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Abstract

We first introduce a natural definition of the pointwise PR-pseudo-slant
submanifolds M in para-Kéhler manifolds M and then investigate the exis-
tence of M by presenting some numerical examples. Finally, we derive some
necessary and sufficient conditions for the integrability and foliation of the
distributions involved with the definition of such submanifolds in M.
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1 Introduction

The geometry of the submanifolds in different spaces has always been a topic of
great interest in differential geometry. In particular, the slant submanifolds of
complex, contact (pseudo)-Riemannian manifolds has a long and fascinating his-
tory and currently been extensively studied because of its numerous application
to mathematics and physics (refer, [6, 7]). B.-Y. Chen in [11] introduced the con-
cept of slant submanifolds of an almost Hermitian manifold that comprises both
totally real and holomorphic submanifolds. A. Bejancu also introduced a notion
of CR submanifolds in [4] as the generalizations of totally real and holomorphic
submanifolds. N. Papaghiuc [14] originated the notion of semi-slant submanifolds
that encompasses the classes of CR submanifolds and slant submanifolds. F.
Etayo [12] introduced the theory of pointwise slant submanifolds of almost Her-
mitian manifolds with the name quasi-slant, as an additional extension to slant
submanifolds. Furthermore, A. Carriazo in [5] initiated the study of pseudo-slant
submanifolds and derived totally real, holomorphic and CR submanifolds as spe-
cial cases. In [9], B.-Y. Chen and O. J. Garay studied pointwise slant submanifolds
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of Kaehler manifolds and demonstrated some fundamental results of those sub-
manifolds. Since then several differential geometers have studied and classified the
pointwise slant geometry in Riemann settings (see, [15, 16, 21, 22]). These geomet-
ric setting may found inappropriate, specifically in the general relativity theory
where the metric may not be always positive definite i.e. Riemannian. Hence,
B.-Y. Chen and M. I. Munteanu in [8] presented the new class of submanifolds
called PR-submanifolds by considering the semi-Riemannian non-degenerate met-
ric structure in para-Kaehler manifolds. Analogous to that S.K. Srivastava and
the author continued the study for paracosymplectic manifolds [20]. Recently
Alegre-Carriazo [1, 2] and Srivastava-Sharma [17, 18] carried out the notion for
slant, semi-slant, pseudo slant submanifolds in para geometries particularly in
para-Hermitian and paracosymplectic manifolds, and presented analogies and dif-
ferences between structure admitted semi-Riemannian and Riemannian metrics.

In the present work, we study the geometry of pointwise PR-pseudo-slant sub-
manifolds in para-K&hler manifolds that naturally englobe slant, PR and pseudo-
slant submanifolds. The organization of the article is as follows. In Sect. 2,
we recall some basic information about para-Kéhler manifold formulas for sub-
manifolds. Sect. 3 includes some definition of pointwise slant submanifold and
characterization results for such submanifold. In Sect. 4 we first explain the con-
struction of pointwise PR-pseudo slant submanifolds along with some numerical
examples and then derived the conditions of integrability and totally geodesic
foliation for the distributions allied to the characterization of a pointwise PR-
pseudo-slant submanifold in para-K&hler manifolds.

2 Preliminaries

A smooth manifold M of dimension 2m is said to have an almost product structure
if P2 = I, where P is a (1,1) tensor field and I the identity transformation on
M. For this, the pair (M, P) is called almost product manifold. An almost para-
complex manifold is an almost product manifold such that the two eigenbundles
T*M corresponding to the eigenvalues +1 of P have the equal dimension. An
almost para-Hermitian manifold (M, P,q) is a smooth manifold associated with
an almost product structure P and a pseudo-Riemannian metric g satisfying

g(iPX, (‘PY) - _g(X7Y)7 (1)

Clearly, signature of g is necessarily (m,m) for any vector fields X, Y tangent to
M. Also, Eq. (1) implies that

J(PX,Y)+9(X,PY) =0, (2)

for any X,Y € X(TM); X(TM) being Lie algebra of vector fields of M. The
fundamental 2-form w of M is defined by

w(X,Y)=g(X,PY), VX,Y cX(TM). (3)
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Definition 1. An almost para-Hermitian manifold M is called a para-Kéhler
manifold [10] if P is parallel with respect to V, i.e.,

(VxP)Y =0, VX,Y € X(TM) (4)
where V is the Levi-Civita connection on M with respect to g.

