PSEUDO-VALUATIONS ON COMMUTATIVE BE-ALGEBRAS

J. GOLZARPOOR ${ }^{1}$, M. MEHRPOOYA ${ }^{2}$ and S. MEHRSHAD ${ }^{*, 3}$

Abstract

In this paper, we study pseudo-valuations on commutative BE-algebras and obtain some related results. Using the pseudo-metrics induced by pseudo valuations we introduce a congruence relation on BE-algebras.

2000 Mathematics Subject Classification: 06F35, 03G25, 08A30.
Key words: $B E$-algebra, valuation, pseudo-valuation ,filter.

1 Introduction

The study of BCK/BCI-algebras was initiated by K. Iséki as a generalization of the concept of set-theoretic difference and propositional calculus([3],[4]). In [9], J.Neggeres and H. S. Kim introduced the notion of d-algebras which is a generalization of BCK-algebras. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim [5] introduced a new notion, called BH -algebras, which is a generalization of BCK/BCI-algebras. Recently, as another generalization of BCK-algebras, the notion of BE-algebras was introduced by H. S. Kim and Y. H. Kim [6]. Lee in [7] introduced the notion of pseudo-valutions on BE-algebras and investigated several properties. He provided relations between pseudo-valutions and some subalgebras of BE-algebras. Using the notion of a pseudo-valution he constructed (pseudo)metric space and showed that the binary operation of $*$ in BE-algebras is uniformly continuous. In this paper, we study pseudo-valuations on BE-algebras and investigate its properties. We discuss the relation between pseudo-valuations and filters of a BE-algebra. We obtain some results of pseudo-metrics induced by pseudo-valuations on BE-algebras. Also, we prove that the pseudo-metric induced by a pseudo-valuation φ is a metric on a BE-algebra if and only if φ is a valuation. Finally, using the pseudo-metrics induced by pseudo-valuations we construct the quotient structures and investigate related properties.

[^0]
2 Preliminary

2.1 BE-algebras

Definition 1. [11] A BE-algebra is an algebra $(X, *, 1)$ of type $(2,0)$ such that satisfying the following axioms:
(1) $x * x=1$ for all $x \in X$,
(2) $x * 1=1$ for all $x \in X$,
(3) $1 * x=x$ for all $x \in X$,
(4) $x *(y * z)=y *(x * z)$, for all $x, y, z \in X$.

A relation \leq on X is defined by $x \leq y$ if and only if $x * y=1$. If X is a BE-algebra and $x, y \in X$, then $x *(y * x)=1$.

Definition 2. [11] We say that a BE-algebra X is commutative if $(x * y) * y=$ $(y * x) * x$ for all $x, y \in X$.

Proposition 1. [1] Let X be a commutative BE-algebra and $x, y, z \in X$. Then, (5) $x * y=y * x=1 \Rightarrow x=y$,
(6) $(x * y) *((y * z) *(x * z))=1$.

Definition 3. [11] We say that a BE-algebra X is transitive if $(y * z) \leq(x * y) *$ $(x * z)$ for all $x, y, z \in X$.

Proposition 2. [11] If X is a commutative BE-algebra, then it is transitive.

Definition 4. [11] Let A be a BE-algebra. A filter is a nonempty set $F \subseteq X$ such that for all $x, y \in A$
(i) $1 \in F$,
(ii) $x \in F$ and $x * y \in F$ imply $y \in F$.

Let F be a filter in X. If $x \in F$ and $x \leq y$ then $y \in F$.
Definition 5. [11] A filter F of a BE-algebra X is said to be normal if it satisfies the following condition:

$$
x * y \in F \Rightarrow[(z * x) *(z * y) \in F \text { and }(y * z) *(x * z) \in F]
$$

for all $x, y, z \in X$.
Proposition 3. [11] If X is a transitive BE-algebra, then every filter of X is normal.

Definition 6. An equivalence relation θ on a BE-algebra X is called a congruence relation on X, if $(x, y) \in \theta$ implies $(x * z, y * z) \in \theta$ and $(z * x, z * y) \in \theta$ for all $x, y, z \in X$.

Proposition 4. [11] Let F be a normal filter of a BE-algebra X. Define

$$
x \equiv^{F} y \Leftrightarrow x * y, y * x \in F
$$

Then,
(i) \equiv^{F} is a congruence relation on X.
(ii) Let $[x]_{F}=\left\{y \in x: x \equiv^{F} y\right\}$ be an equivalence class of x and $X / F=\left\{[x]_{F}\right.$: $x \in X\}$. Then X / F is a BE-algebra under the binary operations given by:

$$
[x]_{F} \oplus[y]_{F}=[x * y]_{F} .
$$

Definition 7. [2] Let X be a BE-algebra. If there exists an element 0 satisfying $0 \leq x$ (or $0 * x=1$) for all $x \in X$, then X is called a bounded BE-algebra.

