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Abstract

This paper deals with some existence and uniqueness of solutions for a
class of functional Caputo-Fabrizio fractional differential equations. Some
applications are made of a generalization of the classical Darbo fixed point
theorem for Fréchet spaces associate with the concept of measure of noncom-
pactness. The last section illustrates our results with some examples.
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1 Introduction

There has been a significant development in the area of the theory of fractional
calculus and fractional differential equations [31]. For some fundamental results
in this subject, we refer the reader to the monographs [3, 6, 7, 29, 23, 36], and the
papers [4, 12]. These fractional differential equations involves Riemann-Liouville,
Caputo, Hadamard and Hilfer fractional differential operators.

In recent times, a new fractional differential operator having a kernel with
exponential decay has been introduced by Caputo and Fabrizio [15]. This ap-
proach of fractional derivative is known as the Caputo-Fabrizio operator which
has attracted many research scholars due to the fact that it has a non-singular
kernel. Several mathematicians were recently busy in development of Caputo-
Fabrizio fractional differential equations, see; [11, 16, 20, 21, 22, 24, 30, 33], and
the references therein.
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Recently, several researchers obtained other results by application of the tech-
nique of measure of noncompactness; see [9, 10, 32], and the references therein.
In [1, 2, 5], Abbas et al. cosidered several classes of fractional differential equa-
tions in Fréchet spaces. Motivated by the above papers, in this article we discuss
the existence of solutions for the following Caputo-Fabrizio fractional differential
equation

(T Dyu)(t) = f(t,u(®)); t € Ry = [0,00), 1)

with the following initial condition
u(0) =ug € E, (2)

where 7" > 0, (E,||-||) is a (real or complex) Banach space, r € (0,1), f :
R, x E — F is a given function, and ¢ Dy is the Caputo-Fabrizio fractional
derivative of order r € (0, 1).

Next, we discuss the existence of solutions for the fractional differential equa-
tion (1), with the following nonlocal condition

u(0) + Q(u) = o, (3)

where ug € E, Q : C(R4, F) — FE is a given function. Nonlocal problems are
used to represent mathematical models for evolution of various phenomena, such
as nonlocal neural networks, nonlocal pharmacokinetics, nonlocal pollution and
nonlocal combustion, see; [14, 17, 25, 34, 35], and the references therein.

This paper initiates the existence of solutions for functional differential equa-
tions involving the Caputo-Fabrizio fractional derivative in Fréchet spaces.

2 Preliminaries

Let C be the Banach space of all continuous functions v from I := [0,7]; "> 0
into F with the supremum (uniform) norm

100 := sup [[o(2)]-
tel

By L!(I), we denote the space of Bochner-integrable functions v : I — E with
the norm
T
ol = [ oolar

Let X := C(R4) be the Fréchet space of all continuous functions v from Ry
into F, equipped with the family of seminorms

[olln = sup [[v(®)]l; n €N,
te[0,n]

and the distance

22_ Hu Ulln ; u,v € X.
1+ |lu—olp’



Caputo-Fabrizio fractional differential equations in Fréchet spaces 375

Definition 1. A nonempty subset B C X is said to be bounded if

sup ||v]|, < oco; for n e N.
vEB

We recall the following definition of the notion of a sequence of measures of
noncompactness [18, 19].

Definition 2. Let Mg be the family of all nonempty and bounded subsets of a
Fréchet space F. A family of functions {pin }nen where py, : Mp — [0,00) is said
to be a family of measures of noncompactness in the real Fréchet space F if it
satisfies the following conditions for all B, By, By € Mg :

(a) {pn}nen is full, that is: p,(B) =0 forn € N if and only if B is precompact,
(b) pn(B1) < pin(B2) for B1 C By and n € N,
(¢) pn(ConvB) = py(B) forn € N,

(d) If {B;}i=1,. is a sequence of closed sets from Mg such that Biy1 C By; i =
1, and if lim;_ o0 pin(B;) = 0, for each n € N, then the intersection set
By = m2, B; is nonempty.

Some Properties:

(e) We call the family of measures of noncompactness { iy, }nen to be homoge-
neous if pi, (AB) = |A|pn(B); for A € R and n € N,

(f) If the family {u, }nen satisfied the condition p, (B1UB2) < pin(B1)+pn(Bs2),
for n € N, it is called subadditive.

(g) It is sublinear if both conditions (e) and (f) hold.

(h) We say that the family of measures {1, }nen has the maximum property if
tin(B1 U Bs) = max{pn(B1), un(B2)},

(i) The family of measures of noncompactness {fy,}nen is said to be regular
if if the conditions (a), (g) and (h) hold; (full sublinear and has maximum

property).