Let M be an n-dimensional manifolds immersed in a 2m-dimensional para-Kéhler
manifold M. We use the notation g for the induced metric tensor on M such
that ¢ = gl of constant signature and rank [13]. Thus, V p € M, tangent space
T,(M) is a non-degenerated subspace of T,(M) such that T,(M) = T,(M) @
T,(M)*, where T,(M)* denotes the normal space of M. If X(T' M) indicates a
normal bundle to M and X(T'M) the tangent bundle to M, then the Gauss and

Weingarten formulas are defined respectively by

vxy:VXY—i-O'(X,Y), (5)
V(= —AcX + VxC, (6)
for any X,Y € X(T'M) and (X(T M=), where V (resp., V*) is the induced tangent

(resp., normal) connection on X(7T'M) (resp., X(T M), o is the second fundamen-
tal form, and the Weingarten map A¢ at ¢ is given in [11] by

g(AcX, Y) ZE(U(X, Y)v() (7)

A submanifold M is called totally geodesic if its o vanishes identically, totally
umbilical if 0(X,Y) = ¢g(X,Y)H and minimal if the mean curvature H vanishes.
If we write, for all £ € X(TM) and ¢ € X(TM~) that

PE =1+ f¢, (8)
PC=1C+ f¢, 9)

where t£ (resp., f€) is tangential (resp., normal) part of P¢ and ¢'¢ (resp., f'C) is
tangential (resp., normal) part of P¢, then for any X,Y € X(T'M) we can easily
obtain from Eqs. (2) and (8) that

g(X,tY) = —g(tX,Y). (10)

3 Pointwise slant submanifolds

The slant submanifolds of para-Hermitian manifolds have already been studied
by several authors in [2, 17]. Here motivated by these we define pointwise slant
submanifolds in an almost para-Hermitian manifold.

Definition 2. Let ¢ be an isometric immersion ¢ : M — M into an almost para-
Hermitian manifold M and D) be the non-degenerate distribution on M. Then
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Dy s sard to be pointwise slant distribution on M, accordingly M pointwise slant
submanifold, if there exists a real valued function A such that

=X, g(tX,Y) = —g(X,tY)

for any non-null tangent vectors X, Y € Dy at each given point p € M. Here, A
is called slant function, independent of the choice of the non-null tangent vector

fields on M.

Remark 1. It is to note that, the manifold M is non-degenerate (that is, contains
either space-like or time-like vector fields), thus our definition of pointwise slant
submanifold can be thought of as a generalization of Chen-Garay definition [9] for
A\ = cos?0(X), where 0(X) is a slant function.

Remark 2. The slant function X is sometimes chosen as cos® 0(X) or cosh? (X)
or —sinh? @(X) for vector fields tangent to M, where §(X) is real valued function.
In particular, if 0(X) is slant constant coefficient then pointwise slant is simply
slant [17].

Remark 3. The behavior of the X equals to cos® §(X) or —sinh? §(X) or cosh? (X))
depending on the nature of vector fields (that is, angle between spacelike—spacelike

or timelike—spacelike or timelike—timelike). A variety of different possibilities for

A as slant constant-coefficient have been addressed in [1, 2, 3], depending on the

behaviour of vector fields.

Remark 4. Here, it is not hard to see that the holomorphic and totally real
submanifolds are improper slant submanifolds with slant coefficients A = 1 and
A = 0, respectively. Thus, a proper slant submanifold is a slant submanifold
which is neither holomorphic nor totally real [8].

Now, we derive some characterizations for pointwise slant submanifold M of
M.
Proposition 1. If M be an isometric immersion of totally geodesic pointwise
slant submanifold into almost para-Hermitian manifolds M, then M is slant.

Proof. We take X € ©), such that tX = AX where X is also a unit tangent
vector field orthogonal to X. Now, for Y € X(T'M) we can write by using Egs.
(8) and (6) that Vy (¢X) = Vy (tX) — A,xY + Vi(nX). Above equation by the
use of defination of covariant differentiation becomes Vy (¢X) = AVy X + XX —
ApxY + V$(nX). Again, using the fact that structure is an almost para-Kihler
manifold and Eqs. (5), (8), (9) we have that, Vy(¢X) = tVy X + nVy X +
t'o(Y,X) +n'o(Y, X). Comparing the tangential part of previous expressions we
get XX = tVy X 4+ t'0(Y,X) — AWy X + A,xY.. Finally, taking inner product
of above equation with X and the fact that M is totally geodesic, we achieve the
required proposition. ]

Proposition 2. If M be a pointwise proper slant submanifold in an almost para-
Kahler manifold M, then w is closed.

Proof. The proof of this proposition is analogous to Theorem 5.2 of [9]. Hence
omitted. O
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4 Pointwise PR-pseudo-slant submanifolds

In this section, similar to [19, 21|, we define pointwise PR-pseudo-slant submani-
fold of a para-Kihler manifold M and derive the integrability and totally geodesic
foliation conditions for the distribution attached with the definition of such sub-
manifolds.

