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AN EVALUATION OF WEIGHTED POLYNOMIAL
INTERPOLATION WITH CERTAIN CONDITIONS ON THE
ROOTS OF HERMITE POLYNOMIAL

Dhananjay OJHA*! and R. SRIVASTAVA?

Abstract

The purpose of this paper is to construct a polynomial R,, of degree at
most 3n — 2 satisfying weighted (0,2;0) interpolation under certain condi-
tions at the zeroes of H,, and H], where H,, stands for Hermite polynomial.
Furthermore, we prove a convergence theorem for R,,.
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1 Introduction

In 1961, J Baldzs [1] initiated the study of weighted (0, 2) interpolation on the
zeroes of n'" ultraspherical polynomials. L. Szili [14] extended his study by taking
roots as the zeroes of n'" Hermite polyomials. In 1975, L.G. P4l [8] introduced
a modification of Hermite-Fejér interpolation in which the function values and
first derivatives were prescribed on two set of nodes {x}}_; and {yx}?_,. He
considered they are distributed on the real line such that

—c0o <z <Y <x2 < ... <X < Ypoorr < Yn1 < Ty < 400 (1)

He proved that, there exists a unique polynomial P, (x) of degree at most 2n — 1
satisfying the following condition:

{ P (zp)=0ar (k=1,2,...,n), @)
P/z(yk) =B (k=1,2,..,n—-1),
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with initial condition P, (xg) = 0, where xg is a given point different from the nodal
points and {ay}7_,, {Bk}}Z] are arbitrary numbers. Later, S.A. Eneduanya [2]
proved the convergence for P,(x) on the roots of m,(z).

In 1985, L. Szili [15] applied this interpolation process by taking the mixed
zeroes of Hy(z) and its derivative on infinite interval. For n even, he showed that
there exists a uniquely determined polynomial P (z) of degree < 2n—1, satisfying
the conditions:

{ Prxp) =0of (E=1,2,...,n), (3)
P;zk/(yk) =0y (k=1,2,...,n—-1),

P0) = 23 afl 7 ()
1=0 n
which is given by
n n—1
Pia) = Y ajAn(e) + 3 BiBi(o) 6)
=1 =1

and uniqueness does not hold for taking n odd. Furthermore, he proved the
convergence theorem for P (z). In 1994, I. Joé [5] improved Szili [14] result by
modifying the estimate of the fundamental polynomials.

In 1999, Z.F. Sebestyen [9] improved the result of L. Szili [14] and I. Zool5]
by replacing the condition with an interpolatory condition P (0) = «q for n even,
where g is an arbitrary number.

Srivastava and Mathur [12], studied mixed type weighted (0; 0, 2) interpolation
on the mixed zeroes of H,(z) and its derivative which means to determine a
polynomial R} (x) of degree at most 3n — 2 satisfies the following conditions:

P(ye) =68 (k=1,2,...,n—1), (6)

and

L HEOR0) -

=0 n

For n even, they proved that, there exists a unique polynomial of degree at most
3n — 2 satisfying (6)-(7) and for n odd, uniqueness does not exist. Furthermore
they proved the convergence theorem for R} (z).

Also, several authors [12], [10], [6] have studied mixed type interpolation with
different conditions on different nodes.

In this paper, we studying the (0,2;0)- interpolation on the zeroes of H,(x)
and its derivative with Z.F Sebestyen’s[9] conditions.

We have given the following problem.
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Problem:

Let g = 0 be a real number differing from the interscaled system of nodal
points (1) where {z4}7_, and {y;}}| are the zeroes of H,(z) and H/,(x) respec-
tively. We search for a possible minimal degree polynomial R,,(z) which satisfies
the following interpolation conditions:

Ry(rp) =gr  (k=0,1...n),
Ry, (yr) = g;’; (k=1,2,..,n—1), (8)
(k=1,2,....n—1),

—
fb
N
:U
S
=
—~
<
=
~—
|
?T‘ *

2 Preliminaries

In this section, we gave some well-known results, which we will use to prove
Theorem 1, Lemma 1, Lemma 2, Lemma 3 and Theorem 2.
The differential equation satisfied by H,(z) is given by

