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SYMMETRIES OF FOUR-DIMENSIONAL LORENTZIAN
DAMEK-RICCI SPACES

Assia MOSTEFAOUT! and Noura SIDHOUMTI*2

Abstract

We consider the four-dimensional Damek-Ricci spaces, equipped with the
left-invariant Lorentzian metric. We obtain a full classification of Killing and
affine vector fields as well as Ricci, curvature and matter collineations. In
particular, we prove the non-existence of proper (that is non Killing) affine
vector field.

2000 Mathematics Subject Classification: 53C50, 53B30.
Key words: Damek-Ricci spaces, Killing vector fields, affine vector fields,
Lorentzian metrics, left-invariant metrics, curvature collineation, matter collineation.

1 Introduction

Study of symmetries, over different geometric spaces is one of the interesting
topics in geometry and mathematical physics. As we know, several tensor fields
live on a (pseudo-) Riemannian manifold (M, g), each of them codifying some
geometric or physical quantity of the space. A symmetry of a tensor field T, is
a one-parameter group of diffecomorphisms of (M, g), which leaves T' invariant.
By this definition, each symmetry corresponds to a vector field X which satisfies
LxT = 0, where Lx denotes the Lie derivative. Some famous symmetries are:
symmetries of the metric tensor g which correspond to the Killing vector fields.
A typical use of the Killing field is to express a symmetry in General relativity (in
which the geometry of spacetime as distorted by gravitational fields is viewed as a
4-dimensional pseudo-Riemannian manifold). In a static configuration, in which
nothing changes with time, the time vector will be a Killing vector, and thus
the Killing field will point in the direction of forward motion in time. Further-
more, symmetries of the Levi-Civita connection V correspond to the affine vector
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fields. Therefore, Killing vector field is also affine and it is an interesting problem
whether the converse holds for a given manifold (M, g). In particular, if (M, g)
is a simply connected spacetime, the existence of a proper (that is, non Killing)
affine vector field implies the existence of a second-order covariantely constant
symmetric tensor, nowhere vanishing, not proportional to g. As a consequence,
the holonomy group of the manifold is reducible (see for example [12]).

Some other symmetries are: symmetries of the Ricci tensor ¢ which corre-
spond to the Ricci collineations. Symmetries of the curvature tensor R which
correspond to the curvature collineations. Obviously, every affine vector field is a
curvature collineation. The set of all smooth curvature collineations forms a Lie
algebra under the Lie bracket operation, which may be infinite-dimensional. A
matter collineation is a vector field X that satisfies the condition LxT = 0, where
T is the energy-momentum tensor given by 7 = o — %Tg with 7 denotes the scalar
curvature. The relation between geometry and physics may be highlighted here
(see [3, 6]), as the vector field X is regarded as preserving certain physical quanti-
ties along the flow lines of X, this being true for any two observers. In connection
with this, it may be shown that every Killing vector field is a matter collineation
(by the Einstein field equations, with or without cosmological constant). Thus,
a vector field that preserves the metric necessarily preserves the corresponding
energy-momentum tensor. When the energy-momentum tensor represents a per-
fect fluid, every Killing vector field preserves the energy density, pressure and the
fluid flow vector field. When the energy-momentum tensor represents an electro-
magnetic field, a Killing vector field does not necessarily preserve the electric and
magnetic fields.

In this paper, we shall study symmetries of the four-dimensional Damek-Ricci
spaces S2, equipped with a left-invariant Lorentzian metric. We shall Characterize
affine and Killing vector fields of S? via a system of partial differential equations.
Then, we shall respectively classify Ricci, curvature and matter collineations on
the four-dimensional Damek-Ricci spaces.