Definition 3. Let M — M be an isometric immersion of non-degenerate sub-
manifold M in a para-Kihler manifold M. Then we say that M is a point-
wise PR-pseudo-slant submanifold if it admits the pair of orthogonal distribu-
tions i.e., totally real ®+ and pointwise slant ©y with slant function \ satisfying
TM =D+ @D, such that P(DL) C X(TM)* .

Let us denote by d; and dy the dimension of ® and ©), respectively then we
can see that pointwise PR-pseudo-slant submanifold M of M is

e pointwise slant (resp., pointwise pseudo-slant) submanfold, if d; = 0 and
D, (resp., the pair D+, ©,) indicates on M with slant function A = cos?(#)
[21].

e PR-pseudo slant submanifold, if di.do # 0 and slant function A is glob-
ally constant [1, 19], in particular if d; # 0 and A = 1 then M is a PR-
submanifold [8].

Hence, we can say that pointwise PR-pseudo-slant submanifold M of M proper,
if di.doy # 0 and A is non-constant function. Next, we give some numerical ex-
amples to validate proper pointwise PR-pseudo-slant submanifolds in para-Kéahler
manifolds M = R%. Let M = R be a 6-dimensional manifold with the standard
Cartesian coordinates (z1, 2,3, ¥4, Ts5,76). Define a structure (P,g) on M by

fPel = €4, ?62 = €5, :Peg = €6, 9364 = €1, ?65 = 62,?66 = €3, (11)

3 6
g= (dn)? =" (de)? (12)

0 0 0 0 0 and 0 B
— e =—,e3=—,e4 = —,e5 = — and eg = —.
81‘1 2 8ZE2 3 axg 4 61‘4 g 8935 6 8956 Y
straightforward calculations, one verifies that the structure is an almost para-
Hermitian manifold. For Levi-Civita connection V with respect to g, we readily

conclude that the manifold (M, P,q) is a para-Kéhler manifold.

where e =

Example 1. Let M — M = R is an immersion satisfying Eqs. (11) and (12)
given by

¢2 (U, «, ﬁa t) = (U COSh(a)7 /Uﬂv t? v sinh(a), kla k?) (13)
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where ki, ko are constants and v, € R — {0}. Then the TM spanned by the
vectors
Z1 = cosh(a)e; + Peg + sinh(a)ey, Zy = vsinh(a)e; + v cosh(a)ey, (14)

Z3 =vey, Zy = e3
where Zy, Zo, Zs, Zy € X(TM). Therefore from Egs. (11), we obtain that

P(Z,) = sinh(a)ey + cosh(a)eq + Bes, P(Z2) = v cosh(a)e; + vsinh(a)ey, (15)
fP(Zg) = Ve€s, fP(Z4) = €¢.

From Egs. (12), (14) and (15), we obtain that ®+ and D, are the subspaces
spanned by span{Z3, Z,} and span{Zi,Zs} respectively, where D+ is a totally
real distribution and D is a pointwise slant distribution with slant function A\ =
\/117. Thus, M becomes a proper pointwise PR-pseudo-slant submanifold of M.
Example 2. Let M — M = RS is an immersion satisfying Eqs. (11) and (12)
given by

Ba(t,s,v,u) = (t + cos(v), s,sin(v), k1, ko, u?) (16)
where k1, ks are constants and u,v € R —{0,1}. Then the TM spanned by the
vectors

Zy =e1, Zy = e, Z3 = —sin(v)e; + cos(v)es, Zs = 2ueg, (17)

where Z1,Zy,Z3,%s € X(T'M). Therefore from Egs. (11) and (12), we obtain
that

P(Z1) = es,P(Z2) = e5,P(Z3) = —sin(v)eq + cos(v)es, P(Zs) = 2ues.  (18)

From Eqs. (17) and (18), we obtain that ®+ and Dy are the subspaces spanned by
span{Zy, Zs} and span{Zs, Z,} respectively, where D is a totally real distribution
and ®y is a pointwise slant distribution with slant function A = cos(v). Thus, M
becomes a proper pointwise PR-pseudo-slant submanifold of M.

Furthermore, if the distributions ©+ and ©, are represented by the projections
PL and Py, respectively. Then X = P+ X + P\ X by definition of M for any X €
X(TM). Applying P and using Eq. (8), we have PX = fPLX +tP\ X + fP\X.
From previous expression we obtain that
fPLX e x(@1), tPtX =0, (19)
tP\X € X(Dy), [fP\X € X(TM™). (20)
Again, we have tX = tP\X, fX = fP*X + fP\X for X € X(TM) by the use
of Eq. (8). Since, @, is pointwise slant distribution, hence we conclude that V
X € ®, and real-valued function A defined on M that
2X = \X. (21)

Now, we derive the characterizations for pointwise PR-pseudo-slant submanifold
M of M:
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Theorem 1. In order for a submanifold of a M to be a pointwise PR-pseudo-
slant M, it is necessary and sufficient that there exists a A and a distribution D
on M such that

(i) D={X € X(TM) | (tp)*X = X},
(i) tX =0, X L D.
where X denotes the slant function of M.

