ exp{rµ(Ak)+ε}. (9)

By substituting (5)-(9) into (4), for all z satisfying |z| = r ∈ E3 \ ([0, 1]∪E1∪E2),
we obtain

exp{rµ(Al)−ε} ≤ (n− 1) exp{rρ+ε} exp{rρ(f)−1+ε}+exp{rµ(Ak)+ε} exp{rρ(f)−1+ε}

+ exp{rρ+ε} exp{rρ(f)+ε}. (10)

Now, we may choose sufficiently small ε satisfying 0 < 3ε < µ(Al)− ρ, we deduce
from (10) that for |z| = r ∈ E3 \ ([0, 1] ∪ E1 ∪ E2), r → +∞

exp{rµ(Al)−2ε} ≤ exp{rρ(f)+ε},

that is, µ(Al) ≤ ρ(f) + 3ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al).
(ii) We suppose that max{ρ(Aj), j 6= k, l} = α < µ(Ak) = µ(Al), τM (Al) >
τM (Ak).
By the definition of ρ(Aj) for any given ε(> 0) and sufficiently large r, we have

|Aj (z)| ≤ exp{rρ(Aj)+ε} ≤ exp{rα+ε}, j 6= k, l. (11)

By the definition of τM (Al), for sufficiently small ε > 0 and sufficiently large r,
we have

|Al (z)| ≥ exp{(τM (Al)− ε) rµ(Al)}. (12)

By the definition of τM (Ak) and Lemma 5, for any given ε(> 0), there exists a
subset E4 ⊂ (1,+∞) with infinite logarithmic measure such that for all r ∈ E4,
we have

|Ak (z)| ≤ exp{(τM (Ak) + ε) rµ(Ak)} = exp{(τM (Ak) + ε) rµ(Al)}. (13)

By substituting (5), (6) and (11)-(13) into (4), for r ∈ |z| = r ∈ E4 \ ([0, 1]∪E1 ∪
E2), we have

exp{(τM (Al)− ε) rµ(Al)} ≤ (n− 1) exp{rα+ε} exp
{
rρ(f)−1+ε

}
+ exp{(τM (Ak) + ε) rµ(Al)} exp

{
rρ(f)−1+ε

}
+ exp{rα+ε} exp

{
rρ(f)+ε

}
. (14)
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Now, we may choose sufficiently small ε, 0 < 2ε < min{µ(Al) − α, τM (Al) −
τM (Ak)}, then from (14) for r ∈ E4 \ ([0, 1]∪E1∪E2) sufficiently large, we obtain

exp{(τM (Al)− τM (Ak)− 2ε)rµ(Al)−ε} ≤ exp{rρ(f)+ε},

that is, µ(Al) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al).
(iii) We suppose that µ(Ak) < max{ρ(Aj), j 6= k, l} = µ(Al) and max{τM (Aj) :
ρ(Aj) = µ(Al), j 6= k, l} = τ1 < τM (Al). By the definitions of ρ(Aj) and τ(Aj),
for any given ε > 0 and sufficiently large r, we have

|Aj (z)| ≤
{

exp{rρ(Aj)+ε} ≤ exp{rµ(Al)−ε}, if ρ(Aj) < µ(Al), j 6= k, l,

exp{(τ1 + ε) rµ(Al)}, if ρ(Aj) = µ(Al), j 6= k, l.
(15)

Then, by substituting (5), (6), (9), (12) and (15) into (4), for all z satisfying
|z| = r ∈ E3 \ ([0, 1] ∪ E1 ∪ E2) sufficiently large, we have

exp{(τM (Al)− ε) rµ(Al)} ≤ O
(

exp{(τ1 + ε) rµ(Al)} exp
{
rρ(f)−1+ε

})
+O

(
exp{rµ(Al)−ε} exp

{
rρ(f)−1+ε

})
+ exp{rµ(Ak)+ε} exp

{
rρ(f)−1+ε

}
+ exp{(τ1 + ε) rµ(Al)} exp

{
rρ(f)+ε

}
. (16)

Now, we may choose sufficiently small ε satisfying

0 < 2ε < min{µ(Al)− µ(Ak), τM (Al)− τ1},

then from (16) for sufficiently large r ∈ E3 \ ([0, 1] ∪ E1 ∪ E2), we get

exp{(τM (Al)− τ1 − 2ε) rµ(Al)−ε} ≤ exp
{
rρ(f)+ε

}
,

that is, µ(Al) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al).
(iv) We suppose that max{ρ(Aj), j 6= k, l} = µ(Ak) = µ(Al) and

max{τM (Ak), τM (Aj) : ρ(Aj) = µ(Al), j 6= k, l} = τ2 < τM (Al).