The geometry of Damek-Ricci spaces, has been constructed by Damek and
Ricci in [8]. These spaces are semidirect products of Heisenberg groups with
the real line. The study of these spaces is particularly relevant, since they are
examples of harmonic manifolds that are not symmetric, proving that the conjec-
ture posed by Lichnerowicz fails in the non-compact case. In fact, several results
regarding these spaces have been investigated by many authors. In [9], Degla
and Todjihounde proved the non existence of proper (nongeodesic) biharmonic
curve in the four-dimensional Damek-Ricci space although such curves exist in
three-dimensional Heisenberg groups. In [1], they studied the dispersive proper-
ties of the linear wave equation on Damek-Ricci spaces and their application to
nonlinear Cauchy problems. In [5] many uncountable isoparametric families of
hypersurfaces in Damek-Ricci spaces were constructed, by characterizing those of
them that have constant principal curvatures. In [11], Koivogui and Todjihounde
gave a setting for constructing Weierstrass representation formulas for simply con-
nected minimal surfaces into four-dimensional Riemannian Damek-Ricci spaces.
This was extended to the case of spacelike and timelike minimal surfaces in 4-
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dimensional Damek-Ricci spaces equipped with left-invariant Lorentzian metric
[7]. In [14], Tan and Deng considered the four-dimensional Lorentzian Damek-
Ricci spaces S? and investigated other geometrical properties. In particular, they
proved the non-existence of left-invariant Ricci solitons on these spaces. More
recently, the second author generalized this result proving the non-existence of
non invariant vector field for which the soliton equation is satisfied [13].

The paper is organized in the following way. In Section 2, we shall report some
basic information about four-dimensional Damek-Ricci space and its left-invariant
metrics in global coordinates, we shall describe their Levi-Civita connection, the
curvature and the Ricci tensor. In Section 3 and 4, affine and Killing vector
fields of four-dimensional Damek Ricci spaces S are characterized via a system
of partial differential equations, proving the non-exsitence of proper (that is non
Killing) affine vector field. Finally, in Section 5 we give a full classification of Ricci,
curvature and matter collineations on the four-dimensional Lorentzian Damek-
Ricci spaces.

2 Geometry of 4-dimensional Damek-Ricci spaces

We start with a short description of four-dimensional Damek-Ricci spaces,
referring to [2] and [8] for more details and further results. For this purpose, we
need to recall the so-called generalized Heisenberg group, since Damek-Ricci space
depends on it.

2.1 Generalized Heisenberg group

The generalized Heisenberg algebras are defined as follows. Let b and z be real
vector spaces of dimension m and n, respectively, such that n is the orthogonal
sum n = b @ z. We define in n the bracket

U+ X,V+Y]=8U,V),

where §: b X b — z is a skew-symmetric bilinear map. This product defines a Lie
algebra structure on n.

We equip b with a positive inner product and z with a positive or Lorentzian
inner product and let (,), denote the product metric. Define a linear map J :
Z € z— J, € End(b) by

(JzU, V), =(BU,V),Z), forall U,V € band Z € z.
Then, n is a two-step nilpotent Lie algebra with center z.

e If the inner product in z is positive and J% = —(Z,2),id, for all Z €
z, then the Lie algebra n is called a generalized Riemannian Heisenberg
algebra, and the associated simply connected nilpotent Lie group, endowed
with the induced left-invariant Riemannian metric, is called a generalized
Riemannian Heisenberg group.
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e If the inner product in z is Lorentzian and

g2 = (Z,Z),idy, when Z is spacelike,
Z (Z,Z),idp, when Z is timelike,

then the Lie algebra n is called a generalized Riemannian Heisenberg algebra,
and the associated simply connected nilpotent Lie group, endowed with the
induced left-invariant Lorentzian metric, is called a generalized Lorentzian
Heisenberg group.

2.2 Damek-Ricci spaces

Now, let £ = +1 and a. be a one-dimensional pseudo-Riemannian real vector
space, which is Riemannian when ¢ = 1 and Lorentzian when ¢ = —1, and let
n_. = b® z be a generalized Heisenberg algebra which is Lorentzian when ¢ = 1
and Riemannian when ¢ = —1.

Consider a new vector space a. @ n_. as the vector space direct sum of a. and
n_.. Let s,r € R, U,V € band X,Y € z. We define the Lorentzian product (.,.)
and a Lie bracket [.,.] on a. @ n_. by

(rA+U+X,sA+V+Y) = (U+X,V+Y), _+ers,

1 1
rA4+ U+ X,sA4+V +Y] = [U,V]n%—i—?“V—EsU—i—rY—sX,

for a non zero vector A in a.. Therefore a. & n_. becomes a solvable Lie algebra.
The corresponding simply connected Lie group, equipped with the induced left-
invariant Lorentzian metric, is called a Lorentzian Damek-Ricci space and will be
denoted by S..