Definition 8. [12] Let $X=(X, *, 1)$ and $X^{\prime}=\left(X^{\prime}, *^{\prime}, 1^{\prime}\right)$ be two BE-algebras. A mapping $f: X \rightarrow X^{\prime}$ is called a BE-algebra homomorphism from X into X^{\prime} if for any $x, y \in X, f(x * y)=f(x) *^{\prime} f(y)$.

For a homomorphism $f: X \rightarrow X^{\prime}$, we have $f(1)=1^{\prime}$.

2.2 Pseudo-valuations

Definition 9. [7] A real-valued function φ on a BE-algebra X is called a pseudovaluation on X if it satisfies the following condition:
(i) $\varphi(1)=0$,
(ii) $\varphi(x * z) \leq \varphi(x *(y * z))+\varphi(y)$, for all $x, y, z \in X$.

A pseudo-valuation φ on a BE-algebra X satisfying the following condition:

$$
\begin{equation*}
x \neq 1 \Rightarrow \varphi(x) \neq 0 \quad \forall x \in X \tag{7}
\end{equation*}
$$

is called a valuation on X.
Let φ be a pseudo-valuation on a BE-algebra X. Then for all $x, y, z \in X$,
(8) φ is order reversing,
(9) $\varphi(x * y) \leq \varphi(y)$,
(10) $\varphi((x *(y * z)) * z) \leq \varphi(x)+\varphi(y)$,
(11) $\varphi(x) \geq 0$, for all $x \in X$,
(12) $\varphi(y) \leq \varphi(x * y)+\varphi(x)$,
(13) $x \leq y * z \Rightarrow \varphi(z) \leq \varphi(x)+\varphi(y)$,
(14) $\varphi((x * y) * y) \leq \varphi(x)$.[See,[7]]

Proposition 5. [7] Let X be a transitive BE-algebra. Every pseudo-valuation φ on X satisfies the following inequality,

$$
\begin{equation*}
\varphi(x * z) \leq \varphi(x * y)+\varphi(y * z) \quad \forall x, y, z \in X \tag{15}
\end{equation*}
$$

For a real-valued function φ on a BE-algebra X define a mapping $d_{\varphi}: X \times X \rightarrow \mathbb{R}$ by $d_{\varphi}(x, y)=\varphi(x * y)+\varphi(y * x)$ for all $(x, y) \in X \times X$.

Theorem 1. [7] Let X be a transitive BE-algebra. If a real-valued function φ on X is a pseudo-valuation on X, then d_{φ} is a pseudo-metric on X, and so (X, d_{φ}) is a pseudo-metric space.

Suppose that (X, d) is a pseudo-metric space. Then
(i) For each $x \in X$ and $\varepsilon>0$, the set $B_{\varepsilon}(x)=\{y \in X: d(y, x)<\varepsilon\}$ is called the ball of radius ε with center at x.
(ii) We say that $U \subseteq X$ is open in (X, d) if for each $x \in U$ there is an $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq U$.
(iii) The topology τ_{d} induced by d is the collection of all open sets in (X, d).

Theorem 2. [7] Let X be a transitive BE-algebra such that

$$
x * y=y * x=1 \Rightarrow x=y \quad \forall x, y \in X
$$

If $\varphi: X \rightarrow \mathbb{R}$ is a valuation on X, then $\left(X, d_{\varphi}\right)$ is a metric space.
Proposition 6. [7] Let X be a transitive BE-algebra satisfying in following condition:

$$
x * y=y * x=1 \Rightarrow x=y \quad \forall x, y \in X
$$

Then,
(16) $d_{\varphi}(x, y) \geq d_{\varphi}(z * x, z * y)$,
(17) $d_{\varphi}(x, y) \geq d_{\varphi}(x * z, y * z)$,
(18) $d_{\varphi}(x * y, z * w) \leq d_{\varphi}(x * y, z * y)+d_{\varphi}(z * y, z * w)$, for all $x, y, z, w \in X$.
notation. From now on, in this paper X is a commutative BE-algebra.

3 Pseudo-valuations on commutative BE-algebras

Proposition 7. Let $(X, *, 1)$ be a BE-algebra. Then for each filter F of X there exists a pseudo-valuation φ_{F} on X which is called the pseudo-valuation induced by filter F. Moreover φ_{F} is a valuation if and only if $F=\{1\}$.

