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Säıd ABBAS ∗,1, Mouffak BENCHOHRA2, and Hafsa GORINE3

Abstract

This paper deals with some existence and uniqueness of solutions for a
class of functional Caputo-Fabrizio fractional differential equations. Some
applications are made of a generalization of the classical Darbo fixed point
theorem for Fréchet spaces associate with the concept of measure of noncom-
pactness. The last section illustrates our results with some examples.
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1 Introduction

There has been a significant development in the area of the theory of fractional
calculus and fractional differential equations [31]. For some fundamental results
in this subject, we refer the reader to the monographs [3, 6, 7, 29, 23, 36], and the
papers [4, 12]. These fractional differential equations involves Riemann-Liouville,
Caputo, Hadamard and Hilfer fractional differential operators.

In recent times, a new fractional differential operator having a kernel with
exponential decay has been introduced by Caputo and Fabrizio [15]. This ap-
proach of fractional derivative is known as the Caputo-Fabrizio operator which
has attracted many research scholars due to the fact that it has a non-singular
kernel. Several mathematicians were recently busy in development of Caputo-
Fabrizio fractional differential equations, see; [11, 16, 20, 21, 22, 24, 30, 33], and
the references therein.
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Recently, several researchers obtained other results by application of the tech-
nique of measure of noncompactness; see [9, 10, 32], and the references therein.
In [1, 2, 5], Abbas et al. cosidered several classes of fractional differential equa-
tions in Fréchet spaces. Motivated by the above papers, in this article we discuss
the existence of solutions for the following Caputo-Fabrizio fractional differential
equation

(CFDr
0u)(t) = f(t, u(t)); t ∈ R+ := [0,∞), (1)

with the following initial condition

u(0) = u0 ∈ E, (2)

where T > 0, (E, ‖ · ‖) is a (real or complex) Banach space, r ∈ (0, 1), f :
R+ × E → E is a given function, and CFDr

0 is the Caputo–Fabrizio fractional
derivative of order r ∈ (0, 1).

Next, we discuss the existence of solutions for the fractional differential equa-
tion (1), with the following nonlocal condition

u(0) +Q(u) = u0, (3)

where u0 ∈ E, Q : C(R+, E) → E is a given function. Nonlocal problems are
used to represent mathematical models for evolution of various phenomena, such
as nonlocal neural networks, nonlocal pharmacokinetics, nonlocal pollution and
nonlocal combustion, see; [14, 17, 25, 34, 35], and the references therein.

This paper initiates the existence of solutions for functional differential equa-
tions involving the Caputo-Fabrizio fractional derivative in Fréchet spaces.

2 Preliminaries

Let C be the Banach space of all continuous functions v from I := [0, T ]; T > 0
into E with the supremum (uniform) norm

‖v‖∞ := sup
t∈I
‖v(t)‖.

By L1(I), we denote the space of Bochner-integrable functions v : I → E with
the norm

‖v‖1 =

∫ T

0
‖v(t)‖dt.

Let X := C(R+) be the Fréchet space of all continuous functions v from R+

into E, equipped with the family of seminorms

‖v‖n = sup
t∈[0,n]

‖v(t)‖; n ∈ N,

and the distance

d(u, v) =

∞∑
n=0

2−n
‖u− v‖n

1 + ‖u− v‖n
; u, v ∈ X.
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Definition 1. A nonempty subset B ⊂ X is said to be bounded if

sup
v∈B
‖v‖n <∞; for n ∈ N.

We recall the following definition of the notion of a sequence of measures of
noncompactness [18, 19].

Definition 2. Let MF be the family of all nonempty and bounded subsets of a
Fréchet space F. A family of functions {µn}n∈N where µn : MF → [0,∞) is said
to be a family of measures of noncompactness in the real Fréchet space F if it
satisfies the following conditions for all B,B1, B2 ∈MF :

(a) {µn}n∈N is full, that is: µn(B) = 0 for n ∈ N if and only if B is precompact,

(b) µn(B1) ≤ µn(B2) for B1 ⊂ B2 and n ∈ N,

(c) µn(ConvB) = µn(B) for n ∈ N,

(d) If {Bi}i=1,··· is a sequence of closed sets from MF such that Bi+1 ⊂ Bi; i =
1, · · · and if limi→∞ µn(Bi) = 0, for each n ∈ N, then the intersection set
B∞ := e∞i=1Bi is nonempty.

