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ON A SUBCLASS OF ANALYTIC FUNCTIONS OF
FRACTAL POWER WITH NEGATIVE COEFFICIENTS
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Abstract

The purpose of this article is to introduce a new general family of normal-
ized analytic fractal function in the open unit disk. We employ this class to
define a fractional differential operator of two fractals. This operator, under
some conditions involves the well known Salagean differential operator. Our
method is based on the Hadamard product and its generalization of functions
with negative coefficients.
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1 Introduction

Let U = {z ∈ C : |z| < 1} be the open unit disk. For all z ∈ U, we define an
extension of the fractional Koebe function as follows:

f(z) =
zα+1

(1− zµ)α
, (1)

where 0 ≤ α ≤ 1 and µ(α) ≥ 1 such that µ(0) = 1. Let Eµ be the class of all
normalized analytic functions of fractional power f defined in (1) and indicated
by

f(z) = z +

∞∑
n=1

(α)n
n!

zµn+α, (2)
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For function f in Eµ is starlike of order λ(0 ≤ λ < 1) if <{zf ′/f} > λ and is
convex of order λ if <{1 + zf ′′/f ′} > λ, respectively symbolizes by f ∈ S∗µ(λ)
and f ∈ Kµ(λ) for |z| < 1.

For z ∈ U, let the new differential operator of fractional functional power f be
defined by Dk

µ,α : Eµ → Eµ and

D0
µ,αf(z) = f(z) = z +

∞∑
n=2

anz
µn+α,

D1
µ,αf(z) = z(f(z)′) = z +

∞∑
n=2

(µn+ α)anz
µn+α,

...

Dk
µ,αf(z) = D1

(
Dk−1f(z)

)
= z +

∞∑
n=2

(µn+ α)kanz
µn+α.

Obviously, Dk
µ,αf(z) ∈ Eµ and normalized by

Dk
µ,αf(z)

∣∣
z=0

= 0 and (Dk
µ,αf(z))′

∣∣
z=0

= 1.

Moreover,
Dk

1,0f(z) = Skf(z), z ∈ U.

is the well known Salagean differential operator [4]. The class of fractional analytic
functions is defined and studied in [5]-[1].

Now, let Xµ ⊂ Eµ the class of all analytic functions of fractional power with
negative coefficients defined by

f(z) = z −
∞∑
n=2

anz
µn+α, z ∈ U. (3)

Let X∗µ(λ) and Kµ(λ) be the subclasses of functions f in Xµ which are respectively
indicates to the class of starlike and convex functions with negative coefficients of
order λ in U.

Now, we define a new class Cµ,k(γ, β) of functions f ∈ Xµ, which satisfy the
following condition

Cµ,k(γ, β) =

{
f : f ∈ Xµ and <{ (Dkf(z))′ + z(Dkf(z))′′

(Dkf(z))′ + γz(Dkf(z))′′
} > β

}
(4)

(0 ≤ β < 1, 0 ≤ γ < 1, k ∈ N ∪ {0}, z ∈ U) .

The aim of the present paper is to establish new results concerning the quasi-
Owa-Hadamard product of f ∈ Eµ in Cµ,k(γ, β).
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2 Coefficient inequalities

First, we suppose that 0 ≤ γ < 1 , 0 ≤ β < 1 and k ∈ N∪ {0} with the fractal
numbers α and µ(α).

Theorem 1. Let f(z) = z −
∑∞

n=2 anz
µn+α, then f ∈ Cµ,k(γ, β) if and only if

∞∑
n=2

(µn+ α)k+1 {µn+ α− β[1 + γ(µn+ α)]} an ≤ 1− β. (5)

Proof. Assume that Eq.(5) is true and let |z| = 1. Then we get∣∣∣∣ (Dk
µ,αf(z))′ + z(Dk

µ,αf(z))′′

(Dk
µ,αf(z))′ + γz(Dk

µ,αf(z))′′
− 1

∣∣∣∣
=

∣∣∣∣ ∑∞
n=2(µn+ α)k+1(µn+ α− 1)(1− γ)anz

µn+α

1−
∑∞

n=2(µn+ α)k+1[1 + γ(µn+ α− 1)]anzµn+α

∣∣∣∣
≤

∑∞
n=2(µn+ α)k+1(µn+ α− 1)(1− γ)an

1−
∑∞

n=2(µn+ α)k+1[1 + γ(µn+ α− 1)]an
≤ 1− β.

