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AN EVALUATION OF WEIGHTED POLYNOMIAL
INTERPOLATION WITH CERTAIN CONDITIONS ON THE

ROOTS OF HERMITE POLYNOMIAL
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Abstract

The purpose of this paper is to construct a polynomial Rn of degree at
most 3n − 2 satisfying weighted (0, 2; 0) interpolation under certain condi-
tions at the zeroes of Hn and H ′

n, where Hn stands for Hermite polynomial.
Furthermore, we prove a convergence theorem for Rn.
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1 Introduction

In 1961, J Balázs [1] initiated the study of weighted (0, 2) interpolation on the
zeroes of nth ultraspherical polynomials. L. Szili [14] extended his study by taking
roots as the zeroes of nth Hermite polyomials. In 1975, L.G. Pál [8] introduced
a modification of Hermite-Fejér interpolation in which the function values and
first derivatives were prescribed on two set of nodes {xk}nk=1 and {yk}nk=1. He
considered they are distributed on the real line such that

−∞ < x1 < y1 < x2 < ..... < xk < yk.... < yn−1 < xn < +∞ (1)

He proved that, there exists a unique polynomial Pn(x) of degree at most 2n− 1
satisfying the following condition:{

Pn(xk) = αk (k = 1, 2, ..., n),
P ′n(yk) = βk (k = 1, 2, ..., n− 1),

(2)
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with initial condition Pn(x0) = 0, where x0 is a given point different from the nodal
points and {αk}nk=1, {βk}

n−1
k=1 are arbitrary numbers. Later, S.A. Eneduanya [2]

proved the convergence for Pn(x) on the roots of πn(x).

In 1985, L. Szili [15] applied this interpolation process by taking the mixed
zeroes of Hn(x) and its derivative on infinite interval. For n even, he showed that
there exists a uniquely determined polynomial P ∗n(x) of degree ≤ 2n−1, satisfying
the conditions: {

P ∗n(xk) = α∗k (k = 1, 2, ...., n),
P ∗′n (yk) = β∗k (k = 1, 2, ..., n− 1),

(3)

P ∗n(0) = −2

n∑
i=0

α∗k[
Hn(o)

H ′n(xk)
]2 (4)

which is given by

P ∗n(x) =
n∑
i=1

α∗kAk(x) +
n−1∑
i=1

β∗kBk(x) (5)

and uniqueness does not hold for taking n odd. Furthermore, he proved the
convergence theorem for P ∗n(x). In 1994, I. Joó [5] improved Szili [14] result by
modifying the estimate of the fundamental polynomials.

In 1999, Z.F. Sebestyen [9] improved the result of L. Szili [14] and I. Zoo[5]
by replacing the condition with an interpolatory condition P ∗n(0) = α0 for n even,
where α0 is an arbitrary number.

Srivastava and Mathur [12], studied mixed type weighted (0; 0, 2) interpolation
on the mixed zeroes of Hn(x) and its derivative which means to determine a
polynomial R∗n(x) of degree at most 3n− 2 satisfies the following conditions:

P ∗∗n (xk) = α∗∗k (k = 1....n),
P ∗∗n (yk) = β∗∗k (k = 1, .2, ..., n− 1),

(e
−x2
2 P ∗∗n )′′(yk) = γ∗∗k (k = 1, 2, ...., n− 1),

(6)

and

P ∗∗n (0) =

n∑
i=0

α∗∗k
H ′′n(o)l2k(0)

H ′n(xk)
. (7)

For n even, they proved that, there exists a unique polynomial of degree at most
3n − 2 satisfying (6)-(7) and for n odd, uniqueness does not exist. Furthermore
they proved the convergence theorem for R∗n(x).

Also, several authors [12], [10], [6] have studied mixed type interpolation with
different conditions on different nodes.

In this paper, we studying the (0, 2; 0)- interpolation on the zeroes of Hn(x)
and its derivative with Z.F Sebestyen’s[9] conditions.