Proof. Let M be a pointwise PR-pseudo-slant submanifold of M. Using Eqs. (19),
(20) and (21) we have that D = ©,, which follows (i) and (i7). Conversely (7)
and (i) implies that TM = Dy ® D+. From (ii) , we received that P(D+) = D+,
This completes the proof. ]

From theorem 1 we have the following corollary :

Corollary 1. If M be a pointwise PR-pseudo-slant submanifold in M. Then for
al XY € X(D)), we have

g(tX,tY) = Ag(X,Y) (22)
g(fX, fY)=g(X,Y) = Ag(X,Y). (23)

Further, we prove an important lemma for later use:

Lemma 1. Let M be a pointwise PR-pseudo-slant submanifold of a M. Then
canonical structures (i) t'f =1 — X and (i1) f'f = —ft.

Proof. Formula-(7) can be obtained easily from Eqgs.(9), (2) and (23). For formula-
(ii), replacing X by tX and employing Eq. (21) in Eq. (8) we obtain that
PtX =t>X + ftX = AX + ftX. On the other hand, using Eq. (9) and formula-(4)
we achieve that PfX = ¢'fX + f/'fX = (1 - MNX + f/fX. From previous two
expressions, we deduce PtX +PfX = X + ftX + f'fX. Employing Eqgs. (2) and
(8) in previous expression we get formula-(4i). This completes the proof. O

Here, we investigate the conditions for distributions linked with the definition of
pointwise PR-pseudo-slant submanifold of a para-Kéahler manifold being integrable
and totally geodesic foliation.

Theorem 2. Let M — M be a proper pointwise PR-pseudo-slant immersion in
a para-Kihler manifold. In order for a totally real distribution ®+ on M to be
integrable, it is necessary and sufficient that g(o(X,t2),PY) = g(o(Y,tZ),PX),
VXY €D and Z, W € Dy.

Proof. We have from Gauss and Weingarten formulas and the fact that structure
is para-Hermition, that g([X,Y],Z) = —g(PVxY,PZ) + g(PVy X,PZ). Next,
applying Eqgs. (4), (8) and (9) we achieve —g(PVxY,PZ) = —g(VxPY,tZ) +
9(VxY, ' fZ) + g(VxY, f'fZ). Using lemma 1, Eqgs. (6), (21) and the fact
that o is symmetric in previous expression, we obtain that —g(PVxY,PZ) =
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9(Apy X, tZ2)+(1-Ng(VxY, Z)—g(VxY, ftZ). Now again from Eqs. (4), (8), (9)
and lemma 1, we arrive at g(PVy X, PZ) = —g(ApxY,tZ) — (1-N)g(Vy X, Z) +
9(Vy X, ftZ). Hence from above expressions and Eq. (7) we derive that A\g([X, Y]

9(c(X,t2),PY) — g(o(Y,tZ),PX) This completes the proof. O

Theorem 3. Let M — M be a proper pointwise PR-pseudo-slant immersion in a
para-Kdhler manifold. In order for a pointwise slant distribution Dy of a M to be
integrable, it is necessary and sufficient that g(o(X, W), ftZ) = g(c(X, Z), ftW),
VX cDtand Z,W € D,.

Proof. The proof is identical to that of Theorem 2 and hence omitted. O

Theorem 4. Let M — M be a proper pointwise PR-pseudo-slant immersion in a
para-Kdhler manifold. In order for a totally real distribution ®+ of a M defines
a totally geodesic foliation, it is necessary and sufficient that g(o(X,Z),PY) =
g(c(X,Y),f2),V X,Y € Dt and Z € Dy,

Proof. We can write ¢(VxY,2) = —g(VxPY,tZ2)+g(VxY,t'fZ + f' fZ), by the
virtue of Egs. (2)-(9). Now previous expression by the use of Eq. (6) and lemma
1 can be represented as g(VxY,Z) = g(Apy X, tZ) +9(VxY, Z) = X\g(VxY, Z) —
9(ApzX,Y). Finally, using Eqgs. (5) and (7), in previous expression we completes
the proof. O

Theorem 5. Let M — M be a proper pointwise PR-pseudo-slant immersion in a
para-Kdhler manifold. In order for a pointwise slant distribution ) of a M de-
fines a totally geodesic foliation, it is necessary and sufficient that g(o(tW, Z),PX) =
g(0(X,Z), ftW), ¥ X € D+ and Z,W € D,.

Proof. The proof is identical to that of Theorem 4 and hence omitted. O
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