Then, by substituting (5), (6), (12), (13) and (15) into (4), for all z satisfying
|z| = r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2) sufficiently large, we obtain

exp{(τM (Al)− ε) rµ(Al)} ≤ O
(

exp{(τ2 + ε) rµ(Al)} exp
{
rρ(f)−1+ε

})
+O

(
exp{rµ(Al)−ε} exp

{
rρ(f)−1+ε

})
+ exp{(τM (Ak) + ε) rµ(Al)} exp

{
rρ(f)−1+ε

}
+ exp{(τ2 + ε) rµ(Al)} exp

{
rρ(f)+ε

}
.

(17)
Now, we may choose sufficiently small ε satisfying

0 < 2ε < τM (Al)− τ2,

then from (17) for sufficiently large |z| = r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2), we get

exp{(τM (Al)− τ2 − 2ε) rµ(Al)−ε} ≤ exp
{
rρ(f)+ε

}
,

that is, µ(Al) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al).
Further, if An+1 ≡ 0, then by Theorem 1, every meromorphic solution f 6≡ 0 of
(2) satisfies ρ(f) ≥ µ(Al) + 1.
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4 Proof of Theorem 4

Proof. If f has infinite order, then the result holds. Now, we suppose that ρ(f) <
∞. It follows by (2) and Lemma 2 that

T (r,Al(z)) = m(r,Al(z)) +N(r,Al(z)) ≤
n+1∑

j=0,j 6=k,l
m(r,Aj(z)) +m(r,Ak(z))

+
n∑

j=1,j 6=l
m

(
r,
f(z + cj)

f(z + cl)

)
+m

(
r,

f(z)

f(z + cl)

)
+m

(
r,

1

f(z + cl)

)

+N(r,Al(z)) +O(1) ≤
n+1∑

j=0,j 6=k,l
T (r,Aj(z)) + T (r,Ak(z)) +N(r,Al(z))

+T

(
r,

1

f(z + cl)

)
+

n∑
j=1,j 6=l

m

(
r,
f(z + cj)

f(z + cl)

)
+m

(
r,

f(z)

f(z + cl)

)
+O(1)

≤
n+1∑

j=0,j 6=k,l
T (r,Aj(z)) + T (r,Ak(z)) +N(r,Al(z))

+2T (r + |cl|, f(z)) +
n∑

j=1,j 6=l
m

(
r,
f(z + cj)

f(z + cl)

)
+m

(
r,

f(z)

f(z + cl)

)
+O(1)

≤
n+1∑

j=0,j 6=k,l
T (r,Aj(z)) + T (r,Ak(z)) +N(r,Al(z))

+2T (2r, f) +

n∑
j=1,j 6=l

m

(
r,
f(z + cj)

f(z + cl)

)
+m

(
r,

f(z)

f(z + cl)

)
+O(1). (18)

By Lemma 6, for any given ε(> 0), we have

m

(
r,

f(z)

f(z + cl)

)
= O(rρ(f)−1+ε), m

(
r,
f(z + cj)

f(z + cl)

)
= O(rρ(f)−1+ε), j 6= l.

(19)
By the definition of λ( 1

Al
), for the above ε and sufficiently large r, we have

N (r,Al) ≤ r
λ
(

1
Al

)
+ε
. (20)

(i) We suppose that ρ < µ(Al).
By the definition of ρ(Aj) and ρ(f) for the above ε and sufficiently large r, we
have

T (r,Aj) ≤ rρ(Aj)+ε ≤ rρ+ε, j 6= k, l, (21)

T (r, f) ≤ rρ(f)+ε. (22)
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By the definition of µ(Al), for sufficiently small ε > 0 and sufficiently large r, we
have

T (r,Al) ≥ rµ(Al)−ε. (23)

By the definition of µ(Ak) and Lemma 7, for any given ε(> 0), there exists a
subset E5 ⊂ (1,+∞) with infinite logarithmic measure such that for all r ∈ E5,
we have

T (r,Ak) ≤ rµ(Ak)+ε. (24)