We have given the following problem.
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Problem:

Let x0 = 0 be a real number differing from the interscaled system of nodal
points (1) where {xk}nk=1 and {yk}n−1k=1 are the zeroes of Hn(x) and H ′n(x) respec-
tively. We search for a possible minimal degree polynomial Rn(x) which satisfies
the following interpolation conditions:

Rn(xk) = gk (k = 0, 1....n),
Rn(yk) = g∗k (k = 1, .2, ..., n− 1),

(e
−x2
2 Rn)′′(yk) = g∗∗k (k = 1, 2, ...., n− 1),

(8)

2 Preliminaries

In this section, we gave some well-known results, which we will use to prove
Theorem 1, Lemma 1, Lemma 2, Lemma 3 and Theorem 2.

The differential equation satisfied by Hn(x) is given by

H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0 (9)

H ′n(x) = 2nHn−1(x) (10)

The fundamental polynomials of Lagrange interpolation corresponding to the
nodal point xk and yk are given by

lk(x) =
Hn(x)

H ′n(xk)(x− xk)
k = 1.....n (11)

Lk(x) =
H ′n(x)

H ′′n(yk)(x− yk)
k = 1....n− 1 (12)

and they satisfy the conditions given below

lk(xj) =

{
0 for j 6= k
1 for j = k

for k = 1....n (13)

Lk(yj) =

{
0 for j 6= k
1 for j = k

for k = 1....n− 1 (14)

l′k(xj) =

{
H′n(xj)

Hn(xk)(xj−xk) for j 6= k

xk for j = k
for k = 1....n (15)

L′k(yj) =

{
H′′n(yj)

H′′n(yk)(xj−xk)
for j 6= k

yk for j = k
for k = 1....n− 1 (16)

L′′k(yj) =

{
2H′′n(yj)

H′′n(yk)(xj−xk)
{yj − 1

yj−yk } for j 6= k
4y2k−2(n−2)

3 for j = k
for k = 1....n (17)
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G. Szegö, [13] gave following results:
For the roots of Hn(x), we have

x2k ∼
k2

n
(18)

Hn(x) = O(n
1
4

√
2nn!(1 + 3

√
|x|)e

x2k
2 ) x ∈ R (19)

|lk(x)| = O(1)
2n+1n!

√
ne

ν(x2+x2k)

2

H ′n
2(xk)

ν > 1 and k = 1...n (20)

R. Srivastava and K.K Mathur [11], proved that

|Lk(x)| = O(
2nn!e

ν(x2+y2k)

2

√
nH2

n(yk)
) ν > 1 and k = 1...n− 1 (21)

L. Szili [15] gave following results

|H ′n(xk)| ≥ c1n
1
4

√
2n+1n!e

δx2k
2 (i = 1....n) (22)

|Hn(yk)| ≥ c2n
−1
4

√
2n+1n!e

δy2k
2 (i = 1....n− 1), (23)

where c1, c2 are constants which are independent of n and 0 < δ < 1 is an
arbitrarily given real number. He also proved that

n∑
i=0

e−εx
2
k = O(

√
n) (24)

n∑
i=0

eδx
2
k

H ′n
2(xk)

= O(2n+1n!)
−1

(25)

Definition: ω(f, δ) denotes the special form of modulus of continuity introduced
by G.Freud [4], given by

ω(f, δ) = sup
0≤t≤δ

{‖W (x+ t)f(x+ t)−W (x)f(x) ‖ + ‖ τ(δx)W (x)f(x) ‖}, (26)

where

τ(x) =

{
|x| for |x| ≤ 1

1 for |x| > 1

and ‖ · ‖ denotes the sup-norm in C(R), if f ∈ C(R) and lim
|x|→∞

W (x)f(x) = 0

then lim
δ→0

ω(f, δ) = 0.

G.Freud[3](Theorem 4) and Theorem 1[1] gave the following results:
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Let f : R→ R be continuously differentiable. Further, let
lim

|x|→+∞
x2kf(x)e

−x2
2 = 0 (k = 0, 1, ....) x ∈ R

and lim
|x|→+∞

f ′(x)e
−x2
2 = 0 x ∈ R

(27)

then there exists a polynomial Qn(x) of degree ≤ n such that

e
−x2
2 |f(x)−Qn(x)| = O(

1√
n

)ω(f ′;
1√
n

) (28)

e
−x2
2 |f ′(x)−Q′n(x)| = O(1)ω(f ′;

1√
n

) (29)

where ω stands for modulus of continuity defined by (26).
Szili[14]( Lemma 4, Theorem 4) established the following. For x ∈ R

e
−x2
2 |Qn(x)| = O(1) (30)

e
−x2
2 |Q′n(x)| = O(1) (31)

and

e
−x2
2 |Q′′n(x)| = O(1)

√
nω(f ′;

1√
n

), for |x| <
√

2n+ 1 (32)

3 Explicit representation of interpolatory polynomial

In this section, we have proved explicit representation of fundamental polyno-
mials.