By this, the values of
(Dkµ,αf(z))

′+z(Dkµ,αf(z))
′′

(Dkµ,αf(z))
′+γz(Dkµ,αf(z))

′′ in a circle c entered at w = 1 and with

radius is 1−β. Therefore f(z) in class Cµ,k(γ, β). Conversely, let f(z) ∈ Cµ,k(γ, β),
then

<{
(Dk

µ,αf(z))′ + z(Dk
µ,αf(z))′′

(Dk
µ,αf(z))′ + γz(Dk

µ,αf(z))′′
}

= <{
1−

∑∞
n=2(µn+ α)k+2anz

µn+α

1−
∑∞

n=2(µn+ α)k+1[1 + γ(µn+ α− 1)]anzµn+α
} > β.

(6)

Select values of z such that the imaginary part is zero, then
(Dkµ,αf(z))

′+z(Dkµ,αf(z))
′′

(Dkµ,αf(z))
′+γz(Dkµ,αf(z))

′′

is real and let z → −1, we have

1−
∞∑
n=2

(µn+ α)k+2an > β{1−
∞∑
n=2

(µn+ α)k+1[1 + γ(µn+ α− 1)]an}. (7)

which equivalents to (5). This implies that the function f(z) ∈ Cµ,k(γ, β).

Corollary 1. For f(z) ∈ Cµ,k(γ, β), we obtain

an ≤
1− β

(µn+ α)k+1{µn+ α− β[1 + γ(µn+ α− 1)]}
, n = {2, 3, · · · } (8)

then, the sharpness is satisfied from (8) as follows

F (z) = z − 1− β
(µn+ α)k+1{µn+ α− β[1 + γ(µn+ α− 1)]}

zµn+α.
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2.1 Quasi-Owa-Hadamared product

The quasi-Hadamard product is a modification of the Hadamard product,
which has been proposed by Owa [2]. In this section, we utilize some generalized
results due to Owa and Srivastava [3] for the quasi-Hadamard product of a new
class of univalent functions.
Let fj ∈ Xµ be functions given by

fj(z) = z −
∞∑
n=2

an,jz
µn+α, j = 1, 2, z ∈ U. (9)

then the Hadamard product of two functions fj ∈ Xµ for j = 1, 2 is defined by [?]

(f1 ∗ f2)(z) = z −
∞∑
n=2

( 2∏
j=1

an,j
)
zµn+α.

and for j = 1, ..., p, we obtain

(f1 ∗ f2 ∗ · · · ∗ fp)(z) = z −
∞∑
n=2

( p∏
j=1

an,j
)
zµn+α

Theorem 2. If the functions fj(z) belong to Cµ,k(γ, βj), j = 1, 2, · · · , p, then
(f1 ∗ f2 ∗ · · · ∗ fp)(z) ∈ Cµ,k(γ, η), and

η(α, k, γ, βj) (10)

≤ 1−
(1− γ)

∏p
j=1(1− βj)

(2µ+ α)(p−1)(k+1)
∏p
j=1[2µ+ α− βj(1 + γ)]− (1 + γ)

∏p
j=1 (1− βj)

.

The result is sharp for the function

fj(z) = z − 1− βj
(2µ+ α)k+1[2µ+ α− βj(1 + γ)]

z2µ+α, (j = 1, 2, · · · , p, |z| < 1).

(11)

Proof. For p = 1, we obtain that η = β1. For p = 2, then (5) yields

∞∑
n=2

(µn+ α)k+1 {µn+ α− βj [1 + γ(µn+ α− 1)]}
1− βj

an,j ≤ 1, j = 1, 2. (12)

By using Cauchy-Schwarz inequality,we obtain

∞∑
n=2

(µn+ α)k+1

√√√√p=2∏
j=1

(
{µn+ α− βj [1 + γ(µn+ α− 1)]}

1− βj
an,j

)
≤ 1, j = 1, 2.