By substituting (19)-(24) into (18) for sufficiently large r ∈ E5, we obtain

rµ(Al)−ε ≤ nrρ+ε + rµ(Ak)+ε + r
λ
(

1
Al

)
+ε

+ 2 (2r)ρ(f)+ε +O(rρ(f)−1+ε). (25)

Now, we may choose sufficiently small ε satisfying

0 < 3ε < min

{
µ(Al)− ρ, µ(Al)− λ

(
1

Al

)}
,

we deduce from (25) that for |z| = r ∈ E5, r → +∞

rµ(Al)−2ε ≤ rρ(f)+ε,

that is, µ(Al) ≤ ρ(f) + 3ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al).
Further, if An+1 ≡ 0, then by substituting (19)-(21), (23) and (24) into (18) for
sufficiently large r ∈ E5, we obtain

rµ(Al)−ε ≤ (n− 1) rρ+ε + rµ(Ak)+ε + r
λ
(

1
Al

)
+ε

+O(rρ(f)−1+ε). (26)

Now, we may choose sufficiently small ε satisfying

0 < 3ε < min

{
µ(Al)− ρ, µ(Al)− λ

(
1

Al

)}
,

we deduce from (26) that for |z| = r ∈ E5, r → +∞

rµ(Al)−2ε ≤ rρ(f)−1+ε,

that is, µ(Al) ≤ ρ(f)− 1 + 3ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al) + 1.
(ii) We suppose that max{ρ(Aj), j 6= k, l} = α < µ(Ak) = µ(Al), τ(Al) > τ(Ak).
By the definition of ρ(Aj), for any given ε(> 0) and sufficiently large r, we have

T (r,Aj) ≤ rρ(Aj)+ε ≤ rα+ε, j 6= k, l. (27)

By the definition of τ(Al), for sufficiently small ε > 0 and sufficiently large r, we
have

T (r,Al) ≥ (τ(Al)− ε) rµ(Al). (28)

By the definition of τ(Ak) and Lemma 8, for any given ε(> 0), there exists a
subset E6 ⊂ (1,+∞) with infinite logarithmic measure such that for all r ∈ E6,
we have

T (r,Ak) ≤ (τ(Ak) + ε) rµ(Ak) = (τ(Ak) + ε) rµ(Al). (29)
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By substituting (19), (20), (22), (27)-(29) into (18), for sufficiently large r ∈ E6,
we obtain

(τ(Al)− ε) rµ(Al) ≤ nrα+ε + (τ(Ak) + ε) rµ(Al)

+r
λ
(

1
Al

)
+ε

+ 2 (2r)ρ(f)+ε +O(rρ(f)−1+ε). (30)

Now, we may choose sufficiently small ε satisfying

0 < 2ε < min

{
µ(Al)− α, τ(Al)− τ(Ak), µ(Al)− λ

(
1

Al

)}
,

then from (30) for r ∈ E6 sufficiently large, we get

(τ(Al)− τ(Ak)− 2ε)rµ(Al)−ε ≤ rρ(f)+ε,

that is, µ(Al) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al).

Further, if An+1 ≡ 0, then by substituting (19), (20), (27)-(29) into (18) for
sufficiently large r ∈ E6, we obtain

(τ(Al)− ε) rµ(Al) ≤ (n− 1) rα+ε + (τ(Ak) + ε) rµ(Al)

+r
λ
(

1
Al

)
+ε

+O(rρ(f)−1+ε). (31)

Now, we may choose sufficiently small ε satisfying

0 < 2ε < min

{
µ(Al)− α, τ(Al)− τ(Ak), µ(Al)− λ

(
1

Al

)}
,

we deduce from (31) that for |z| = r ∈ E6, r → +∞

(τ(Al)− τ(Ak)− 2ε)rµ(Al)−ε ≤ rρ(f)−1+ε,

that is, µ(Al) ≤ ρ(f)− 1 + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al) + 1.

(iii) We suppose that µ(Ak) < max{ρ(Aj), j 6= k, l} = µ(Al) and∑
ρ(Aj)=µ(Al)>0, j 6=k,l

τ(Aj) < τ(Al) < +∞.