Theorem 1. There exists a polynomial

Rn(x) =

n∑
k=0

gkAk(x) +

n−1∑
k=1

g∗kBk(x) +

n−1∑
k=1

g∗∗k Ck(x) (33)

of degree 3n-2 satisfying condition (8), where Ak(x) (k = 0, 1, 2...., n) and Bk(x)
(k = 1, 2....., n − 1) are the fundamental polynomial of first kind and Ck(x) (k =
1, 2....., n − 1) are fundamental polynomials of second kind of weighted (0,2;0)
interpolation. Each such fundamental polynomials of degree at most 3n − 2 is
given by

A0(x) =
Hn
′(x)Hn(x)

Hn
′(0)Hn(0)

(34)

Ak(x) =
xnHn

′(x)lk(x)

xnkHn
′(xk)

+
2Hn(x)H ′n(x)

xnk(H ′n(xk))2

∫ x

0

(n+ 1)tn − ntn−1xk
(t− yk)2

dt (35)
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Bk(x) =
xnHn(x)Lk(x)

ynkHn(yk)
+
Hn(x)H ′n(x)

nynkH
2
n(yk)

∫ x

0

(n− 1)tn − yktn−1

(t− yk)2
dt

− e
−y2k
2 (y2k + (n− 1)y−2k − (3n+ 2))Ck(x)

(36)

Ck(x) = −Hn(x)Hn
′(x)e

y2k
2

4nH2
n(yk)

∫ x

0
Lk(t)dt (37)

Proof. It is enough to show that the polynomials Ak(x) (k = 0, 1, 2...., n), Bk(x)
(k = 1, 2...., n− 1), and Ck(x) (k = 1, 2...., n− 1) have the following properties:

Ak(xj) =

{
0 for j 6= k
1 for j = k

for (j, k = 0, ..., n), (38)

Ak(yj) = 0 (j = 1...n− 1, k = 0, ..., n),

(e
−x2
2 Ak)

′′(yj) = 0 (j = 1, ...n− 1, k = 0, ..., n)

Bk(yj) =

{
0 for j 6= k
1 for j = k

for (j, k = 1, ..., n− 1), (39)

Bk(xj) = 0 (j = 0, ..n, k = 1, .., n− 1),

(e
−x2
2 Bk)

′′(yj) = 0 (j, k = 1, ..., n− 1)

and

(e
−x2
2 Ck)

′′(yj) =

{
0 for j 6= k
1 for j = k

for (j, k = 1, ..., n− 1), (40)

Ck(yj) = 0, (j, k = 0, ..., n− 1),
Ck(xj) = 0 (j = 0, ...n, k = 1, .., n− 1).

First, we construct the polynomials Ck(x). Let k be fixed (k∈{1,..., n-1}), from
(40) it follows that

Ck(x) = Hn(x)Hn
′(x)qk(x), (41)

where pk(x) is the polynomial such that,

pk(0) = 0. (42)

By (41), we get

(e
−x2
2 Ck)

′′(yj) = 4ne
−y2k
2 H2

n(yj)q
′
k(yj), (43)

(43) satisfies (40), only if,

qk(x) =
1

4ne
−y2
k

2 H2
n(yj)q′k(yj)

∫ x

0
Lk(t)dt. (44)

Combining (44), (41), we obtain (37). Obviously, Ck(x) is a polynomial of degree
3n−2, which satisfies (40). Second, we construct Bk(x), k be fixed (k∈{1,...n-1}).
We look for Bk(x) in the following form

Bk(x) = c1x
nHnLk(x) +Hn(x)H ′n(x)wk(x) + c2.Ck(x) (45)