Proof. Let s be a positive element of \mathbb{R}. Define $\varphi_{F}: X \rightarrow \mathbb{R}$ by

$$
\varphi_{F}(x)= \begin{cases}0 & \text { if } x \in F \\ s & \text { if } x \notin F\end{cases}
$$

We show that φ_{F} is a pseudo-valuation on X. Since $1 \in F, \varphi_{F}(1)=0$. Let $x, y, z \in X$. We consider following cases:
Case 1. If $x * z \in F$, then $\varphi_{F}(x * z)=0$.
(i) If $y \in F$, then $y *(x * z) \in F$. Hence $\varphi_{F}(y *(x * z))=0$. By (4) we have,

$$
\varphi_{F}(x * z)=0 \leq \varphi_{F}(y *(x * z))+\varphi_{F}(y)=\varphi_{F}(x *(y * z))+\varphi_{F}(y)=0 .
$$

(ii) If $y \notin F$, then $\varphi_{F}(y)=s$. Hence
$\varphi_{F}(x * z)=0 \leq s=\varphi_{F}(y) \leq \varphi_{F}(y *(x * z))+\varphi_{F}(y)=\varphi_{F}(x *(y * z))+\varphi_{F}(y)$.

Case 2. If $x * z \notin F$, then $\varphi_{F}(x * z)=s$.
(i) If $y \in F$, then $\varphi_{F}(y)=0$. Since $y \in F, y *(x * z) \notin F$ because if $y *(x * z) \in F$, then $x * z \in F$ which is a contradiction. Hence $\varphi_{F}(y *(x * z))=s$. Therefore,

$$
\varphi_{F}(x * z)=s \leq s+0=\varphi_{F}(y *(x * z))+\varphi_{F}(y)=\varphi_{F}(x *(y * z))+\varphi_{F}(y) .
$$

(ii) If $y \notin F$, then $\varphi_{F}(y)=s$. Hence,

$$
\varphi_{F}(x * z)=s \leq \varphi_{F}(y *(x * z))+\varphi_{F}(y)=\varphi_{F}(x *(y * z))+\varphi_{F}(y) .
$$

Hence φ_{F} is a pseudo-valuation on X. It is clear that φ_{F} is a valuation if and only if $F=\{1\}$.

Example. Let $X=\{a, b, c, 1\}$. If the operation $*$ given by the following table

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	1	1	1
c	1	a	c	1

then $(X, *, 1)$ is a BE-algebra (see [7]). Let $F=\{a, 1\}$. Then F is a filter of X. Define $\varphi_{F}: X \rightarrow \mathbb{R}$ by

$$
\varphi_{F}(x)= \begin{cases}0 & \text { if } x \in F \\ 2 & \text { if } x \notin F\end{cases}
$$

Then φ_{F} is a pseudo-valuation on X.
Proposition 8. Let φ be a pseudo-valuation on BE-algebra X. Then $F_{\varphi}=\{x \in$ $X: \varphi(x)=0\}$ is a filter of X which is called the filter induced by pseudo-valuation φ.

Proof. Since $\varphi(1)=0,1 \in F_{\varphi}$. Let $x, x * y \in F_{\varphi}$. Then $\varphi(x)=\varphi(x * y)=0$. By (11) and (12) we have,

$$
0 \leq \varphi(y) \leq \varphi(x * y)+\varphi(x)=0 .
$$

Hence $y \in F_{\varphi}$.
Example. By assumptions of the previous example, we have $F_{\varphi_{F}}=\{a, 1\}$.
Proposition 9. Let F be a filter of a BE-algebra X. Then $F_{\varphi_{F}}=F$.
Proof. We have $F_{\varphi_{F}}=\left\{x \in X: \varphi_{F}(x)=0\right\}=\{x \in X: x \in F\}=F$.
Proposition 10. Let φ be a pseudo-valuation on a BE-algebra X. Then φ is a valuation if and only if d_{φ} is a metric on X.

Proof. If φ is a valuation on X, then by Theorem $2, d_{\varphi}$ is a metric. Conversely, suppose that φ is not a valuation on X. Then there exists $x \in X$ such that $x \neq 1$ and $\varphi(x)=0$. Hence $x, 1 \in F_{\varphi}$. Therefore

$$
d_{\varphi}(1, x)=\varphi(1 * x)+\varphi(x * 1)=\varphi(x)+\varphi(1)=0 .
$$

Hence $d_{\varphi}(1, x)=0$. Since d_{φ} is a metric on $X, x=1$ which is a contradiction.
Theorem 3. Let φ be a pseudo-valuation on a BE-algebra X. Then φ is continuous.