Then, there exists a set J ⊆ {0, 1, . . . , n + 1}\ { k, l} such that for j ∈ J, we
have ρ(Aj) = µ (Al) with

∑
j∈J

τ (Aj) = τ1 < τ (Al) and for j ∈ {0, 1, . . . , n +

1}\ (J ∪ { k, l}) , we have ρ (Aj) < µ (Al) . Hence, for any given ε > 0 and suffi-
ciently large r, we have

T (r,Aj) ≤ (τ (Aj) + ε) rµ(Al), j ∈ J (32)

and

T (r,Aj) ≤ rµ(Al)−ε, j ∈ {0, 1, . . . , n+ 1}\ (J ∪ { k, l}) . (33)
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Then, by substituting (19), (20), (22), (24), (28), (32) and (33) into (18), for all
z satisfying |z| = r ∈ E5 sufficiently large, we obtain

(τ(Al)− ε) rµ(Al) ≤
∑
j∈J

(τ (Aj) + ε) rµ(Al)+
∑

j∈{0,1,...,n+1}\(J∪{ k,l})

rµ(Al)−ε+rµ(Ak)+ε

+r
λ
(

1
Al

)
+ε

+2 (2r)ρ(f)+ε+O(rρ(f)−1+ε) ≤ (τ1 + nε) rµ(Al)+O
(
rµ(Al)−ε

)
+rµ(Ak)+ε

+r
λ
(

1
Al

)
+ε

+ 2 (2r)ρ(f)+ε +O(rρ(f)−1+ε). (34)

Now, we may choose sufficiently small ε satisfying

0 < ε < min

µ(Al)− µ(Ak)

2
,
τ(Al)− τ1
n+ 1

,
µ(Al)− λ

(
1
Al

)
2

 ,

then from (34) for sufficiently large |z| = r ∈ E5, we get

(τ(Al)− τ1 − (n+ 1) ε) rµ(Al)−ε ≤ rρ(f)+ε,

that is, µ(Al) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al).
Further, if An+1 ≡ 0, then by substituting (19), (20), (24), (28), (32) and (33)
into (18) for sufficiently large r ∈ E5, we obtain

(τ(Al)− ε) rµ(Al) ≤ (τ1 + (n− 1) ε) rµ(Al) +O
(
rµ(Al)−ε

)
+ rµ(Ak)+ε

+r
λ
(

1
Al

)
+ε

+O(rρ(f)−1+ε). (35)

Now, we may choose sufficiently small ε satisfying

0 < ε < min

µ(Al)− µ(Ak)

2
,
τ(Al)− τ1

n
,
µ(Al)− λ

(
1
Al

)
2

 ,

we deduce from (35) that for |z| = r ∈ E5, r → +∞

(τ(Al)− τ1 − nε) rµ(Al)−ε ≤ rρ(f)−1+ε,

that is, µ(Al) ≤ ρ(f)− 1 + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al) + 1.
(iv) We suppose that max{ρ(Aj), j 6= k, l} = µ(Ak) = µ(Al) and∑

ρ(Aj)=µ(Al)>0, j 6=k,l

τ(Aj) + τ(Ak) < τ(Al) < +∞.

Then, by substituting (19), (20), (22), (28), (29), (32) and (33) into (18), for all
z satisfying |z| = r ∈ E6 sufficiently large, we have

(τ(Al)− ε) rµ(Al) ≤
∑
j∈J

(τ (Aj) + ε) rµ(Al) +
∑

j∈{0,1,...,n+1}\(J∪{ k,l})

rµ(Al)−ε



Meromorphic solutions of linear difference equations 445

+ (τ(Ak) + ε) rµ(Al) + r
λ
(

1
Al

)
+ε

+ 2 (2r)ρ(f)+ε +O(rρ(f)−1+ε)

≤ (τ1 + τ(Ak) + (n+ 1) ε) rµ(Al) +O
(
rµ(Al)−ε

)
+r

λ
(

1
Al

)
+ε

+ 2 (2r)ρ(f)+ε +O(rρ(f)−1+ε). (36)

Now, we may choose sufficiently small ε satisfying

0 < ε < min

τ(Al)− τ1 − τ(Ak)

n+ 2
,
µ(Al)− λ

(
1
Al

)
2

 ,

then from (36) for sufficiently large |z| = r ∈ E6, we get

(τ(Al)− τ1 − τ(Ak)− (n+ 2) ε) rµ(Al)−ε ≤ rρ(f)+ε,

that is, µ(Al) ≤ ρ(f) + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al).