H)(x) — 2zH] (z) + 2nH,(z) =0 9)

H) (x) = 2nH,_1(z) (10)

The fundamental polynomials of Lagrange interpolation corresponding to the
nodal point x; and y; are given by

l = k=1... 11
= ) o) " )
Hy(x)
Ly(x) = n k=1..n-1 12
= H) e - "2
and they satisfy the conditions given below
N_J O for j#Ek _
lp(xj) = { | for j—k for k=1..n (13)
v_J0 for j#£k - _
Li(y;) = { 1 for j—k for k=1..n—1 (14)
l,(z) = (a2, —a) for j#k for k=1..n (15)
xr  for j=k

Hy (y5) -
Li(y) = {4 Bl Jor IFk e w1 (16)
e ye  for j=k

2Hy, (y5) 1 L
Li(y;) = { TR0 xw{y{lyz_mgfcﬁ for ‘7f for k=1..n (17)
e for j=k
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G. Szegd, [13] gave following results:
For the roots of Hy(x), we have

kQ
2
~— 18
Lk n (18)
1;2
Hy(z) = O(niv2ml(1+ ¥/|z))e?) z € R (19)
v 12 12
27+t nl /ne ——

k()| = O(1)

2 () v>1 and k=1.n (20)

R. Srivastava and K.K Mathur [11], proved that

v z2 2
|Li(2)] 0(2%!6< QW) >1 and k=1 1 (21)
k(x)] = v an =1l.n—
VnHZ(yr)
L. Szili [15] gave following results
51%

\H! (zx)| > ciniV2rHinle 2" (i = 1...n) (22)

_ 5y?
\Hy ()| = conTV2Hnle s (i=1..n— 1), (23)

where ¢y, ¢y are constants which are independent of n and 0 < d < 1 is an
arbitrarily given real number. He also proved that

Y ek = 0(vn) (24)
=0

2
n eéxk

T _oprtiay”
; H},? ()

' (25)

Definition: w(f,0) denotes the special form of modulus of continuity introduced
by G.Freud [4], given by

w(f,0) = sup {[| W(z +)f(z+1t) = W(z)f(2) [| + | 7(0)W () f(z) I}, (26)

0<t<s
where
{1 fr s
and || - || denotes the sup-norm in C'(R), if f € C(R) and lim W(z)f(x) =0

|z|—o0

then lim w(f,d) = 0.
d—0

G.Freud[3](Theorem 4) and Theorem 1[1] gave the following results:
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Let f: R — R be continuously differentiable. Further, let

—?
lim x%f() =0 (k=0,1,....) z€R
and lim f'(z)e 2 =0 z€R

|z| =400

then there exists a polynomial @, (z) of degree < n such that

= o L
1)~ Qulw)] = (=l =) (25)
| (2) - Qu()] = Ol f ;ﬁ> (29)

where w stands for modulus of continuity defined by (26).
Szili[14]( Lemma 4, Theorem 4) established the following. For x € R

e |Qu()| = O(1) (30)
e 1QL(x)] = O(1) (31)

and ,
e 1Q1(x)] = 0(1 )fw(f,T) for la| < Vo ¥ 1 (32)

3 Explicit representation of interpolatory polynomial

In this section, we have proved explicit representation of fundamental polyno-
mials.

Theorem 1. There exists a polynomial

n—1
ngAk +ngBk 2)+ > gi Cr(x) (33)
k=1

of degree 3n-2 satisfying condition (8), where Ap(z) (k=0,1,2....,n) and By(x)
(k=1,2....,n — 1) are the fundamental polynomial of first kind and Cy(x) (k =
1,2....,n — 1) are fundamental polynomials of second kind of weighted (0,2;0)
interpolation. FEach such fundamental polynomials of degree at most 3n — 2 s
given by

Aol@) = HZ((?an) 3
_ a"H, (2)l,(x) x)H] (x) (n+ D" — nt"lay,
) = e ey v "
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(t —yw)? “ (36)