Proof. By Theorem 1, $\left(X, d_{\varphi}\right)$ is a pseudo-metric space. Let $x_{0} \in X$ be an arbitrary element. For each $x \in X$ by (12) we have

$$
\varphi\left(x_{0}\right)-\varphi(x) \leq \varphi\left(x * x_{0}\right) \quad \text { and } \quad \varphi(x)-\varphi\left(x_{0}\right) \leq \varphi\left(x_{0} * x\right)
$$

Hence

$$
\begin{aligned}
\varphi\left(x_{0}\right)-\varphi(x) & \leq \varphi\left(x * x_{0}\right)+\varphi\left(x_{0} * x\right) \\
\varphi(x)-\varphi\left(x_{0}\right) & \leq \varphi\left(x * x_{\varphi}\left(x, x_{0}\right)+\varphi\left(x_{0} * x\right)\right. \\
\varphi & =d_{\varphi}\left(x, x_{0}\right)
\end{aligned}
$$

Thus $-d_{\varphi}\left(x, x_{0}\right) \leq \varphi(x)-\varphi\left(x_{0}\right) \leq d_{\varphi}\left(x, x_{0}\right)$ and so $\left|\varphi(x)-\varphi\left(x_{0}\right)\right| \leq d_{\varphi}\left(x, x_{0}\right)$. Therefore φ is continuous.

Corollary 1. If φ is a pseudo-valuation on X, then F_{φ} is a closed subset of X.
Proof. Since $F_{\varphi}=\{x \in X: \varphi(x)=0\}=\varphi^{-1}(\{0\})$, by Theorem 3, the proof is clear.

Let X be a BE-algebra and τ be a topology on $X .(X, *, \tau)$ is a topological BEalgebra, if $x * y \in U \in \tau$, then there are two open sets V and W containing x and y respectively, such that $V * W \subseteq U$, for all $x, y \in X$.

Theorem 4. Let $\tau_{d_{\varphi}}$ be the topology induced by d_{φ}. Then $\left(X, *, \tau_{d_{\varphi}}\right)$ is a topological BE-algebra.

Proof. Let $x * y \in B_{\epsilon}(x * y)$. We claim that $B_{\frac{\varepsilon}{2}}(x) * B_{\frac{\varepsilon}{2}}(y) \subseteq B_{\varepsilon}(x * y)$. Let $z \in$ $B_{\frac{\varepsilon}{2}}(x) * B_{\frac{\varepsilon}{2}}(y)$. Then there exist $p \in B_{\frac{\varepsilon}{2}}(x)$ and $q \in B_{\frac{\varepsilon}{2}}(y)$ such that $z=p * q$. Hence $d_{\varphi}^{2}(x, p) \leq \frac{\varepsilon}{2}$ and $d_{\varphi}(y, q) \leq \frac{\varepsilon}{2}$. By (16) and (17) we have $d_{\varphi}(x * y, p * y) \leq d_{\varphi}(x, p)$ and $d_{\varphi}(p * y, p * q) \leq d_{\varphi}(y, q)$. $\operatorname{By}(18), d_{\varphi}(x * y, p * q) \leq d_{\varphi}(x * y, p * y)+d_{\varphi}(p * y, p * q) \leq$ $\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Thus $z=p * q \in B_{\varepsilon}(x * y)$. Therefore $(X, *, \tau)$ is a topological BEalgebra.

4 Quotient BE-algebras induced by pseudo-valuations

Definition 10. Let φ be a pseudo-valuation on a BE-algebra X. Define the relation θ_{φ} by

$$
(x, y) \in \theta_{\varphi} \Leftrightarrow d_{\varphi}(x, y)=0
$$

for all $x, y \in X$.

Proposition 11. Let φ be a pseudo-valuation on a BE-algebra X. Then θ_{φ} is a congruence relation on X which is called the congruence relation induced by φ.

Proof. Since θ_{φ} induced by a pseudo-metric, it is an equivalence relation on X. We show that θ_{φ} is a congruence relation. Let $(x, y),(z, w) \in \theta_{\varphi}$. Then $d_{\varphi}(x, y)=$ $0=d_{\varphi}(z, w)$. By (11) and (17) we have $0 \leq d_{\varphi}(x * z, y * z) \leq d_{\varphi}(x, y)=0$. Hence $d_{\varphi}(x * z, y * z)=0$ and so $(x * z, y * z) \in \theta_{\varphi}$. Similarly, we can show that $(y * z, y * w) \in \theta_{\varphi}$. Since θ_{φ} is a equivalence relation, $(x * z, y * w) \in \theta_{\varphi}$. Therefore θ_{φ} is a congruence relation on X.