Further, if An+1 ≡ 0, then by substituting (19), (20), (28), (29), (32) and (33)
into (18), for sufficiently large r ∈ E6, we obtain

(τ(Al)− ε) rµ(Al) ≤ (τ1 + τ(Ak) + nε) rµ(Al) +O
(
rµ(Al)−ε

)
+r

λ
(

1
Al

)
+ε

+O(rρ(f)−1+ε). (37)

Now, we may choose sufficiently small ε satisfying

0 < ε < min

τ(Al)− τ1 − τ(Ak)

n+ 1
,
µ(Al)− λ

(
1
Al

)
2

 ,

we deduce from (37) that for |z| = r ∈ E6, r → +∞

(τ(Al)− τ1 − τ(Ak)− (n+ 1) ε) rµ(Al)−ε ≤ rρ(f)−1+ε,

that is, µ(Al) ≤ ρ(f)− 1 + 2ε, since ε > 0 is arbitrary, then ρ(f) ≥ µ(Al) + 1.

5 Examples

Example 1. Consider the non-homogeneous difference equation with entire coef-
ficients

A3(z)f(z+
√
π) +A2(z)f(z−

√
π) +A1(z)f(z+

√
π

2
) +A0(z)f(z) = A4(z). (38)

Case 1. max{ρ(Aj), µ(Ak) : j 6= l, k} < µ(Al). In (38), for

A0 (z) = 1, A1 (z) = e−4
√
πz+3π,
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A2 (z) = −2e8
√
πz−12π, A3 (z) = e−4z

2+z+8π, A4 (z) = ez,

we have
max{ρ(Aj) (j = 0, 1, 4) , µ(A2)} = 1 < µ(A3) = 2.

As we see, the conditions of Theorem 3 are verified. The function

f (z) = e4(z
2−π)−8

√
πz

is a solution of equation (38) which satisfies ρ(f) = 2 ≥ µ(A3) = 2.

Case 2. max{ρ(Aj) : j 6= k, l} < µ(Ak) = µ(Al), τM (Al) > τM (Ak). In (38), for

A0 (z) = ez, A1 (z) = ez(1−4
√
π)+3π, A2 (z) = −2ez(1+8

√
π)−12π + ez

2+16
√
πz,

A3 (z) = e−4z
2+z+8π − ez2+16π, A4 (z) = ez,

we get

max{ρ(Aj) (j = 0, 1, 4)} = 1 < µ(A2) = µ(A3) = 2, τM (A2) = 1 < 4 = τM (A3).

Obviously, the conditions of Theorem 3 are satisfied. The function

f (z) = e4(z
2−π)−8

√
πz

is a solution of equation (38) and satisfies ρ(f) = 2 ≥ µ(A3) = 2.
Case 3. µ(Ak) < max{ρ(Aj), j 6= k, l} = µ(Al) and max{τM (Aj) : ρ(Aj) =
µ(Al), j 6= k, l} = τ1 < τM (Al). In (38), for

A0 (z) = 1, A1 (z) = e−4
√
πz+3π,

A2 (z) = −2e8
√
πz−12π, A3 (z) = e−3z

2+8π, A4 (z) = ez
2
,

we have
µ(A0) = 0 < max{ρ(Aj) (j = 1, 2, 4)} = 2 = µ(A3),

τM (A4) = 1 < 3 = τM (A3).

Hence, the conditions of Theorem 3 are verified. The function

f (z) = e4(z
2−π)−8

√
πz

is a solution of equation (38) satisfying ρ(f) = 2 ≥ µ(A3) = 2.
Case 4. max{ρ(Aj) : j 6= k, l} = µ(Ak) = µ(Al) and max{τM (Ak), τM (Aj) :
ρ(Aj) = µ(Al), j 6= k, l} < τM (Al). In (38), for

A0 (z) = ez
2
, A1 (z) = ez

2−4
√
πz+3π,

A2 (z) = −2ez
2+8
√
πz−12π, A3 (z) = e−6z

2
, A4 (z) = e−2z

2−8π,

we get
max{ρ(Aj) (j = 0, 1, 4)} = µ(A2) = µ(A3) = 2,
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max{τM (A2), τM (Aj), (j = 0, 1, 4)} = 2 < 6 = τM (A3).

We see that the conditions of Theorem 3 are satisfied. The function

f (z) = e4(z
2−π)−8

√
πz

is a solution of equation (38) which satisfies ρ(f) = 2 ≥ µ(A3) = 2.