Example 1. [18], [27] For B € Mx, © € B, n € N and € > 0, let us denote by
w"(x,€) the modulus of continuity of the function x on the interval [0, n]; that is,

w"(x,€) = sup{||lx(t) — z(s)| : t,s € [0,n], |t — s| < €}

Further, let us put
w"(B,€) = sup{w"(z,¢€) : x € B},

wy (B) = lim w"(B,e),

e—0t
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a"(B) = sup «a(B(t)) = sup a({z(t):z € B}),
te[0,n] te[0,n]

and

Bn(B) = wy(B) + a"(B).

The family of mappings {Bn}nen where By, : Mx — [0,00), satisfies the conditions
(a)-(d) fom Definition 2.

Lemma 1. [13] IfY is a bounded subset of a Banach space F, then for each e > 0,
there is a sequence {yi}3>, C Y such that

n(Y) < 2u({ye}izy) + ¢
where u is the Kuratowskii measure of noncompactness.

Lemma 2. [26] If {u}3, C L'([0,n]) is uniformly integrable, then pu,({ur}32 ;)
is measurable for n € N*| and

«({[ uk<s>ds}j1> <2 [ uttuo)p s,

for each t € [0, n].

Definition 3. Let Q) be a nonempty subset of a Fréchet space F, and let A : Q — F
be a continuous operator which transforms bounded subsets of onto bounded ones.
One says that A satisfies the Darbo condition with constants (ky)nen with respect
to a family of measures of noncompactness { i nen, if

fin(A(B)) < knpin(B)

for each bounded set B C 2 and n € N.
If ky, < 1; n €N then A is called a contraction with respect to {pin }nen-

Definition 4. [15, 24] The Caputo-Fabrizio fractional integral of order 0 < r < 1
for a function h € L'(I) is defined by

21-r) o T
M(r)(Q—r)h( )+M(T’)(2—T)/O h(x)dx, >0

where M (r) is normalization constant depending on r.

CFImh(r) =

Definition 5. [15, 24] The Caputo-Fabrizio fractional derivative for a function
h € CY(I) of order 0 < r < 1, is defined by

CEDTh(r) = W /OT exp (—1 i T(T - x)> B (x)dx; T € 1.

Note that (°FD7)(h) = 0 if and only if h is a constant function.
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Lemma 3. Let h € L'(I). A function u € C is a solution of problem

(CFDpu)(t) = h(t); tel
{ u(0) - up, @

if and only if u satisfies the following integral equation
t
u(t) = C + ayh(t) + br/ h(s)ds, (5)
0

where
B 2(1—r) B 2r e a
ar = 7(2 — M@ b, = 7(2 oM@ C = ug — a,h(0).

Proof. Suppose that u satisfies (4). From Proposition 1 in [24]; the equation
(“TDju)(t) = h(t)
implies that
u(t) — u(0) = a,(h(t) — h(0)) + by /Ot h(s)ds.

Thus from the initial condition u(0) = ug, we obtain
¢
u(t) = uo — a,h(0) + arh(t) + br/ h(s)ds.
0

Hence we get (5).
Conversely, if u satisfies (5), then (¥ Dju)(t) = h(t); for t € I, and u(0) = ug. O

In the sequel we will make use of the following generalization of the classical
Darbo fixed point theorem for Fréchet spaces.

Theorem 1. [18, 19] Let Q be a nonempty, bounded, closed, and conver subset
of a Fréchet space F' and let V : Q0 — Q be a continuous mapping. Suppose that V
is a contraction with respect to a family of measures of noncompactness {fin fnen.
Then V has at least one fixed point in the set (2.

3 Existence Results

Now, we shall prove the main results concerning the existence of solutions of
our problems.

Let us introduce the following hypotheses.

(Hy) The function ¢ — f(t,u) is measurable on R, for each u € FE, and the
function u — f(t,u) is continuous on E for a.e. t € R;.

(H2) There exists a continuous function p : Ry — Ry such that

If(t,w)|| < p&)(1+ ||u|]); for ae. t € Ry, and each u € E.
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(H3) For each bounded set B C E and for each ¢t € R, we have

n(f(t, B)) < p(t)u(B),

where p is a measure of noncompactness on the Banach space F.

(Hy) The function @ : C(Ry, E) — E is continuous, and there exists a constant
q* > 0, such that

1Q(u)[| < ¢"(1 + [[ulloc); for each u € C(Ry, E).