Some Properties:

(e) We call the family of measures of noncompactness {µn}n∈N to be homoge-
neous if µn(λB) = |λ|µn(B); for λ ∈ R and n ∈ N.

(f) If the family {µn}n∈N satisfied the condition µn(B1∪B2) ≤ µn(B1)+µn(B2),
for n ∈ N, it is called subadditive.

(g) It is sublinear if both conditions (e) and (f) hold.

(h) We say that the family of measures {µn}n∈N has the maximum property if

µn(B1 ∪B2) = max{µn(B1), µn(B2)},

(i) The family of measures of noncompactness {µn}n∈N is said to be regular
if if the conditions (a), (g) and (h) hold; (full sublinear and has maximum
property).

Example 1. [18], [27] For B ∈ MX , x ∈ B, n ∈ N and ε > 0, let us denote by
ωn(x, ε) the modulus of continuity of the function x on the interval [0, n]; that is,

ωn(x, ε) = sup{‖x(t)− x(s)‖ : t, s ∈ [0, n], |t− s| ≤ ε}.

Further, let us put
ωn(B, ε) = sup{ωn(x, ε) : x ∈ B},

ωn0 (B) = lim
ε→0+

ωn(B, ε),
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ᾱn(B) = sup
t∈[0,n]

α(B(t)) := sup
t∈[0,n]

α({x(t) : x ∈ B}),

and

βn(B) = ωn0 (B) + ᾱn(B).

The family of mappings {βn}n∈N where βn : MX → [0,∞), satisfies the conditions
(a)-(d) fom Definition 2.

Lemma 1. [13] If Y is a bounded subset of a Banach space F, then for each ε > 0,
there is a sequence {yk}∞k=1 ⊂ Y such that

µ(Y ) ≤ 2µ({yk}∞k=1) + ε,

where µ is the Kuratowskii measure of noncompactness.

Lemma 2. [26] If {uk}∞k=1 ⊂ L1([0, n]) is uniformly integrable, then µn({uk}∞k=1)
is measurable for n ∈ N∗, and

µ

({∫ t

1
uk(s)ds

}∞
k=1

)
≤ 2

∫ t

1
µ({uk(s)}∞k=1)ds,

for each t ∈ [0, n].

Definition 3. Let Ω be a nonempty subset of a Fréchet space F, and let A : Ω→ F
be a continuous operator which transforms bounded subsets of onto bounded ones.
One says that A satisfies the Darbo condition with constants (kn)n∈N with respect
to a family of measures of noncompactness {µn}n∈N, if

µn(A(B)) ≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N.
If kn < 1; n ∈ N then A is called a contraction with respect to {µn}n∈N.

Definition 4. [15, 24] The Caputo-Fabrizio fractional integral of order 0 < r < 1
for a function h ∈ L1(I) is defined by

CF Irh(τ) =
2(1− r)

M(r)(2− r)
h(τ) +

2r

M(r)(2− r)

∫ τ

0
h(x)dx, τ ≥ 0

where M(r) is normalization constant depending on r.

Definition 5. [15, 24] The Caputo-Fabrizio fractional derivative for a function
h ∈ C1(I) of order 0 < r < 1, is defined by

CFDrh(τ) =
(2− r)M(r)

2(1− r)

∫ τ

0
exp

(
− r

1− r
(τ − x)

)
h′(x)dx; τ ∈ I.

Note that (CFDr)(h) = 0 if and only if h is a constant function.
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Lemma 3. Let h ∈ L1(I). A function u ∈ C is a solution of problem{
(CFDr

0u)(t) = h(t); t ∈ I
u(0) = u0,

(4)

if and only if u satisfies the following integral equation

u(t) = C + arh(t) + br

∫ t

0
h(s)ds, (5)

where

ar =
2(1− r)

(2− r)M(r)
, br =

2r

(2− r)M(r)
, C = u0 − arh(0).

Proof. Suppose that u satisfies (4). From Proposition 1 in [24]; the equation

(CFDr
0u)(t) = h(t)

implies that

u(t)− u(0) = ar(h(t)− h(0)) + br

∫ t

0
h(s)ds.

Thus from the initial condition u(0) = u0, we obtain

u(t) = u0 − arh(0) + arh(t) + br

∫ t

0
h(s)ds.