Example 2. Consider the non-homogeneous difference equation with meromor-
phic coefficients

A2(z)f(z + iπ2) +A1(z)f(z + i
π2

2
) +A0(z)f(z) = A3 (z) . (39)

Case 1. max{ρ(Aj), µ(Ak) : j 6= l, k} < µ(Al). In (39), for

A0 (z) = e24πiz
2
, A1 (z) =

e−
8
π
z3−12πiz2

cos( izπ )
,

A2 (z) = e24π
3z+8π5i, A3 (z) = −e−6π3z−iπ5

sec2(
iz

π
),

we have

λ

(
1

A1

)
= 1 < µ(A1) = 3,

max{ρ(Aj), µ(A0) : j = 2, 3} = 2 < µ(A1) = 3.

It’s clear that the conditions of Theorem 4 are satisfied. The function

f (z) =
e

8
π
z3

sin( izπ )

is a solution of equation (39) satisfying ρ(f) = 3 ≥ µ(A3) = 3.
Case 2. max{ρ(Aj) : j 6= k, l} = α < µ(Ak) = µ(Al), τM (Al) > τM (Ak). In
(39), for

A0 (z) = −ez3+12πiz2−6π3z + e24πiz
2
, A1 (z) = e−

8
π
z3+6π3z −

(
cot(

iz

π
)

)
ez

3+iπ5
,

A2 (z) = e24π
3z+8π5i, A3 (z) = −e12πiz2−iπ5

sec(
iz

π
),

we have

λ

(
1

A1

)
= 1 < µ(A1) = 3, max{ρ(Aj) : j = 2, 3} = 2 < µ(A0) = µ(A1) = 3,

τ(A1) =
8

π2
>

1

π
= τ(A0).
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Obviously, the conditions of Theorem 4 are satisfied. The function

f (z) =
e

8
π
z3

sin( izπ )

is a solution of equation (39) and f satisfies ρ(f) = 3 ≥ µ(A1) = 3.

Case 3. µ(Ak) < max{ρ(Aj), j 6= k, l} = µ(Al) and∑
ρ(Aj)=µ(Al)>0, j 6=k,l

τ(Aj) < τ(Al) < +∞.

In (39), for

A0 (z) = e24πiz
2
, A1 (z) =

e−
12
π
z3−12πiz2+6π3z

cos( izπ )
,

A2 (z) = e24π
3z+8π5i, A3 (z) = −e−

4
π
z3−π5i sec2(

iz

π
),

we get

λ

(
1

A1

)
= 1 < µ(A1) = 3, µ(A2) = 1 < max{ρ(Aj) : j = 0, 3} = µ(A1) = 3,

∑
ρ(Aj)=µ(Al)>0, j 6=k,l

τ(Aj) = τ(A3) =
4

π2
< τ(A1) =

12

π2
.

Obviously, the conditions of Theorem 4 are satisfied. The function

f (z) =
e

8
π
z3

sin( izπ )

is a solution of equation (39) which satisfies ρ(f) = 3 ≥ µ(A1) = 3.

Case 4. max{ρ(Aj), j 6= k, l} = µ(Ak) = µ(Al) and∑
ρ(Aj)=µ(Al)>0, j 6=k,l

τ(Aj) + τ(Ak) < τ(Al) < +∞.

In (39), for

A0 (z) = e
iz3

π
+24πiz2 , A1 (z) =

e−
12
π
z3−12πiz2+6π3z

cos( izπ )
,

A2 (z) = e
iz3

π
+24π3z+8π5i, A3 (z) = −e−

4
π
z3−π5i sec2(

iz

π
),

we have

λ

(
1

A1

)
= 1 < µ(A1) = 3, max{ρ(Aj) : j = 2, 3} = µ(A0) = µ(A1) = 3,
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∑
ρ(Aj)=µ(Al)>0, j 6=k,l

τ(Aj) + τ(Ak) = τ(A2) + τ(A3) + τ (A0)

=
1

π2
+

4

π2
+

1

π2
=

6

π2
< τ(A1) =

12

π2
.

Obviously, the conditions of Theorem 4 are satisfied. The function

f (z) =
e

8
π
z3

sin( izπ )

is a solution of equation (39) and f satisfies ρ(f) = 3 ≥ µ(A1) = 3.
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