2.3 Curvature of four-dimensional Damek-Ricci spaces

Consider the four-dimensional Damek-Ricci spaces (S2, g.), equipped with the
left-invariant Lorentzian metric g.. Through the paper, we will denote the coor-

dinate basis {a%v 6%, %, %} by {0z, 0y, 0z, 0t }.
As it was pointed in [7], the left-invariant Lorentzian metric g. on the four-
dimensional space S? is given by

g- = e tda? + e7tdy? 4+ ee 2 (dz + %ydx — gxdy)z — edt?, (1)

where c € R.
Following [7], let us denote

e1=e2 0 w0 e =e2 Q—Fgg e —eté e _ 9 (2)
Y= \or 202)772 T \oy " 202) 7 "o T o

Then, {e1,e2,e3,e4} form an orthonormal basis of the Lie algebra s* of S} for
which
g-(€1,€1) = ge(€2,€2) =1, ge(es, e3) = —ge(ea, €4) = €.
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The bracket operation in s* is given by the formulas

1
[617 62] = ces3, [617 63] = 07 [617 64] = _5617 (3)
1

[627 63] = 07 [627 64] = —562’ [63’ 64] — _63_

We will denote by V the Levi-Civita connection of (S2,g.), by R its curvature
tensor, taken with the sign convention:

R(X7 Y) = [VX7 VY] - V[X,Y}7
and o the Ricci tensor of (S2, g.), which is defined by

5
Y (X7 Y) = ZQE (€k7 ek’) gE(R(ek‘a X)Y> ek)'
k=1

Using the Koszul formula to calculate the components of the Levi-Civita connec-
tion, with respect to the orthonormal basis given by (2), we find

o 0o o0 -1 0 0 < 0
- 0 -5 0 [ o o o -%

Vel - 0 % 0 0 ) VEQ_ _% 0 0 0 ’(4)
<0 0 0 0 -5 0 0
P

— T2 —

Ve = 0 0 o -1 | Va=0

0 0 -1 0

Denoting by R;; the matrix describing R(e; e;) with respect to the orthonormal
basis given by (2), we have

0 -5 00 0 0 2 0
S0 00 0 0 0
— 2 — 4
R12 - O 0 0 % ) R13_ _?ZTE 0 0 0 (5)
0 0 £ 0 0 £ 0 0
1 c
00 % 0 o 0t o
— ! - 4
M = 0 ¢ 0 o |"BT 0 =0 o
-£ 0 0 0 -£ 0 0 0
0 0 ¥ 0 0 £ 0 0
_ o 0 0 -1 [ - 0 o0 o
o = -¢ 0 0 0 |’ Ra=1 "9 o o -1
0 -5 0 0 0 0 -1 0

The non-zero components g;; = o(e;, e;) of the Ricci tensor are:

5 3

57 044 = — % (6)

, 033 = 2

011 = 022 =

N ™
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The scalar curvature is then given by

T = be. (7)

3 Affine and Killing vector fields of Four-dimensional
Lorentzian Damek-Ricci spaces

In this section we completely classify affine and Killing vector fields of four-
dimensional Lorentzian Damek-Ricci spaces (S2,g:). Let X = fie1 + faea +
f3es3 + fieq be a vector field on S%, where f1, f2, f3, f1 are smooth functions of the
variables x,y, z,t. A vector field X tangent to (S2,g.) is said to be affine if it
satisfies one of the following equivalent conditions:

(i) its local fluxes are given by affine maps,
(ii) LxV =0, where V is the Levi Civita connection of (S2, g.),

(iii) for all vector fields Y, Z tangent to Si:

[Xa VYZ] = V[X,Y}Z+VY[X7 Z]

We first determine the Lie derivative LxV of the Levi-Civita connection (4),
with respect to X. Long but direct calculation yields the following description of
the components (LxV);; = (LxV) (e;,€;), for all indices i < j, as follows