Hence we get (5).
Conversely, if u satisfies (5), then (CFDr

0u)(t) = h(t); for t ∈ I, and u(0) = u0.

In the sequel we will make use of the following generalization of the classical
Darbo fixed point theorem for Fréchet spaces.

Theorem 1. [18, 19] Let Ω be a nonempty, bounded, closed, and convex subset
of a Fréchet space F and let V : Ω→ Ω be a continuous mapping. Suppose that V
is a contraction with respect to a family of measures of noncompactness {µn}n∈N.
Then V has at least one fixed point in the set Ω.

3 Existence Results

Now, we shall prove the main results concerning the existence of solutions of
our problems.

Let us introduce the following hypotheses.

(H1) The function t 7→ f(t, u) is measurable on R+ for each u ∈ E, and the
function u 7→ f(t, u) is continuous on E for a.e. t ∈ R+.

(H2) There exists a continuous function p : R+ → R+ such that

‖f(t, u)‖ ≤ p(t)(1 + ‖u‖); for a.e. t ∈ R+, and each u ∈ E.
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(H3) For each bounded set B ⊂ E and for each t ∈ R+, we have

µ(f(t, B)) ≤ p(t)µ(B),

where µ is a measure of noncompactness on the Banach space E.

(H4) The function Q : C(R+, E) → E is continuous, and there exists a constant
q∗ > 0, such that

‖Q(u)‖ ≤ q∗(1 + ‖u‖∞); for each u ∈ C(R+, E).

Moreover, for each bounded set B1 ⊂ X, we have

µ(Q(B1)) ≤ q∗ sup
t∈In

µ(B1(t)),

where B1(t) = {u(t) : u ∈ B1}; t ∈ In; n ∈ N.

For n ∈ N, let
p∗n = sup

t∈[0,n]
p(t),

and define on X := C(R+, E) the family of measure of noncompactness by

µn(D) = ωn0 (D) + sup
t∈[0,n]

µ(D(t)),

where D(t) = {v(t) ∈ E : v ∈ D}; t ∈ [0, n].

3.1 The Initial Value Problem

In this section, we are concerned with the existence results of the problem
(1)-(2).

Definition 6. By a solution of the problem (1)-(2) we mean a continuous function
u ∈ X that satisfies the integral equation

u(t) = c+ arf(t, u(t)) + br

∫ t

0
f(s, u(s))ds,

where c = u0 − arf(0, u0).

Theorem 2. Assume that the hypotheses (H1)− (H3) hold.
If

`n := p∗n(2ar + 4nbr) < 1;

for each n ∈ N∗, then the problem (1)-(2) has at least one solution.

Proof. Consider the operator N : X → X defined by:

(Nu)(t) = c+ arf(t, u(t)) + br

∫ t

0
f(s, u(s))ds. (6)
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Clearly, the fixed points of the operator N are solution of the problem (1)-(2).

For any n ∈ N∗, we set

Rn ≥
‖c‖+ p∗n(ar + nbr)

1− p∗n(ar + nbr)
,

and we consider the ball

BRn := B(0, Rn) = {w ∈ X : ‖w‖n ≤ Rn}.

For any n ∈ N∗, and each u ∈ BRn and t ∈ [0, n] we have

|(Nu)(t)| ≤ ‖c‖+ ar‖f(t, u(t))‖+ br

∫ t

0
‖f(s, u(s))‖ds

≤ ‖c‖+ arp(t)(1 + ‖u(t)‖) + br

∫ t

0
p(s)(1 + ‖u(s)‖)ds

≤ ‖c‖+ arp
∗
n(1 +Rn) + brp

∗
n(1 +Rn)

∫ t

0
ds

≤ ‖c‖+ p∗n(ar + nbr)(1 +Rn)

≤ Rn.

Thus

‖N(u)‖n ≤ Rn. (7)

This proves that N transforms the ball BRn into itself. We shall show that the
operator N : BRn → BRn satisfies all the assumptions of Theorem 1. The proof
will be given in two steps.

Step 1. N(BRn) is bounded and N : BRn → BRn is continuous.
Since N(BRn) ⊂ BRn and BRn is bounded, then N(BRn) is bounded.
Let {uk}k∈N be a sequence such that uk → u in BRn . Then, for each t ∈ [0, n], we
have

‖(Nuk)(t)−(Nu)(t)‖≤ar‖f(t, uk(t))−f(t, u(t))‖)+br
∫ t

0
‖f(s, uk(s))−f(s, u(s))‖ds.