Proposition 12. Let φ be a pseudo-valuation on a BE-algebra and θ_{φ} be the congruence relation induced by φ. Then for all $x, y \in X$,
(i) $(x, y) \in \theta_{\varphi} \Leftrightarrow(1, x * y),(1, y * x) \in \theta_{\varphi}$.
(ii) $F_{\theta_{\varphi}}=\left\{x * y:(x, y) \in \theta_{\varphi}\right\}$ is a filter.

Proof. (i) We have,

$$
\begin{aligned}
(1, x * y),(1, y * x) \in \theta_{\varphi} & \Longleftrightarrow d_{\varphi}(1, x * y)=0=d_{\varphi}(1, y * x) \\
& \Longleftrightarrow \varphi(1 *(x * y))+\varphi((x * y) * 1)=0 \\
& =\varphi(1 *(y * x))+\varphi((y * x) * 1) \\
& \Longleftrightarrow \varphi(x * y)=0=\varphi(y * x) \\
& \Longleftrightarrow d_{\varphi}(x, y)=0, \\
& \Longleftrightarrow(x, y) \in \theta_{\varphi}
\end{aligned}
$$

(ii) Let $x * y, x=1 * x \in F_{\theta_{\varphi}}$. Then $d_{\varphi}(1, x)=0=d_{\varphi}(x, y)$. Hence $\varphi(x)=0=$ $\varphi(x * y)$. By (11) and (12) we have,

$$
0 \leq d_{\varphi}(1, y)=\varphi(y) \leq \varphi(x * y)+\varphi(x)=0
$$

Hence $d_{\varphi}(1, y)=0$ and so $y=1 * y \in F_{\theta_{\varphi}}$.

Let φ be a pseudo-valuation on a BE-algebra X and θ_{φ} be the congruence relation induced by φ. Let $[x]_{\varphi}=\left\{y \in X:(x, y) \in \theta_{\varphi}\right\}$ and $X / \varphi=\left\{[x]_{\varphi}: x \in X\right\}$. Define a binary operation \odot on X / φ as follows:

$$
[x]_{\varphi} \odot[y]_{\varphi}=[x * y]_{\varphi}
$$

The resulting algebra is denoted by X / φ and is called the quotient algebra of X induced by pseudo-valuation φ.

Theorem 5. Let φ be a pseudo-valuation on a BE-algebra X. Then $\left(X / \varphi, \odot,[1]_{\varphi}\right)$ is a BE-algebra and $d^{*}\left([x]_{\varphi},[y]_{\varphi}\right)=d_{\varphi}(x, y)$ is a metric on X / φ.

Proof. The proof is straightforward. We only show that d^{*} is well defined. Let x, y, a and b be in X and $[x]_{\varphi}=[a]_{\varphi}$ and $[y]_{\varphi}=[b]_{\varphi}$. Then $\varphi(x * a)=\varphi(a *$
$x)=\varphi(y * b)=\varphi(b * y)=0$. By (6) we have $x * y \leq(y * b) *(x * b)$ and $x * b \leq(b * a) *(x * a)$. By (13), $\varphi(x * b) \leq \varphi(x * y)+\varphi(y * b)=\varphi(x * y)$ and $\varphi(b * a) \leq \varphi(x * a)+\varphi(x * b)=\varphi(x * b)$. Hence $\varphi(b * a) \leq \varphi(x * y)$. By a similar argument we have $\varphi(x * y) \leq \varphi(b * a)$. Thus $\varphi(x * y)=\varphi(b * a)$. Similarly, we have $\varphi(y * x)=\varphi(a * b)$. Hence $d_{\varphi}(x, y)=d_{\varphi}(a, b)$ and so d^{*} is well defined.

Example. Let $X=\{a, b, c, d, 1\}$. Define a binary operation $*$ on X as follows:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	1	1	c	d
c	1	a	b	1	d
d	1	1	1	c	1

Then $(X, *, 1)$ is a BE-algebra. If $\varphi: X \rightarrow \mathbb{R}$ is defined by

$$
\varphi=\left(\begin{array}{lllll}
1 & a & b & c & d \\
0 & 3 & 3 & 0 & 3
\end{array}\right)
$$

then by Proposition7, φ is a pseudo-valuation on X. It is easy to verify that

$$
\theta_{\varphi}=\{(1,1),(a, a),(b, b),(c, c),(d, d),(0, c),(c, 0)\}
$$

and $X / \varphi=\left\{[a]_{\varphi},[b]_{\varphi},[d]_{\varphi},[1]_{\varphi}\right\}$ where $[a]_{\varphi}=\{a\},[b]_{\varphi}=\{b\},[d]_{\varphi}=\{d\}$ and $[1]_{\varphi}=\{c, 1\}$.