Moreover, for each bounded set B; C X, we have

w(Q(By)) < ¢* sup n(Bi(t)),

where By (t) = {u(t) 1w € B1}; t € I,; neN.
For n € N, let
P, = sup p(t),
telo,n]

and define on X := C(R4, E) the family of measure of noncompactness by

pin(D) = wi (D) + t:}ép]u(D(t)),

where D(t) = {v(t) € E:v € D}; t € [0,n].

3.1 The Initial Value Problem

In this section, we are concerned with the existence results of the problem

(1)-(2).

Definition 6. By a solution of the problem (1)-(2) we mean a continuous function
u € X that satisfies the integral equation

u(t) =c+a, f(t,u(t)) + b,«/o f(s,u(s))ds,

where ¢ = ug — a, (0, ug).

Theorem 2. Assume that the hypotheses (Hy) — (Hs) hold.

If
ly = pr(2a, + 4nb,) < 1;

for each n € N*, then the problem (1)-(2) has at least one solution.

Proof. Consider the operator N : X — X defined by:

(Nu)(t) =c+af(t,ut)) + br/o f(s,u(s))ds. (6)
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Clearly, the fixed points of the operator N are solution of the problem (1)-(2).

For any n € N*, we set

o o el + pi(ar +nb,)
"= 1 — pi(ar + nby)

)

and we consider the ball

Bg, == B(O,R,) = {w € X : |w|l, < R,}.

n

For any n € N*, and each u € B, and t € [0,n] we have

IA

[(Nu)(?)] llell + arl[ (8 u@)] + br /0 1/ (s, u(s))lds

< ||C|!+arp(t)(1+IU(t)||)+br/0 p(s)(1 + [[u(s)[)ds

t
< ||c|y+arp;<1+Rn)+brp;<1+Rn)/ ds
0
< el + pr(ar +nb)(1 4+ Ry)
< R,.

Thus
[N (W)]ln < R (7)

This proves that IV transforms the ball Bg into itself. We shall show that the
operator N : Br, — Bp, satisfies all the assumptions of Theorem 1. The proof
will be given in two steps.

Step 1. N(Bg,) is bounded and N : Bg, — Bpg, is continuous.
Since N(Bpg,) C Bg, and Bg, is bounded, then N(Bpg, ) is bounded.
Let {uy}ren be a sequence such that ux — u in Bg,. Then, for each t € [0,n], we
have

[(Nug)(8) = (Nu) ()| <ar| f (¢, ur ()= F (& @) [ Hr /Ot 1/ (s, ur(s))=f (s, u(s))l|ds.

Since ur — u as k — oo, the Lebesgue dominated convergence theorem implies
that

|N(ug) — N(w)||n, = 0 as k— oo.

Step 2. For each bounded equicontinuous subset D of Br,, pn(N(D)) <
lppin (D).
From Lemmas 1 and 2, for any D C Bpg, and any € > 0, there exists a sequence
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{ur}i2y C D, such that for all ¢ € [0,n], we have
uw((ND)(t)) = u({c—i—arf(t u(t)) + by / f(s,u(s))ds; ueD})

20 ({ar f(t, ug(t)) Y oeq) + 20 <{ / f(s,uk(s }k 1) +e
< 2 (1 (D)), + 4, /O ({5, un(5) 12y ) ds + ¢

IN

IN

2a,p(t)p ({ur(£)}22.,) + 4b, /0 p(8)p ({ur()}22.1) ds + e

2a,p; pn (D) + 4nb,p pn (D) + €
(2a, + 4nb,)p} pun(D) + €.

IN

Since € > 0 is arbitrary, then
p((ND)(t)) < py,(2ar + 4nbr) pn(D).

Thus
pn(N(D)) < p,(2ar + 4nbr) pin(D).

As a consequence of steps 1 and 2 together with Theorem 1, we can conclude
that N has at least one fixed point in Bp, which is a solution of problem (1)-
(2). O

3.2 The Problem with Nonlocal Condition

Now, we are concerned with the existence results of the problem (1),(3).

Definition 7. By a solution of the problem (1),(3) we mean a continuous function
u € X that satisfies the integral equation

t
u(t) = ¢ = Qu) + arf(t.u(®) + b, [ Fls.uls))ds
0
where ¢ = ug — a, (0, up).
Now, we shall prove the following theorem concerning the existence of solutions
of problem (1),(3).

Theorem 3. Assume that the hypotheses (H1) — (Hy4) hold.
If
An = 2¢" +p (24, + 4nb,) < 1

for each n € N*, then the problem (1),(3) has at least one solution.
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Proof. Consider the operator N : X — X defined by:

(@(0) = = Q)+ ar (1 u(t) +br [ " Fls,u(s))ds. ®)

Clearly, the fixed points of the operator G are solution of the problem (1),(3).