Since uk → u as k → ∞, the Lebesgue dominated convergence theorem implies
that

‖N(uk)−N(u)‖n → 0 as k →∞.

Step 2. For each bounded equicontinuous subset D of BRn , µn(N(D)) ≤
`nµn(D).
From Lemmas 1 and 2, for any D ⊂ BRn and any ε > 0, there exists a sequence
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{uk}∞k=0 ⊂ D, such that for all t ∈ [0, n], we have

µ((ND)(t)) = µ

({
c+ arf(t, u(t)) + br

∫ t

0
f(s, u(s))ds; u ∈ D

})
≤ 2µ ({arf(t, uk(t))}∞k=1) + 2µ

({
br

∫ t

0
f(s, uk(s))ds

}∞
k=1

)
+ ε

≤ 2arµ ({f(t, uk(t))}∞k=1) + 4br

∫ t

0
µ ({f(s, uk(s))}∞k=1) ds+ ε

≤ 2arp(t)µ ({uk(t)}∞k=1) + 4br

∫ t

0
p(s)µ ({uk(s)}∞k=1) ds+ ε

≤ 2arp
∗
nµn(D) + 4nbrp

∗
nµn(D) + ε

= (2ar + 4nbr)p
∗
n µn(D) + ε.

Since ε > 0 is arbitrary, then

µ((ND)(t)) ≤ p∗n(2ar + 4nbr) µn(D).

Thus

µn(N(D)) ≤ p∗n(2ar + 4nbr) µn(D).

As a consequence of steps 1 and 2 together with Theorem 1, we can conclude
that N has at least one fixed point in BRn which is a solution of problem (1)-
(2).

3.2 The Problem with Nonlocal Condition

Now, we are concerned with the existence results of the problem (1),(3).

Definition 7. By a solution of the problem (1),(3) we mean a continuous function
u ∈ X that satisfies the integral equation

u(t) = c−Q(u) + arf(t, u(t)) + br

∫ t

0
f(s, u(s))ds,

where c = u0 − arf(0, u0).

Now, we shall prove the following theorem concerning the existence of solutions
of problem (1),(3).

Theorem 3. Assume that the hypotheses (H1)− (H4) hold.
If

λn := 2q∗ + p∗n(2ar + 4nbr) < 1,

for each n ∈ N∗, then the problem (1),(3) has at least one solution.
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Proof. Consider the operator N : X → X defined by:

(Gu)(t) = c−Q(u) + arf(t, u(t)) + br

∫ t

0
f(s, u(s))ds. (8)

Clearly, the fixed points of the operator G are solution of the problem (1),(3).

For any n ∈ N∗, we set

ρn ≥
‖c‖+ q∗ + p∗n(ar + nbr)

1− q∗ − p∗n(ar + nbr)
,

and we consider the ball

Bρn := B(0, ρn) = {w ∈ X : ‖w‖n ≤ ρn}.

For any n ∈ N∗, and each u ∈ Bρn and t ∈ [0, n] we have

‖(Gu)(t)‖ ≤ ‖c‖+ ‖Q(u)‖+ ar‖f(t, u(t))‖+ br

∫ t

0
‖f(s, u(s))‖ds

≤ ‖c‖+ q∗(1+‖u‖∞)+arp(t)(1+‖u(t)‖)+br

∫ t

0
p(s)(1+‖u(s)‖)ds

≤ ‖c‖+ q∗(1 + ρn) + arp
∗
n(1 + ρn) + brp

∗
n(1 + ρn)

∫ t

0
ds

≤ ‖c‖+ q∗(1 + ρn) + p∗n(ar + nbr)(1 + ρn)

≤ ρn.