Bi(2) _ 2" Hy(x)Ly(z) | Hn(2)Hy (@) /Ow (n — )" — yptn

+
YR Hy (yx) nyrH2(yk)

_y}%

—e2 (Y + (n—1)y;> — (3n+2))Cr(x)

v
H,(z)H, (z)e2

Cule) = s /0 " Li(t)dt (37)

Proof. 1t is enough to show that the polynomials Ag(z) (k =0,1,2....,n), Bi(z)
(k=1,2....,m—1), and Ck(x) (k =1,2....,n — 1) have the following properties:

Amj):{f T for Gk=0.m) (38)

Ap(y;) =0 (j=1..m—-1,k=0,...,n),

(e2 Ar)'(y;)) =0 (j=1,.mn—1,k=0,..,n)
Bt ={ § o ITE for (k=) (39)

and

1 for j=k
Ck(yj) 20, (j,k:(),...7n—1),
Cr(zj)=0 (j=0,.nk=1,..,n—1).
First, we construct the polynomials Ci(x). Let k be fixed (ke{1,..., n-1}), from
(40) it follows that

(efok)"(yj):{ O Jor J#K o Gik=1,.0n—1),  (40)

Cr(x) = Hy(2)Hy'(2) g1 (), (41)
where p(z) is the polynomial such that,
pr(0) =0. (42)
By (41), we get ,
(7 i) (5) = Ane 2 H2(y;)dh(03), (43)

(43) satisfies (40), only if,

1 xX
qr(z) = - / Ly (t)dt. (44)
dne™2 H2(y;)d, (y;) "

Combining (44), (41), we obtain (37). Obviously, Cx(z) is a polynomial of degree

3n —2, which satisfies (40). Second, we construct By (x), k be fixed (ke{1,...n-1}).
We look for By (x) in the following form

Bi(z) = c12"Hy Ly(x) + Hp () H, (2)wg(x) + c2.Cl () (45)
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where wy(x) is the suitable polynomial for which
wi(0) =0 (46)

and ¢y, co are arbitrary constants. According to (39) gx(z), for j#k

B (y;) =0 (47)
and for j =k
1
Bilyp) =1 — ¢ = ———— 48
(o) C T R H(yk) )
from (45) and (39) we get for j # k
—z? "
(e72" Bi)"(y))
2
Y n n—1 2
2¢77 H2(y;) . (n— 1)y} — yry; /R )
= & —2ne 2 Hi(yj)wi(x) =0 (49
Hy(yr) (yj — ur)? | ()i () 9)
for j =k
=z " ;y’% 2
(€= Br) (yk) =e= (yp + (n=1) =Bn—=2)) + 2 =0 (50)

From (49) and (50), we conclude that

T n __ n—1
wi(w) = 711/0 ( (1t)t— yk)y;t o 1)
and i
= —e 2 (yF + (n—1)y;” = (3n — 2)) (52)

Combining (48), (51) and (52), we get (36). It is easy to see that, Bi(z) is a
polynomial of degree 3n — 2, which satisfies (39).
Proof of Aj(x) is like proof of By(z). O

4 Order of convergence of fundamental polynomials

In this Section, we the compute order of convergence of fundamental polyno-
mials, which is required to prove theorem 2

Lemma 1. For k =0,1...n and x € (—00, +00)
S 2 3
Zeﬁxk\Ak(m)] = O(v/nlogn)e’™ for v > 2 0<p<1 (53)
i=0

where Ag(x)is given by (35)
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Proof. From (35) we have

— \%HH "2 )\
2H H, lt”— 1 54
+Zeﬂx2 | /H (332 ’/ (n+ nt g, (54)
|2 || (H}, (1)) (t — yi)?
§41+C2

using (10), (18), (19), (20), (22) and (24), we have

n

_ 3o 2271]%73’657;{1(( )H)l‘k(x)\ = O(v/n)e"™ for v > ; (55)
0 n

k=
Using (10), (18) (19), and (25), we have

_ o2 40| Hy ()| | Hp—1 ()| _ va? 3
¢ = O(logn) 2 e FACE O(yv/nlogn)e’™ for v > 5 (56)