Weighted polynomial interpolation 215

where wk(x) is the suitable polynomial for which

wk(0) = 0 (46)

and c1, c2 are arbitrary constants. According to (39) qk(x), for j6=k

Bk(yj) = 0 (47)

and for j = k

Bk(yk) = 1 =⇒ c1 =
1

ynkHn(yk)
(48)

from (45) and (39) we get for j 6= k

(e
−x2
2 Bk)

′′(yj)

=
2e
−y2j
2 H2

n(yj)

Hn(yk)
[
(n− 1)ynj − yky

n−1
j

(yj − yk)2
]− 2ne

−y2j
2 H2

n(yj)w
′
k(x) = 0 (49)

for j = k

(e
−x2
2 Bk)

′′(yk) = e
−y2k
2 (y2k + (n− 1)− (3n− 2)) + c2 = 0 (50)

From (49) and (50), we conclude that

wk(x) =
1

n

∫ x

0

(n− 1)tn − yktn−1

(t− yk)2
dt (51)

and

c2 = −e
−y2k
2 (y2k + (n− 1)y−2k − (3n− 2)) (52)

.
Combining (48), (51) and (52), we get (36). It is easy to see that, Bk(x) is a
polynomial of degree 3n− 2, which satisfies (39).
Proof of Ak(x) is like proof of Bk(x).

4 Order of convergence of fundamental polynomials

In this Section, we the compute order of convergence of fundamental polyno-
mials, which is required to prove theorem 2

Lemma 1. For k = 0, 1....n and x ∈ (−∞,+∞)

n∑
i=0

eβx
2
k |Ak(x)| = O(

√
n log n)eνx

2
for ν >

3

2
, 0 < β < 1 (53)

where Ak(x)is given by (35)
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Proof. From (35) we have

n∑
k=0

eβx
2
k |Ak(x)| ≤

n∑
k=0

eβx
2
k
|xn||Hn

′(x)||lk(x)|
|xnk ||Hn

′(xk)|

+
n∑
k=0

eβx
2
k

2|Hn(x)||H ′n(x)|
|xnk ||(H ′n(xk))2|

|
∫ x

0

(n+ 1)tn − ntn−1xk
(t− yk)2

dt|

≤ζ1 + ζ2

(54)

using (10), (18), (19), (20), (22) and (24), we have

ζ1 =

n∑
k=0

eβx
2
k

2n|xn||Hn−1(x)||lk(x)|
|xnk ||Hn

′(xk)|
= O(

√
n)eνx

2
for ν >

3

2
(55)

Using (10), (18) (19), and (25), we have

ζ2 = O(log n)
n∑
k=0

eβx
2
k

4n|Hn(x)||Hn−1(x)|
|xnk ||(H ′n(xk))2|

= O(
√
n log n)eνx

2
for ν >

3

2
(56)

Thus, by using (55) and (56) in (54), we get the required lemma.

Lemma 2. For k = 1....n− 1 and x ∈ (−∞,+∞)

n−1∑
k=1

eβy
2
k |Bk(x)| = O(

√
n log n)eνx

2
where ν >

3

2
, 0 < β < 1 (57)

where Bk(x) is given by (36)

Proof. From (36), we have

n−1∑
k=1

eβy
2
k |Bk(x)| ≤

n−1∑
k=1

eβy
2
k
|xn||Hn(x)||Lk(x)|
|ynk ||Hn(yk)|

−
n−1∑
k=1

eβy
2
k
|Hn(x)||H ′n(x)|
n|ynk ||H2

n(yk)|
|
∫ x

0

(n− 1)tn − yktn−1

(t− yk)2
dt|

+

n−1∑
k=1

eβy
2
k |(y2k + (n− 1)y−2k − (3n+ 2))||Ck(x)|

≤ζ1 + ζ2 + ζ3

(58)

By using (10), (19), (21), (23) and (24), we have

ζ1 = O(
√
n)eνx

2
for ν >

3

2
(59)

By using (10), (18) (19), (24), we have

ζ2 = O(log n)
n∑
k=0

eβx
2
k

2|Hn(x)||Hn−1(x)|
|ynk ||H2

n(yk)|
= O(

√
n log n)eνx

2
for ν >

3

2
(60)
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By using (18), (26) and [11](lemma 5.3), we have

ζ3 = O(
√
n log n)eνx

2
for ν >

3

2
(61)

Thus, by using (59)-(61) in (58), lemma follows.