Proposition 13. Let φ be a pseudo-valuation on a BE-algebra X. Then for all $x, y, z \in X$,
(i) If $[x]_{\varphi} \odot[y]_{\varphi}=[y]_{\varphi} \odot[x]_{\varphi}=[1]_{\varphi}$, then $[x]_{\varphi}=[y]_{\varphi}$,
$(i i)\left([x]_{\varphi} \odot[y]_{\varphi}\right) \odot\left(\left([y]_{\varphi} \odot[z]_{\varphi}\right) \odot\left([x]_{\varphi} \odot[z]_{\varphi}\right)\right)=[1]_{\varphi}$,

Proof. (i) Let $[x]_{\varphi} \odot[y]_{\varphi}=[y]_{\varphi} \odot[x]_{\varphi}=[1]_{\varphi}$ for some $x, y \in X$. Then $[x * y]_{\varphi}=$ $[y * x]_{\varphi}=[1]_{\varphi}$ and so $(1, x * y),(1, y * x) \in \theta_{\varphi}$. By Proposition 12 part (i), we have $(x, y) \in \theta_{\varphi}$, that is $[x]_{\varphi}=[y]_{\varphi}$.
(ii) The proof is straightforward.

Proposition 14. Let φ be a pseudo-valuation on a BE-algebra X. Then $F_{\varphi}=[1]_{\varphi}$.
Proof. We have,

$$
\begin{aligned}
x \in[1]_{\varphi} & \Longleftrightarrow(1, x) \in \theta_{\varphi}, \\
& \Longleftrightarrow d_{\varphi}(1, x)=0, \\
& \Longleftrightarrow \varphi(1 * x)+\varphi(x * 1)=0, \\
& \Longleftrightarrow \varphi(x)=0, \\
& \Longleftrightarrow x \in F_{\varphi} .
\end{aligned}
$$

Proposition 15. Let φ be a pseudo-valuation on a BE-algebra X. Then $\bar{\varphi}\left([x]_{\varphi}\right)=$ $\inf \left\{\varphi(z): z \in[x]_{\varphi}\right\}$ is a pseudo-valuation on X / φ.

Proof. Since for each $x \in X, \varphi(x) \geq 0, \bar{\varphi}\left([x]_{\varphi}\right)$ is well defined. By Proposition 14, we have

$$
\bar{\varphi}\left([1]_{\varphi}\right)=\inf \left\{\varphi(z): z \in[1]_{\varphi}\right\}=\inf \left\{\varphi(z): z \in F_{\varphi}\right\}=\varphi(1)=0 .
$$

Now, we show that for each $x, y, z \in X, \bar{\varphi}\left([x]_{\varphi} \odot[z]_{\varphi}\right) \leq \bar{\varphi}\left([x]_{\varphi} \odot\left([y]_{\varphi} \odot[z]_{\varphi}\right)\right)+$ $\bar{\varphi}\left([y]_{\varphi}\right)$. Let $a \in[x]_{\varphi}, b \in[y]_{\varphi}$ and $c \in[z]_{\varphi}$. Then $a * c \in[x * z]_{\varphi}=[x]_{\varphi} \odot[z]_{\varphi}$. By (11), we have

$$
\bar{\varphi}\left([x]_{\varphi} \odot[z]_{\varphi}\right)=\bar{\varphi}\left([x * z]_{\varphi}\right) \leq \varphi(a * b) \leq \varphi(a *(b * c))+\varphi(b) .
$$

Hence

$$
\begin{aligned}
\bar{\varphi}\left([x]_{\varphi} \odot[z]_{\varphi}\right) \leq & \inf \left\{\varphi\left(a *(b * c): a \in[x]_{\varphi}, b \in[y]_{\varphi}, c \in[z]_{\varphi}\right\}\right. \\
& +\inf \left\{\varphi(b): b \in[y]_{\varphi}\right\}, \\
= & \bar{\varphi}\left([x]_{\varphi} \odot\left([y]_{\varphi} \odot[z]_{\varphi}\right)\right)+\bar{\varphi}\left([y]_{\varphi}\right) .
\end{aligned}
$$

Proposition 16. Let φ be a valuation on a BE-algebra X. Then $\bar{\varphi}\left([x]_{\varphi}\right)=$ $\inf \left\{\varphi(z): z \in[x]_{\varphi}\right\}$ is a valuation on X / φ if and only if for each $x \in X$ the set $[x]_{\varphi}$ have a maximum.