(13)
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To prove p = 2, we have to find the largest η such that

∞∑
n=2

(µn+ α)k+1 {µn+ α− η[1 + γ(µn+ α− 1)]}
1− η

an,1an,2 ≤ 1 (14)

or, its equal to

{µn+ α− η[1 + γ(µn+ α− 1)]}
1− η

√
an,1an,2

≤

√√√√p=2∏
j=1

(
{µn+ α− βj [1 + γ(µn+ α− 1)]}

1− βj

)
,

(15)

and that is

√
an,1an,2 ≤

1− η
{µn+ α− η[1 + γ(µn+ α− 1)]}

√√√√p=2∏
j=1

(
{µn+ α− βj [1 + γ(µn+ α− 1)]}

1− βj

)
,

(16)

Further from (13), we need to find the largest η as follow

{µn+ α− η[1 + γ(µn = α− 1)]}
1− η

≤ (µn+ α)k+1
p=2∏
j=1

(
{µn+ α− βj [1 + γ(µn+ α− 1)]}

1− βj

)
,

(17)

which is equal to

η ≤

(µn+ α)k+1
∏p=2
j=1 {µn+ α− βj [1 + γ(µn+ α− 1)]}
−(µn+ α)

∏p=2
j=1 (1− βj)

(µn+ α)k+1
∏p=2
j=1 {µn+ α− βj [1 + γ(µn+ α− 1)]}

−[1 + γ(µn+ α− 1)]
∏p=2
j=1 (1− βj)

= 1−
(µn+ α− 1)(1− γ)

∏p=2
j=1 (1− βj)

(µn+ α)k+1
∏p=2
j=1 {µn+ α− βj [1 + γ(µn+ α− 1)]}

−[1 + γ(µn+ α− 1)]
∏p=2
j=1 (1− βj)

. (18)

Now, let suppose that

Φ(n) = 1−
(µn+ α− 1)(1− γ)

∏p=2
j=1 (1− βj)

(µn+ α)k+1
∏p=2
j=1 {µn+ α− βj [1 + γ(µn+ α− 1)]}

−[1 + γ(µn+ α− 1)]
∏p=2
j=1 (1− βj)

. (19)
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Since Φ′(n) ≥ 0 for (n ≥ 2). This yields

η ≤ Φ(2)

= 1−
(2µ+ α− 1)(1− γ)

∏p=2
j=1 (1− βj)

(2µ+ α)k+1
∏p=2
j=1 {2µ+ α− βj [1 + γ(2µ+ α− 1)]}

−[1 + γ(2µ+ α− 1)]
∏p=2
j=1 (1− βj)

. (20)

Hence, the prove is true for p = 2. Now, let assume that, the result is true for
p > 0, then

(f1 ∗ f2 ∗ · · · ∗ fp ∗ fp+1)(z) ∈ Cµ,k(γ, ξ),

where

ξ = 1− (1− γ)(1− η)(1− βp+1)

(2µ+ α)p(k+1)[2µ+ α− η(1 + γ)][2µ+ α− βp+1(1 + γ)]
−(1 + γ)(1− η)(1− βp+1)

. (21)

where η is given by (32). It follows from (21) that

ξ ≤ 1−
(1− γ)

∏p+1
j=1 (1− βj)

(2µ+ α)p(k+1)
∏p+1
j=1[2µ+ α− βj(1 + γ)]

−(1 + γ)
∏p+1
j=1 (1− βj)

. (22)

Hence, the result is true for p+1. lastly, taking into account the function fj given
by (11), we have

(f1 ∗ f2 ∗ · · · ∗ fp)(z) = z − {
p∏
j=1

1− βj
(2µ+ α)k+1 [2µ+ α− βj(1 + γ)]

}z2µ+α

= z − A2z
2µ+α,

where

A2 =

p∏
j=1

(
1− βj

(2µ+ α)k+1 [2µ+ α− βj(1 + γ)]

)
.