For any n € N*, we set

> llc|| +q* + p;,(ar + nby)
— 1—gq¢* —pi(ar +nby)

9

and we consider the ball

B,, = B(0,pa) = {w € X : lw]ln < pu}.

n

For any n € N*, and each u € B,,, and t € [0,n] we have

(Gu)(@)] < HCI|+IIQ(U)II+ar!f(t7U(t))ll+br/O 1£ (s, u(s))l|ds

t
< el + ¢ 1+ ulloo) + arp(&) (L () ) +br /0 p() (14 u(s)])ds
t
< el + g*(L+ pn) + anp (1 + p) + bup (1 + o) /0 ds
< Jlell 4 (1 + pu) + B (ar + b1+ pu)
<

Pn-

Thus

1G (W)l < pn- (9)

This proves that G transforms the ball Bg, into itself. As in the proof of Theorem
2, we can show that the operator G : B,, — B, satisfies all the assumptions of
Theorem 1. Indeed; G(B,,) is bounded, and we can easily prove that G : B,, —
B,, is continuous. Next, from Lemmas 1 and 2, for any D C B, and any € > 0,
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there exists a sequence {uy}32, C D, such that for all ¢ € [0,n], we have

W(GD) (1) = M({C—Q(U)Jrarf(tU(t))err | s utss ueD})
200 ({Q() + ar f (1 (1))

HM<MA%@%@M%Z)+E

2u ({Q(uk)}iil) + 2a,p ({f(t7uk(t))}zi1)
by [ () ds o

IN

IN

IN

2¢" mu ({ug(t) }oey) + 2a,p(t)p ({ur(t) }o=1)

b, /0 p(s)n ({u(5)}32,) ds + e

IN

2¢" tin (D) 4 2a,p; pin (D) + 4nbyp;, pin (D) + €

= [2¢" +p),(2a, 4+ 4nb,)]pn (D) + €.
Since € > 0 is arbitrary, then
p((GD)(1)) < [2¢" + py,(2ar + 4nb,)]pn (D).

Thus
1tn(G(D)) < [2¢" + py,(2a, + 4nb,)]pin (D).

Hence, from Theorem 1, we can conclude that G has at least one fixed point
in B, which is a solution of problem(1),(3). O
4 Examples

Let

[o.¢]
= {u = (Ul,UQ,...,un,...),Z’Uk’ < oo}
k=1

be the Banach space with the norm

oo
lull = Jual,
k=1
and C(R, ') be the Fréchet space of all continuous functions v from R, into I!,

equipped with the family of seminorms

[olln = sup [v(t)[l; n €N.
te[0,n]
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Example 1. Consider the following problem of Caputo-Fabrizio fractional
differential equations

1
(CFDguk)(t) = fr(t,u(t)); t € Ry, (10)
U(O):(172_172_27"'72_117”.); t€R+7 k:1727”"

where

2=k i
= (27" + u(t)) sint -t e (0,400), uell,
64(a% + 2nb%)(1 + 1)

fe(0,u) = 0; well,
for each t € [0,n]; n € N, with
=01 oo foyeon)y and u = (ug,ug, ..., ug,...).

The hypothesis (Hz) is satisfied with

fk(ta ’LL)

— ; , TOO),
b 64(a1 + 2nb1)(1 + V1)
2 2
p(0) = 0.
So; for any n € N, we have p;, = m7 and
2 2
Uy = (2, + 4nb,) : (203 +4nby) = 2o < 1
= a T = n = 55
n 20 T r 64(a;—|—2nb1) (l% % 32
2 2

Simple computations show that all conditions of Theorem 2 are satisfied. Conse-
quently, the problem (10) has at least one solution defined on R .

Example 2. Consider now the following problem of Caputo-Fabrizio frac-
tional differential equations

(CF D) (1) = filt,u(t)); 1 € B, "
w(0)+Qu) = (1,271,272 ... 27" ... ) teRy, k=1,2,---,
where Q = (QluQ?v s 7Qka e ')7 Q : C(R-HZI) - llv and

_ 27wy
64

In addition to hypotheses (H1)—(Hj), the hypothesis (Hy) is satisfies with ¢* = &;.
Also we have

1 1
(2(11 —|—4nb;) = — <1
2 2

1
An =24 + pr(2a, + 4nb,) = — T

e 64(ay + 2nby)

Simple computations show that all conditions of Theorem 3 are satisfied. Conse-
quently, the problem (11) has at least one solution defined on R .
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