Proof. By Proposition 15, φ is a pseudo-valuation on X / φ. Let $\bar{\varphi}\left([x]_{\varphi}\right)=0$ for some $x \in X$. By assumption, there exists $a \in X$ such that $a=\max [x]_{\varphi}$. Since for each $z \in[x]_{\varphi}, z \leq a$, we get that $\varphi(a) \leq \varphi(z) \leq \bar{\varphi}\left([z]_{\varphi}\right)=\bar{\varphi}\left([x]_{\varphi}\right)$ and so $\varphi(a)=0$. Since φ is a valuation, $a=1$. Hence $[x]_{\varphi}=[1]_{\varphi}$. Conversely, let $1 \neq x \in X$. If $[x]_{\varphi}$ does not have a maximum, then for each $y \in[x]_{\varphi}$ there exists $z \in[x]_{\varphi}$ such that $y \leq z$. Hence $\varphi(z) \leq \varphi(y)$. Therefore $\bar{\varphi}\left([x]_{\varphi}\right)=0$. Since $\bar{\varphi}$ is a valuation, $[x]_{\varphi}=[1]_{\varphi}$ and hence $\varphi(x)=0$. Since φ is a valuation we get that $x=1$ which is a contradiction.

Proposition 17. Let φ be a pseudo-valuation on a BE-algebra X and F_{φ} be the filter induced by φ. Then $\equiv^{F_{\varphi}}=\theta_{\varphi}$.

Proof. We have,

$$
\begin{aligned}
(x, y) \in \theta_{\varphi} & \Longleftrightarrow d_{\varphi}(x, y)=0, \\
& \Longleftrightarrow \varphi(x * y)+\varphi(y * x)=0, \\
& \Longleftrightarrow \varphi(x * y)=\varphi(y * x)=0, \\
& \Longleftrightarrow x * y, y * x \in F_{\varphi} \\
& \Longleftrightarrow(x, y) \in \equiv F_{\varphi} .
\end{aligned}
$$

Theorem 6. Let φ_{1} and φ_{2} be two different pseudo-valuations on a BE-algebra X such that $[1]_{\varphi_{1}}=[1]_{\varphi_{2}}$. Then $X / \varphi_{1}=X / \varphi_{2}$.

Proof. Let $(x, y) \in \theta_{\varphi_{1}}$. By Proposition $12, x * y, y * x \in[1]_{\varphi_{1}}$. Since $[1]_{\varphi_{1}}=[1]_{\varphi_{2}}$, $x * y, y * x \in[1]_{\varphi_{2}}$. Hence $[x]_{\varphi_{2}} \odot[y]_{\varphi_{2}}=[x * y]_{\varphi_{2}} \in[1]_{\varphi_{2}}$ and $[y]_{\varphi_{2}} \odot[x]_{\varphi_{2}}=[y * x]_{\varphi_{2}} \in$ $[1]_{\varphi_{2}}$. By Proposition 13, $[x]_{\varphi_{2}}=[y]_{\varphi_{2}}$. Therefore $(x, y) \in \theta_{\varphi_{2}}$ and then $\theta_{\varphi_{1}} \subseteq \theta_{\varphi_{2}}$. Similarly, we have $\theta_{\varphi_{2}} \subseteq \theta_{\varphi_{1}}$. Hence $\theta_{\varphi_{1}}=\theta_{\varphi_{2}}$ and so $X / \varphi_{1}=X / \varphi_{2}$.

Lemma 1. Let φ be a pseudo-valuation on a BE-algebra X and F be a filter of X such that $[1]_{\varphi} \subseteq F$. Denote $F / \varphi=\left\{[x]_{\varphi}: x \in F\right\}$. Then,
(i) $x \in F$ if and only if $[x]_{\varphi} \in F / \varphi$ for all $x \in X$.
(ii) F / φ is a filter of X / φ.