Therefore,

∞∑
n=2

(µn+ α)k+1 {µn+ α− η[1 + γ(µn+ α− 1)]}
1− η

A2

=
(2µ+ α)k+1 {2µ+ α− η[1 + γ]}

1− η
×

p∏
j=1

(
1− βj

(2µ+ α)k+1 [2µ+ α− βj(1 + γ)]

)
(23)

=1

Thus, the sharpness for fp(z) defined by (11).
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In next results, we set some sharpness properties for βj = β (j = 1, 2, · · · , p) in
Theorem 2 as follows:

Corollary 2. For j = 1, 2, · · · , p, let fj(z) ∈ Cµ,k(γ, β) then (f1∗f2∗· · ·∗fp)(z) ∈
Cµ,k(γ, η1) where

η1 ≤ 1− (1− γ)(1− β)p

(2µ+ α)(p−1)(k+1) [2µ+ α− β(1 + γ)]p − (1 + γ)(1− β)p

and the sharpness property is satisfied for the following function

fj(z) = z − 1− β
(2µ+ α)k+1[2µ+ α− β(1 + γ)]

z2µ+α, |z| < 1.

If k = 0 in above Theorem 2, then we obtain

Corollary 3. For j = 1, 2, · · · , p, let fj(z) ∈ Cµ,k(γ, βj) then (f1∗f2∗· · ·∗fp)(z) ∈
Cµ,k(γ, η2) where

η2 ≤ 1−
(1− γ)

∏p
j=1 (1− βj)

(2µ+ α)p−1
∏p
j=1 [2µ+ α− βj(1 + γ)]− (1 + γ)

∏p
j=1 (1− βj)

.

the sharpness property is satisfied for the following function

fj(z) = z − 1− βj
(2µ+ α)[2µ+ α− βj(1 + γ)]

z2µ+α, j = 1, 2, · · · , p, |z| < 1. (24)

If k = 0 and βj = β in above Theorem 2, then we get the following results

Corollary 4. If fj(z), (j = 1, 2, · · · , p) ∈ Cµ,k(γ, β), then (f1 ∗ f2 ∗ · · · ∗ fp)(z) ∈
Cµ,k(γ, η3), where

η3 ≤ 1− (1− γ)(1− β)p

(2µ+ α)p−1 [2µ+ α− β(1 + γ)]p − (1 + γ)(1− β)p
.

The result is sharp for the function

fj(z) = z − 1− β
(2µ+ α)[2µ+ α− β(1 + γ)]

z2µ+α, j = 1, 2, · · · , p, |z| < 1. (25)

If γ = 0 in above Theorem 2, then we get

Corollary 5. For j = 1, 2, · · · , p let fj(z)(∈ Cµ,k(βj), then (f1 ∗ f2 ∗ · · · ∗ fp)(z) ∈
Ck(η4), where

η4 ≤ 1−
∏p
j=1 (1− βj)

(2µ+ α)(p−1)(k+1)
∏p
j=1(2µ+ α− βj)−

∏p
j=1 (1− βj)

.

The sharpness result is satisfied for the function

fj(z) = z − 1− βj
(2µ+ α)(2µ+ α− βj)

z2µ+α, j = 1, 2, · · · , p, |z| < 1. (26)
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If k = 0, p = 2 and βj = β in above Theorem 2, then we have

Corollary 6. For j = 1, 2, · · · , p let fj(z) ∈ Cµ(γ, β) then (f1 ∗ f2 ∗ · · · ∗ fp)(z) ∈
Cµ(γ, η5), where

η5 ≤ 1− (1− γ)(1− β)2

(2µ+ α) [2µ+ α− β(1 + γ)]2 − (1 + γ)(1− β)2
.

The sharpness property for fj(z), (j = 1, 2) given by (26).

If k = 0, p = 2, βj = β and α = 1 in above Theorem (2) then we obtain

Corollary 7. For j = 1, 2, · · · , p let fj(z) ∈ Cµ(γ, β) then (f1 ∗ f2 ∗ · · · ∗ fp)(z) ∈
Cµ(γ, η6) where

η6 ≤ 1− (1− γ)(1− β)2

(2µ+ 1) [2µ+ 1− β(1 + γ)]2 − (1 + γ)(1− β)2
.