(LxV)11
C

= ((62f1—cy60f1+ 282f1>et—|—(
&
2

23/3zf4 - 8xf4> es + %atfl + Zfl) el

<03xf2 y8 f2> 74

ec
2

=f3+ Eatf?,) €3

¢ 3
(82— comn-tat (P00 ) b (500uts - cetufs) b S0fa = o) o
3
2 2
( €
2

T <(92f3—cy33f3+ Loors) et

<32f4 cy0:0. f4 + y 29 f4> Y0 f1 — 65:zf1> er + = f4+ 83tf4> e4,

2

(0:0yf1 + §20.0,f1 — Sy0:0, f1 — 4a:y82f1) >

+(S0ufs — Sy0.fs — 10,01 — Cx0.f2) €7 + 5o

( (000 fo + £20,0; fo — $y0.0y fo — Layd2f) € )
+ (Sydofa — SOy fs — Sx0.f3 — 30.f1) €2 + Shi
(020y f3 + §20,0. f3 — §y0:0, f3 — Jwyd? fs) €'

( + (50yfo — S0u 1 + 3y0- f1 + 120.f5) e ) “
(000 f1 + §20,0. f1 — SyD.0y f1 — Lazyd? fy) !

( +(Sydofo — C20.f1 — 50,1 — 50uf2) €2 ) “
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C 3t
(LxV)is = (0:0. flg gorn) et —doget
508 f2 af2+£ yfl+gazf1)62

(0:0:f2 — 402 f2) e 7 - S0, 3¢ + 5 fa e
($0yf2 — @3 fi 4+ F0.fr + F0. f2)€2

n (0:0-f3 — %32f3)€2 + 50. foe — flt e
($0yf3+ 0. f3— 0n f4+ $0.f1) ez

(20.f3 — 402 fa + 568 yfa+ £0. fo — O f3) es > e

+
+<’9 0, f4€ > — 5@%‘) fi—cfs

1 t 1
(V= (005~ Jo0f + 3001 - Foun ) e = Jouss ) o

C C ce ce
+ ((axatﬁ — 0002+ 50ufo - j@h) et — s - 2f3> e

Cc

1
2
1 t

+ ((axatfg — 0005 + 505 - (jfazfg) e + S0uf2 - Zﬁ) es
! _c
2 4

#((0c0uts = Fo.ousw yousi = o) et = Sh- 5o ) ea
<3§f1 + cxdyd. fr + B2 fi ) !
(LxV)2 = el
(2O fs + 0.1 ) et — % fi + 5001
N (%ﬁ+m%@%+ﬂ%ﬁﬁt .
(O + G0fa)ed + 512+ 501 S
(Wﬁ+m@@ﬁ+ﬁ@ﬁyt
+ ! . e
—(cOufi + 301 ) et + 55 + 5003
(wﬁ+maaﬁ+ﬁwﬁ)t
+ Y e4,
_<58yf2 + F0 f2>62 + 5fa+ 50 fa

(LxV)es = (0y0:f1 + “é@fl) 7 + 0. fze! — %f4t e1
+ 058 f2 azfl—i_%uaZfl_‘_%azfg) es

3t

(ayasz + %83.]02) : es
+(0:f2 = 50,01 — 0.1 — $0uf2) et — J0. fue!

a Dufs+ FOUp) e — 50! —5f )
a f3— %axfi% - ayf4 - %82']04) e2

+< aaﬁ+“@ﬁk§—f@ﬁ+dl>%
_l’_

+

YO, fo— 0, fs — Oyfs — L. f3) €7
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1 ¢
(LxV)z1 = «@@ﬁ+?@@ﬁ+2%ﬁ+f@ﬁ)w+f@ﬁ+fﬁ>q
1 ¢
+(<@@ﬁ+f§@@ﬁ+2@ﬁ+ff@ﬁ>m—Q@ﬁé)@
1 ¢
+<waa+f@@h+2@mﬁff@ﬁ>m—;@ﬁ+iﬁ>%
1 t € €
+ <<8yatf4 + %@&fﬁ; + §3yf4 + CZ@zh) ez — 5&:f2 — 4f2> €4,

1
<33f162t + ecO, fae® + §f1 + 3tf1> el

(LxV)33 =
1
+ <3§f2€2t —ecd, fre' + §f2 + 3tf2> e
+ (02 f3e* — 20, fse' + f3+ O, f3) €3
+ (02 fae® — 20. fae" + 2f1+ i 1) ea,
(LxV)sa = ((0:0/1+0.f1) e + 50 fo+ S fo) e

+ ((0:01f2+ 0. f2) €' — 50, fr — S f1) ea
+ ((0:0uf3+ 0-f3) €' — O fa) €3
+ (020 fa + 02fa) €' — O fz — f3) e,

(LxV)44 = (8t2f1 — %fl) e; + (8,52f2 — ifg) es + (8,52]03 — %fg) es + (8ff4) eq.