Thus

‖G(u)‖n ≤ ρn. (9)

This proves that G transforms the ball BRn into itself. As in the proof of Theorem
2, we can show that the operator G : Bρn → Bρn satisfies all the assumptions of
Theorem 1. Indeed; G(Bρn) is bounded, and we can easily prove that G : Bρn →
Bρn is continuous. Next, from Lemmas 1 and 2, for any D ⊂ Bρn and any ε > 0,
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there exists a sequence {uk}∞k=0 ⊂ D, such that for all t ∈ [0, n], we have

µ((GD)(t)) = µ

({
c−Q(u) + arf(t, u(t)) + br

∫ t

0
f(s, u(s))ds; u ∈ D

})
≤ 2µ ({Q(u) + arf(t, uk(t))}∞k=1)

+2µ

({
br

∫ t

0
f(s, uk(s))ds

}∞
k=1

)
+ ε

≤ 2µ ({Q(uk)}∞k=1) + 2arµ ({f(t, uk(t))}∞k=1)

+4br

∫ t

0
µ ({f(s, uk(s))}∞k=1) ds+ ε

≤ 2q∗mu ({uk(t)}∞k=1) + 2arp(t)µ ({uk(t)}∞k=1)

+4br

∫ t

0
p(s)µ ({uk(s)}∞k=1) ds+ ε

≤ 2q∗µn(D) + 2arp
∗
nµn(D) + 4nbrp

∗
nµn(D) + ε

= [2q∗ + p∗n(2ar + 4nbr)]µn(D) + ε.

Since ε > 0 is arbitrary, then

µ((GD)(t)) ≤ [2q∗ + p∗n(2ar + 4nbr)]µn(D).

Thus
µn(G(D)) ≤ [2q∗ + p∗n(2ar + 4nbr)]µn(D).

Hence, from Theorem 1, we can conclude that G has at least one fixed point
in Bρn which is a solution of problem(1),(3).

4 Examples

Let

l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
k=1

|uk| <∞

}
be the Banach space with the norm

‖u‖ =

∞∑
k=1

|uk|,

and C(R+, l
1) be the Fréchet space of all continuous functions v from R+ into l1,

equipped with the family of seminorms

‖v‖n = sup
t∈[0,n]

‖v(t)‖; n ∈ N.
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Example 1. Consider the following problem of Caputo-Fabrizio fractional
differential equations{

(CFD
1
2
0 uk)(t) = fk(t, u(t)); t ∈ R+,

u(0) = (1, 2−1, 2−2, . . . , 2−n, · · · ); t ∈ R+, k = 1, 2, · · · ,
(10)

where 
fk(t, u) =

(2−k + uk(t)) sin t

64(a 1
2

+ 2nb 1
2
)(1 +

√
t)

; t ∈ (0,+∞), u ∈ l1,

fk(0, u) = 0; u ∈ l1,

for each t ∈ [0, n]; n ∈ N, with

f = (f1, f2, . . . , fk, . . .), and u = (u1, u2, . . . , uk, . . .).

The hypothesis (H2) is satisfied with
p(t) =

| sin t|
64(a 1

2
+ 2nb 1

2
)(1 +

√
t)

; t ∈ (0,+∞),

p(0) = 0.

So; for any n ∈ N, we have p∗n = 1
64(a 1

2
+2nb 1

2
) , and

`n := p∗n(2ar + 4nbr) =
1

64(a 1
2

+ 2nb 1
2
)
(2a 1

2
+ 4nb 1

2
) =

1

32
< 1.

Simple computations show that all conditions of Theorem 2 are satisfied. Conse-
quently, the problem (10) has at least one solution defined on R+.

Example 2. Consider now the following problem of Caputo-Fabrizio frac-
tional differential equations{

(CFD
1
2
0 uk)(t) = fk(t, u(t)); t ∈ R+,

u(0) +Q(u) = (1, 2−1, 2−2, . . . , 2−n, · · · ); t ∈ R+, k = 1, 2, · · · ,
(11)

where Q = (Q1, Q2, . . . , Qk, . . .), Q : C(R+, l
1)→ l1, and

Qk(u) =
2−k + uk

64
; k = 1, 2, · · · .

In addition to hypotheses (H1)−(H3), the hypothesis (H4) is satisfies with q∗ = 1
64 .

Also we have

λn := 2q∗n + p∗n(2ar + 4nbr) =
1

32
+

1

64(a 1
2

+ 2nb 1
2
)
(2a 1

2
+ 4nb 1

2
) =

1

16
< 1.

Simple computations show that all conditions of Theorem 3 are satisfied. Conse-
quently, the problem (11) has at least one solution defined on R+.
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(2019), 102-116.

[6] Abbas, S., Benchohra, M. and N’Guérékata, G.M., Topics in fractional dif-
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