The sharpness result is satisfied for the function

fj(z) = z − 1− βj
(2µ+ 1)(2µ+ 1− βj)

z2µ+1, j = 1, 2, · · · , p, |z| < 1. (27)

If k = 0, p = 2, βj = β and α = 0 in above Theorem (2) then we have

Corollary 8. For j = 1, 2, · · · , p let fj(z) ∈ Cµ(γ, β) then (f1 ∗ f2 ∗ · · · ∗ fp)(z) ∈
Cµ(γ, η7) where

η7 ≤ 1− (1− γ)(1− β)2

(2µ) [2µ− β(1 + γ)]2 − (1 + γ)(1− β)2
.

The sharpness result is satisfied for the function

fj(z) = z − 1− βj
(2µ)(2µ− βj)

z2µ, j = 1, 2, · · · , p, |z| < 1. (28)

If k = 0, p = 2, βj = β, α = 1 and µ = 1/2 in above Theorem (2) then we obtain

Corollary 9. For j = 1, 2, · · · , p let fj(z) ∈ C(γ, β) then (f1 ∗ f2 ∗ · · · ∗ fp)(z) ∈
C(γ, η8) where

η8 ≤ 1− (1− γ)(1− β)2

(2) [2− β(1 + γ)]2 − (1 + γ)(1− β)2
.

The sharpness property is satisfied for the function

fj(z) = z − 1− βj
2(2− βj)

z2, |z| < 1. (29)
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Theorem 3. For j = 1, 2, · · · , p let fj(z) be a function defined by

(f1 ∗ f2 ∗ · · · ∗ fp)(z) = z −
∞∑
n=2

 p∏
j=1

an,j

 zµn+α (j = 1, 2, · · · , p) (30)

be in Cµ,k(γ, βj), then the function Ω(z) given by

Ω(z) = z − 1

2

∞∑
n=2

 p∏
j=1

|an,j |

 zµn+α (31)

is also in Cµ,k(γ, βj).

Proof. In view Theorem 1, we easily see that

1

2

∞∑
n=2

(µn+ α)k+1 {µn+ α− β[1 + γ(µn+ α)]} |an,1 + an,2 + · · ·+ an,p| ≤

1

2

∞∑
n=2

(µn+ α)k+1 {µn+ α− β[1 + γ(µn+ α)]}

× (|an,1|+ |an,2|+ · · ·+ |an,p|) ≤ (1− βj)

which implies that Ω(z) ∈ Cµ,k(γ, βj).

2.2 Generalizations of Hadamard products

For fj(z) and j = 1, 2, · · · , p in (9), we define the generalized quasi-hadamard
product by

(f1 ~ f2 ~ · · ·~ fp)(z) := z −
∞∑
n=2

 p∏
j=1

(an,j)
1
mj

 zµn+α, α ≥ 1 (32)

where  p∑
j=1

1

mj
= 1;mj > 1; j = 1, 2, · · · , p

 .

Theorem 4. For j = 1, 2, · · · , p, if fj(z) ∈ Cµ,k(γ, βj) then

(f1 ~ f2 ~ · · ·~ fp) ∈ Cµ,k(γ, δ),

where

ω(α, k, γ, βj)

≤ {
(2µ+ α)(1− γ)

∏2
j=1

(
(1− βj)

) 1
mj

(2µ+ α)(p−1)(k+1)
∏2
j=1 ({2µ+ α− βj [1 + γ(2µ+ α− 1)]})

1
mj

−[1 + γ(2µ+ α− 1)])
∏2
j=1

(
(1− βj)

) 1
mj

}(33)
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and for j = 1, 2, · · · , p the sharpness for functions fj defined by

fj(z) = z − { (2µ+ α)(1− γ)(1− βj)
(2µ+ α)k+1[2µ+ α− βj(1 + γ(2µ+ α− 1))

}.