Lemma 3. For k = 1, 2, ...., n− 1 and x ∈ (−∞,+∞)

n∑
k=1

eβy
2
k |Ck(x)| = O(

log n√
n

)eνx
2
where ν >

3

2
, 0 < β < 1 (62)

where Ck(x) is given by (37)

Proof. Lemma follows from[11](lemma 5.3)

5 Main result: Convergence theorem of interpolatory
polynomial

In this section, we have proved convergence theorem for interpolatory polyno-
mial Rn(x).

Theorem 2. Let the interpolated function f : R −→ R be continuously differen-
tiable such that

lim
|x|→+∞

x2kf(x)ρ(x) = 0 (k = 0, 1, ....)

lim
|x|→+∞

f ′(x)ρ(x) = 0 ,where ρ(x) = e
−x2
2

(63)

further taking the number δk such that

δk = O(
√
neδy

2
kω(f ′;

1√
n

)), k = 1, ..., n− 1 (64)

where ω is modulus of continuity of f ′.Then

Rn(f, x) =
n∑
k=0

f(xk)Ak(x) +
n−1∑
k=1

f(yk)Bk(x) +
n−1∑
k=1

δkCk(x) (65)

satisfies the relation

e−νx
2 |f(x)−Rn(x)| = O(log n)ω(f ;

1√
n

), ν >
3

2
(66)

Proof. Since Rn(x) given by (33) is exact for all polynomials Qn(x) of degree ≤
3n-2, we have

Qn(x) =
n∑
k=0

Qn(xk)Ak(x) +
n−1∑
k=1

Qn(yk)Bk(x) +
n−1∑
k=1

(e
−x2
2 Qn)′′(yk)Ck(x) (67)
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Using lemma (1)-(2), (65), (67) (26) and (28)-(31), it can be easily seen that,

e−νx
2 |Rn(x)− f(x)| ≤e−νx2 |Rn(x)− f(x)|+ e−νx

2
n∑
k=0

|f(xk)−Qn(xk)||Ak(x)|

+ e−νx
2
n−1∑
k=1

|f(yk)−Qn(yk)||Bk(x)|

+ e−νx
2
n−1∑
k=1

|(e
−x2
2 Qn)′′(yk)− δk||Ck(x)|

≤O(1)ω(f ′;
1√
n

) +O(log n)ω(f ′;
1√
n

)

+ e−νx
2
n−1∑
k=1

|e
−y2k
2 Q′′n(yk)||Ck(x)|

+ e−νx
2
n−1∑
k=1

|(e
−y2k
2 )′Q′n(yk)||Ck(x)|

+ e−νx
2
n−1∑
k=1

|(e
−y2k
2 )′′Qn(yk)||Ck(x)|

+ e−νx
2
n−1∑
k=1

|δkCk(x)|

(68)
Thus by using lemma (3), (30)-(32) and (64) in (68) , we get the proof of the
required theorem.

Conclusion:

Let {xk}nk=1 and {yk}n−1k=1 be the roots of Hermite polynomial Hn(x) and its
derivative Hn

′(x) respectively. If f(x) is a continuously differentiable function
on (−∞,+∞) satisfying (63), then their exist a polynomial Rn(x)(33) satisfying
condition (8), which uniformly converges to f(x) on (−∞,+∞) as n→∞.
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[5] Joó, I., On Pál interpolation, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.
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12(61), (2019), no. 1, 95-126.

[11] Srivastava, R. and Mathur, K.K., Weighted (0; 0, 2)-interpolation on the root
of hermite polynomials, Acta Math. Hungar. 70 (1996), no. 1-2, 57-73.

[12] Srivastava, R. and Mathur, K.K., An interpolation process on the roots
of Hermite polynomials (0; 01)-interpolation on infinite interval, Bull. Inst.
Math. Acad. Sin. (N.S.) 26 (1998), 229-237.
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