In order to determine affine vector fields, we will completely solve the system
of 40 PDEs obtained by requiring that all coefficients in the above Lie derivative

components are equal to zero.
From (LxV)44 = 0, we prove that

fi=H(z,y,z)e H(z,vy, z)e_%
t

z) 7+
fo = G(x,y, z)e% +§(:L‘,y, z)e 2 ®)
fs = K(z,y,2)et + K(z,y,2)e!
f4 = S<$v Y, Z)t + g(x, Y, Z)

where H, H,G,G,J,K,S and S are real-valued smooth functions depending on

x,y and z.
We then replace fi and fo in the equations obtained from dz [(LxV)34] = 0

and dy [(LxV)s4] = 0, we deduce

0,G=0,H=0
0,G —ecH =0
0,H +ecG =0
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which easily yields

E = —ecG(x,y)z +~C~;'(907 Y)
G =ecH(z,y)z + H(z,y)

where G = G(z,y) and H = H(z,y) are smooth functions on S2.
Next, substituting H and G into fiand fo and using the equations given by
dz [(LxV)s3] = 0 and dy [(LxV)33] = 0, we prove that

G=H=0.
Then, from equations given by dz[(LxV)24] = 0, dz[(LxV)a] = 0 and
dz [(LxV)14] = 0, we obtain
{ K=5=0 ()
LK (z,y,2) — cG(z,y) + 0yK (2,y,2) =0
Hence, (8) reduces to
fl = é(.%’, y)e_%
f2 = E(l'ay)e_%
f3 = 5(1"’ Y, Z)e_t
f4 = S(':Ev Y, Z)

Now, we replace f3 and fy into the equations obtained from dz [(LxV)s33] = 0 and
dt[(LxV)s33] = 0. We get

02K — 20.5 = 0
925 = 0
5-0.K=0

As a consequence, S depends only on z and ¥, thus
K =35(z,y)z + S(x,y),

for some smooth function S = S(z,y), and so the second equation of (9) together
with dt¢ [(va)44] =0 and dx [(va)34] =0 give

S(‘T) = kia "
%ZC - ch(w,y) + ayg(xa y) = 01 (10)
Py — cH(x,y) — 0:5(x,y) =0,

where kj is a real constant.
On the other hand, from equations dt [(LxV)i1] = 0 and dt [(LxV)12] = 0,
we get

Gz.y) =Bz +Gly)
H(z,y) = -G'(y)x + H(y),

for some smooth functions G and H of the variable y. Thus, the last two equations
in (10) become

8@1% = Cé(y) R R (11)
0,8 = Cley + cG'(y)x — cH(y).
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Integrating the second equation in (11) with respect to x we deduce that
CAn 2 cky T3 o A
FG W)2" + (= —cH(y) )2+ 5(y) - Gly) =

for some smooth function S = S(y).
The above equation must be satisfied for any value of x. Therefore, it yields

Q(y) = a1y + ag,
H(y) = Ry + as,
S(y) = “Ly* + casy + au,

for some real constants az, .., ay4.
Therefore, we prove that (LxV);; = 0, for all indices ¢, j if and only if

l\)\w

fi= %x+a1y+a2)e

fo=—a1x —l— y + (13) -3
f3= (kzlz + CaTl(x + %) + cagy — cazx + a4) et
Ja = k1.

We now determine (Lxge);; = (Lxg) (ei €;),i < j, the components of the
Lie derivative of the metric (1) with respect to X. We have the following.

<LX >11 = (20,f1 — cyd.f1) e2 — fu,
(8f2— Yo, fa+ 0y f1 + 8f1) 5,

(Lxgehs = (00 fs — Cyea fs) €t + 0. fiel + =y,
(Ceya fi— ey f4>62 + f1+8tf1,

(Lx )22 = (20, f2 +C$3 f2)€2 — Jfa
(Lxge)ys = (20yf3 + 5-0:fs) €8 + 0. fae' — ccfi,
1

Lxg)ay = 52+ 0ufa - (aa fot SR0-4) b,

(Lxge)
(LX95)33 = 256t8zf3 — 2¢efy,
(LXg£)34 =€ (fd + 8tf?) - etazﬁl) s
(LX95)44 = —2¢0; fa,