Proof. For f1(z) ∈ Cµ,k(γ, β1) and f2(z) ∈ Cµ,k(γ, β2)],

∞∑
n=2

(µn+ α)k+1 {µn+ α− βj [1 + γ(µn+ α− 1)]}
1− βj

an,j ≤ 1

where an,j ≥ 0, for (j = 1, 2) and n ≥ 2, we have

2∏
j=1

( ∞∑
n=2

(µn+ α)k+1

{(
{µn+ α− βj [1 + γ(µn+ α− 1)]}

1− βj

) 1
mj

(an,j)
1
mj

}mj) 1
mj

≤ 1. (34)

Then, by using the Holder inequality and (34), we obtain

∞∑
n=2

(µn+ α)k+1


2∏
j=1

(
{µn+ α− βj [1 + γ(µn+ α− 1)]}

1− βj

) 1
mj

(an,j)
1
mj

 ≤ 1,

Or satisfies

∞∑
n=2

(µn+α)k+1
2∏
j=1

(an,j)
1
mj ≤

2∏
j=1

(
1− βj

{µn+ α− βj [1 + γ(µn+ α− 1)]}

) 1
mj

. (35)

Now we need to find the largest ρ such that

∞∑
n=2

(µn+ α)k+1

(
{µn+ α− ρ[1 + γ(µn+ α− 1)]}

(1− ρ)

) 2∏
j=1

(an,j)
1
mj

 ≤ 1

from (35), we see that

∞∑
n=2

(µn+ α)k+1

(
{µn+ α− ρ[1 + γ(µn+ α− 1)]}

(1− ρ)

) 2∏
j=1

|an,j |
1
mj


≤
∞∑
n=2

(
(µn+ α)k+1 {µn+ α− ρ[1 + γ(µn+ α− 1)]}

(1− ρ)

)

×
2∏
j=1

(
1− βj

(µn+ α)k+1 {µn+ α− βj [1 + γ(µn+ α− 1)]}

) 1
mj

≤ 1,
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and that is(
{µn+ α− ρ[1 + γ(µn+ α− 1)]}

(1− ρ)

)
≤

(µn+ α)k+1
2∏
j=1

(
{µn+ α− βj [1 + γ(µn+ α− 1)]}

(1− βj)

) 1
mj

which yields

ρ ≤ {

(µn+ α)k+1
∏2
j=1 ({µn+ α− βj [1 + γ(µn+ α− 1)]})

1
mj

−(µn+ α)
∏2
j=1

(
(1− βj)

) 1
mj

(µn+ α)k+1
∏2
j=1 ({µn+ α− βj [1 + γ(µn+ α− 1)]})

1
mj

−[1 + γ(µn+ α− 1)]
∏2
j=1

(
(1− βj)

) 1
mj

} (36)

ρ = 1− {
(µn+ α)(1− γ)

∏2
j=1

(
1− βj

) 1
mj

(µn+ α)k+1
∏2
j=1 ({µn+ α− βj [1 + γ(µn+ α− 1)]})

1
mj

−[1 + γ(µn+ α− 1)])
∏2
j=1

(
1− βj

) 1
mj

} (37)

let Θ(n)

Θ(n) = 1− {
(µn+ α)(1− γ)

∏2
j=1

(
1− βj

) 1
mj

(µn+ α)k+1
∏2
j=1 ({µn+ α− βj [1 + γ(µn+ α− 1)]})

1
mj

−[1 + γ(µn+ α− 1)])
∏2
j=1

(
1− βj

) 1
mj

}

but for Θ(n) ≥ 0 for (n ≤ 2). This yields

ρ ≤ Θ(2) = 1− {
(2µ+ α)(1− γ)

∏2
j=1

(
(1− βj)

) 1
mj

(2µ+ α)k+1
∏2
j=1 ({2µ+ α− βj [1 + γ(2µ+ α− 1)]})

1
mj

−[1 + γ(2µ+ α− 1)])
∏2
j=1

(
(1− βj)

) 1
mj

}

(38)

Thus the assertion Theorem 2 holds true when p = 2. Then, clearly that,

(f1 ~ · · ·~ fp+1) ∈ Cµ,k,(γ, ω)

with

ω = 1− {
(2µ+ α)(1− γ)

(
(1− βj)

) 1
mj+1

(2µ+ α)k+1 ({2µ+ α− βj+1[1 + γ(2µ+ α− 1)]})
1

mj+1

−[1 + γ(2µ+ α− 1)])
(
(1− βj+1)

) 1
mj+1

}
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then we conclude that

(f1 ~ . . .~ fp) ∈ Cµ,k,(γ, ω, δ)
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