0
Thus, by using (55) and (56) in (54), we get the required lemma. O

Lemma 2. Fork=1..n—1 and x € (—00, +00)
n—1 3
2 2
g Pk | By ()| = O(v/nlogn)e’™ where v > 2’ 0<p<1 (57)

where By(x) is given by (36)
Proof. From (36), we have

n—1
Zeﬁy;%’Bk ‘<Z gyz ||| Hn (2)|| Ly ()|
k=1

‘kaH (yw)]
’( 1) — gyt
Zﬁy nlykllyjyk / : 1tt—yk | (58)
+ Z | (y7 + (n — D)y — (3n +2))]|Ci ()
k=1
<G+ G+

By using (10), (19), (21), (23) and (24), we have

G = O(\/ﬁ)e”2 forv > g (59)

By using (10), (18) (19), (24), we have

n

G2 = Ologn) Y &’ 2|Hp()||Hn-1(z)|
k=0

3
- O(Vnlogn)e’™ forv>> (60
] e o

2
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By using (18), (26) and [11](lemma 5.3), we have

(3 = O(v/nlogn)e”™ for v > g (61)

Thus, by using (59)-(61) in (58), lemma follows. O

Lemma 3. For k=1,2,....,n—1 and x € (—00,+0)

n

1
3R |Ch(a)] = O(2)e™ where v > 3 0<p<l (62)
— Vn 2
where Ci(x) is given by (37)
Proof. Lemma follows from[11](lemma 5.3) O

5 Main result: Convergence theorem of interpolatory
polynomial

In this section, we have proved convergence theorem for interpolatory polyno-

mial R, (z).

Theorem 2. Let the interpolated function f : R — R be continuously differen-
tiable such that

lim 228 f(2)p(x) =0 (k=0,1,....)

|| =00 L (63)
lim f'(z)p(x) =0 ,where p(x)=e2"
|z| =400
further taking the number 6y such that
— Moo(f's ) k=1, — 1 4
Ok O(\/ﬁe kw(f ) \/ﬁ))?k y ey 1 (6 )
where w is modulus of continuity of f’.Then
n n—1 n—1
Ro(f,2) = flar)Ax(@) + Y f(ur)Be(w) + Y 0xCi(x) (65)
k=0 k=1 k=1
satisfies the relation
e 7(2) ~ Rae)| = Ollog )l f: =), > 5 (66)
n - g ) \/’E ) 2

Proof. Since R,(z) given by (33) is exact for all polynomials Q,(z) of degree <
3n-2, we have

n—1

n n—1 2
Qn(z) =Y Qn(ar)Ax(x) + > Qulye)Br(x) + > _(e72 Qn)"(yk)Cr(z) (67)
k=0 k=1

= k=1
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Using lemma (1)-(2), (65), (67) (26) and (28)-(31), it can be easily seen that,

e | Ry (z) — f(2)] <e™|Ry(z) — f(2)] + e er 1) — Qul@)|| Ak ()|
e Z!f Yi) — Qn(yr)|| Br()|

+ v Z ’(Q#Qn)//(yk) — 0k || Cr ()]

k=1
1 1
<0(1 — 1 =
<OM)w(f’ \f) + O(log n)w( 7\/5)
n—1 2
-y
ey e Q) |Ck(a))
k=1
2 = ~vi
+e Y (e ) Qnur)l|Crlw)]
k=1
5 n—1 _y%
+e Y (e ) Qulyn)l|Cr(@)]
k=1
) n—1
+ e * léka(a:)|
k=1
(68)
Thus by using lemma (3), (30)-(32) and (64) in (68) , we get the proof of the
required theorem. O

Conclusion:

Let {z)}7_, and {yx}?—{ be the roots of Hermite polynomial H,(z) and its
derivative H,'(z) respectively. If f(x) is a continuously differentiable function
on (—oo, +00) satisfying (63), then their exist a polynomial R, (x)(33) satisfying
condition (8), which uniformly converges to f(x) on (—oo, +00) as n — oo.
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