In order to determine the Killing vector fields, we must solve the system of
PDEs obtained by requiring that all coefficients in the above Lie derivative are
equal to zero. Routine but long computations lead proving the following:

Theorem 1. Let X be an arbitrary vector field on the four-dimensional Lorentzian
Damek-Ricci spaces (S, g.). Then, the following are equivalent
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o X is an affine vector field
o X is a Killing vector

o X is given by

IS

k
X =e2 <21x—k:2y—|-k4> e1+e 5

k
(szﬁ + 2y k‘3> €2
—t cky o 2
+e k12—7(x +y°) + ckyy — cksx + ks | e3 + kieq,

for some real constants k1, .., ks.

4 Ricci, curvature and matter collineations

In this section, we shall investigate other symmetries of the four-dimensional
Lorentzian Damek-Ricci spaces (S2, g.) where g. is given by (1).

Let X = fie1 + foea+ fzes + fie4 denote an arbitrary vector field on Sg where
f1, fo, f3, f4 are smooth functions of the variables x,y, z,t. We first determine
the components (Lxo);; = (Lxo) (ei,€;), i < j, of the Lie derivative of the Ricci
tensor p. We have the following

(Lxo)y, = €3 (e0ufy — 5L0.11) = S fu,

(Lx0)yy = 5 (Oyfr + LO.f1 + Oufo — L0, fo) €7,
(Lx0)is = § ((Oefs — G0-1s) et + ) + 50-fae'
(Lx0)yy = 3 (LO0.fs— Oufs) €2 + S f1+ 501,
(Lx0)gy = £(By fo+ L0, fo)e? — & fu,

(Lx0)s = =3 (cfi = (Oufs + §0.f5) €3 ) + 50. foc',
(Lx0)gy = =2 (9yfa+ LO.f1) €3 + = fo + 50, o,
(LXQ)33 =9 (azf?s@t - f4) )

(Lx0)3y = 3 (f3+ 0 f3) — 30. fael,

(Lx0)yy = —30:fs.

Next, using (5), we calculate the Lie derivative of the curvature tensor R, with
respect to the orthonormal basis (2). Setting (LxR);jx = (LxR) (e;, e, ex) for all
indices ¢ < j, k, we have

(LxR)is1 = €2 (520, fo — 50,1 — <20, f1 — 50, f2) 1

+(
(8 (%00 f1 - 201 - 50, fs — B20.f5) + %2 f1) ey
+ (e (S0uts — 0,01 — 520 11— Bo.f3) + ) ea,
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(LxR)i22 = (e% (20, f2 = 5°0:f2) + %f‘l) “
et (50,1 + 501 + 500 f2 — “LO2) e
(e (50t 50000 0,1+ 0.01) + P 1)
(5 (0nfs = 500 f1+ 50, F5 + %0.Fs) = S ea,
(LxR)123
% (50.f1 = F0ufs+ 30, Fs + 520.fs) = 5¢'0.fo = 5051 —cfr ) 1

e (=30ufs + 305 — 0,01 — FOSa) + 5601 — 50 T2 — cfz) e
e'0.f1— S0ufs — 5 f3) e3
(% (5001 = §0- 11+ 50y o + 50.12) + $€'0ufs = $00a — cfa) ex,

(LxR)izt = (b ($0ufs — L0-fs — 30,0 — S0.11) = 5¢'0.f1 — 50u2) ex

(% (560 fs + F0-f5 + 10ufs — L0.f1) — 502+ 5011 ) e
(€% (50011 — Y01 + 50, F2 + 50-12) — §€0-f5 + 50uf1) 5
Oifs+ 5f3— S€'0.f4) eu,

—~
V] 1o}

(LxRhs = (e2 (30ufs = %20.5s) + 50 fr + % o) e
+ <e% (%azﬁl - %@ﬁl) Set) f2) e
(e (~%0u 0+ 2520.10) + 5 1) e
+ (5€'0./4) eu,

(LxR)132

- ( % DO, fa— F0ufa+ 20y f3+ 320, f3) — 5€'0.fo — §0uf1 — %fl) e1
(5 (0,01 + 5£0.11) = 500f2 = §F2) e2
+ (e% (35‘3962]’2 — 30, fo — 20, 1 — 358”8,2]‘1) + $e'0.fa — $Ouf3 — ﬁfs) €3
t(eF (§0uft = B01 + 50,02 + 50.12) + §e0.fs — S0ufs — 51 ) ex,

(LxR)133 = (3€'0.f3 — 3 f1) ex
+ (ef (0.5 — 30ufs) — Se'0.f — %) s
(¢ (G0ufs — L0.1) + 56€'0.12) s
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xR)134
% L0, fo— L0ufo — 0y f1 — L0, f1) — 1€ 0. fa + 301 fs + %f:’)) el

2 Eca:cfl — L0 f1 — F0yfo — %asz) + %etazfs + GO0 fa— %f4> €2

MH-

|+

(L
(e
+ (62 (0ufa— G0-fa — GOy fs — F0.13) + §€'0.fa — 550 f1 — §f1> €3
+ (e (~50ufs = FO2) + § o+ 5012 ea,

N+

e

(LxRjut = (ef (20.fs—10ufs) + 5051+ 5h) @1

+ (e (Baya f3— 3563xf3> + 320, f2 — %fz) €2
(=f3—0ufs) es
(01 = 500h1) + 51 ) ex,

_l’_

1
2

f
(

_|_

LxR)i42
ez (50ufs — LO.f3 — 10y f1 — 2. f1) — €', f1 — SO f2 + %fz) el

(~50yfs — F0.15) = 50 fo+ $1) 3
e (5001 — BOf1 + S0, 1o + 20-f2) — §¢'0:fs + S0uf1) e
ez (5L0.fo — SOufo — SOy f1 — L0 1) — S€'0.fs+ SO f3 + ﬁfs) ed,

—~

I
/N

IS

e

SIS

+ o+ o+
/N - NN

xR)143
(%a fi+ F0 1+ §0ufo — LOo) — 10 Sa+ 30uSs + ) e

¢F (F0ufe+ F0:fo = §Oufy + LO11) = 50 fs = FOufa+ Fha) 2

M\N-

N+

¢ (50,fs + L0.f3) + §e0. 02— 511 ) es
¢ (50,1 + 0. f1— Oufs + G0.fs) = 5011 + $0uf2 = % J2) ea,

+++/\A

/_\/\/\

(LxR)144 = (—%31:]04) €1
t (b (320, ps — 30us) + 20ufs — %) e

+(¢5 (30ufs — 2042) — 5051 — 511 ) e,
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(LxR)231
= (5 (201 50uf2) + 5051+ £1) e
($0ufs+ F0uf1+ 5005 = 520.Fs) = 560 f1 + 50ufa + o) 2
et (3500, f, — 50, fo — 50,51 — BE0) — 50 S1+ 5005 + $s) e
e (Y0.f1 = §0uf1 = §0, 02— £0-F2) = §€'0ufs + §0uf1+ § 1) ea,

[SICS

+

e

|+

+
/N 7 N N

+

(LxR)232 = (%5 0. f1 —e? (320, f1 + 329, f4))
(o3 (30yfs + 350, fs) + S0 Lo — S 1) e2
+ (-t (50,0 + 520.5) ) e
+ % €', f4) eq,
(LxR)s = (3€'0.f3—3f4)e2
(% f1—ef (30uFs+ 220, f5) — S0, f2) e
+ (e% (30, f1+ £0.f1) — 3¢e'0. f1> e,
xR)234
(%8 fr— 20— 50,0 — £0.12) — 05— FOufs+ S 1) ex
( (5002 — L0.fo+ 50,01+ 0.1) — 1e0ufs+ 300Ss + 3y ) 2

m\n

M\w

(500 f3 — LO.f3+ Oyfa+ GO0 f4) — 5€"0.f1 — 220, f2 — %fz) e3
eF (§0ufs— L0:2) = 5051 — §11) ea,

+++/\A

)241

(5005 — L0-fs) + 560-Fu + 512) &1
e2 (YO, f1— 20, f1— SOy fs — 0. f3) + Se'O, fo — SO f1 + %fl) €2
(011 = §0uf1 = §0yf2 = $0-12) + §€'0.fs — 50011 e
(5202 = 502 = 50y 1 = §0-11) + §€'0-1s = §0f3 — §1s ) ea.

SIS

(Lx
:<e

+
+
+

Wl

e

IS

/N - NN

(&

(LxRse = (e5 (350,05 + %20.05) + 501 — 1) en
(65 (—50yf1— LO.f1) + S f2+ iatf2) )
Orfs — f3) es

+
+5 (-
+ (51—t (50,2 + 50.12) ) ea.
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xR)243
(%8 fot 0 fo = 0y + F0) + 0S5+ FOSs — S i)

(e (5 @ﬁ—%@ﬁ—%@ﬁ—%@ﬁy&ﬁ@ﬁ+g@ﬁ+$g@
(% (2£0-fs — 50ufs) — §e'0-11 — 552) e
(% (01— SF0ufs— Oyfs = G0.fs) = §¢0. L2 — 501 + % 1) ea,

tE AT

[SIES

e

(LxR)244 = (_%atf4) €2
+ <%f1 — %o —e? (30,05 + ?’%@fi’))) €
+ (5 (Qayfat L0fa) — 50f— o) ea.

(LxR)3a1
868 fl + %82f1 + %ame - %62]02) €1

5 (~50uf1+ G0+ 50y L2 + F0.f2) — $€'0.fs — FOuS1+ 5 1) e2
($0ufs + F0ufs = 0ufs+ F0:a) = §e'0:fo + 5051 — 1) ey
(50, fa+ F0-f1 = Oufa+ 0:fs) = 501+ $0f2 = % fa ) ex,

t
= €2

A

N[

_|_
+le
+

M

e

/\/\/—\

(LxR)giz = (¢5 (50,02 + 50.fo = 50uf1 + JO01) + 0.5+ 50f1 — 511) ex
¢2 (F0:.f2 = F0ufo — 50,51 — F0:1) 3

(c# (0-Fs = $0ufs — yfs — GOJ2) + §€'0ufr + K0L2 — 52 ) 5
(6% (0-f1 = 50ufa— Oyfs — $0-fs) = §6'0fo — §0uS1 + T 1) ex,

+ + +
N+

[FICS

(LxR)s1s = (E€'0.f2+ 101+ 5h) e
+ (8f2 + %8tf2 3€C€ta f1) e2
+(fs+0fs—e azf4) e3
+ (2f1 — 2€'0. f3) eu,

(LxR)sas = (3€'0.f1+ 20 f2+ 25 f2) en
+ (3e'0. f2—@ — €9, f1) ea
+ (=20t f4) e3
+ (etazf4 - f3— 3tf3) €4



206 Assia Mostefaoui and Noura Sidhoumi

Finally, we study matter collineations, using equations (1), (6) and (7), we obtain
the tensor field T = o — $g. as follows

-2 0 00

0 -2 0 0

7= 0 0 00
0 0 01

The Lie derivative components (Lx7T);; = (Lx7) (i, €;) of T are then given by

(LX“T)H = 2€f4 — 6% (4€6xf1 — 25—:cy8Zf1) s
(LxT)yy, = €2 (ecyd.fo— 20y fo — 260, f1 — ecxd. f1),
(LxT);3 = —2e€'d.fi,
, 1
(LxT),, = e2 <8$f4 - %@ﬂ;) — 2 <2f1 + atfl) ;

(Lx7)22 (2€f4 — e% (458yf2 + 2€Cl'6zf2)) ,
(LXT)Qg = —286 8 fg,

(LxT)yy = (8 Ja+ azf4) — (efa +2€0: f2) ,
(LxT)33 =

(Lx7) 34 = eta fa,

(LX )44 - 28tf4.

Ricci, curvature and Matter collineations are then calculated by solving the system
of PDE obtained by requiring that all the above components of Lxo, Lx R and
Lx T vanish, respectively. A very long computation leads to proving the following:

Theorem 2. Let X be an arbitrary vector field on the four-dimensional Lorentzian
Damek-Ricci spaces (S, g.) where g is given by (1). Then, the following are
equivalent

e X is a Ricci collineation,

e X is a curvature collineation,

X is a Killing vector field,
e X is an affine vector field.

Furthermore, X is a matter collineation if and only if X is given by

t

k k
X =€ 2 <21x — koy + k4> e1+e 2 <k‘2$ + Ely + kg) €9

o

+ f(xvyv Z,t)€3 + k1€47

for some smooth real valued function f and real constants k1, .., ky.
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