Proof. (i) Let $[x]_{\varphi} \in F / \varphi$. There exists $y \in F$ such that $[x]_{\varphi}=[y]_{\varphi}$. Hence $(x, y) \in \theta_{\varphi}$. By Proposition $12,(1, y * x) \in \theta_{\varphi}$ and thus $y * x \in[1]_{\varphi}$. Since $[1]_{\varphi} \subseteq F$, $y * x, y \in F$. Hence $x \in F$. It is easy to show the Converse.
(ii) Since $1 \in F,[1]_{\varphi} \in F / \varphi$ by part (i). Let $[x]_{\varphi} \odot[y]_{\varphi},[x]_{\varphi_{1}} \in F / \varphi$. Then $[x]_{\varphi} \odot[y]_{\varphi}=[x * y]_{\varphi}$. By part (i) we have $x * y, x \in F$. Since F is a filter, $y \in F$. Hence $[y]_{\varphi} \in F / \varphi$. Thus F / φ is a filter of X / φ.

Proposition 18. Let φ be a valuation on a BE-algebra X and F_{φ} be the filter induced by φ. Then $F / \varphi=\left\{[1]_{\varphi}\right\}$ if and only if $F=F_{\varphi}$.

Proof. By definition $F_{\varphi}=[1]_{\varphi} \subseteq F$. We show that $F \subseteq F_{\varphi}$. Suppose that $F \nsubseteq F_{\varphi}$. Then there exists $x \in F$ such that $\varphi(x) \neq 0$. Since $x \in F,[x]_{\varphi} \in F / \varphi$ by Proposition 1. By asumption $[1]_{\varphi}=[x]_{\varphi}$ and so $d_{\varphi}(1, x)=0$. Therefore $\varphi(x)=0$ which is a contradiction. Conversely, If $F=F_{\varphi}$, then

$$
F_{\varphi} / \varphi=\left\{[x]_{\varphi}: x \in F_{\varphi}\right\}=\left\{[x]_{\varphi}: \varphi(x)=0\right\}=\left\{[x]_{\varphi}: x=1\right\}=\left\{[1]_{\varphi}\right\} .
$$

Lemma 2. Let φ be a pseudo-valuation on a BE-algebra X and G be a filter of X / φ. Then $F=\left\{x \in X:[x]_{\varphi} \in G\right\}$ is a filter of X such that $[1]_{\varphi} \subseteq F$.

Proof. Since $[1]_{\varphi} \in G, 1 \in F$ by definition of F. Suppose that $x * y, x \in F$. Then $[x]_{\varphi},[x * y]_{\varphi}=[x]_{\varphi} \odot[y]_{\varphi} \in G$. Since G is a filter of $X / \varphi,[y]_{\varphi} \in G$. By definition of F, we have $y \in F$. Thus F is a filter of X. Let $x \in[1]_{\varphi}$. Then $[x]_{\varphi}=[1]_{\varphi}$. Hence $[x]_{\varphi} \in G$ and by definition of F we have $x \in F$. Thus $[1]_{\varphi} \subseteq F$.

Theorem 7. Let φ be a pseudo-valuation on a BE-algebra $X, F(X, \varphi)$ the collection of all filters of X containing $[1]_{\varphi}$, and $F(X / \varphi)$ the collection of all filters of X / φ. Then $\psi: F(X, \varphi) \rightarrow F(X / \varphi), F \rightarrow F / \varphi$ is a bijection.

Proof. Let $F, G \in F(X, \varphi)$ and $\psi(F)=\psi(G)$. Then $F / \varphi=G / \varphi$. Let $x \in F$. Then $[x]_{\varphi} \in F / \varphi=G / \varphi$. By Lemma 1 part $(i), x \in G$. Thus $F \subseteq G$. Similarly, we have $G \subseteq F$ and so $F=G$. Therefore ψ is injective. Now, suppose that $G \in F(X / \varphi)$. Put $F=\left\{x \in X:[x]_{\varphi} \in G\right\}$. By Lemma 2, F is a filter of X containing [1] $]_{\varphi}$. We have $\psi(F)=F / \varphi=G$ because $[x]_{\varphi} \in F / \varphi$, if and only if $x \in F$ if and only if $[x]_{\varphi} \in G$. Hence ψ is surjective.

Lemma 3. Let X and Y be Be-algebras, $f: X \rightarrow Y$ a homomorphism and φ a pseudo-valuation on Y. Then $\varphi \circ f: X \rightarrow \mathbb{R}$ defined by $\varphi \circ f(x)=\varphi(f(x))$ for all $x \in X$ is a pseudo-valuation on X.

Proof. The proof is clear.
Theorem 8. Let X and Y be Be-algebras, $f: X \rightarrow Y$ a epimorphism and φ a pseudo-valuation on Y. Then $X / \varphi \circ f \cong Y / \varphi$.

Proof. By Lemma 3 and Theorem 5, $X / \varphi \circ f$ and Y / φ are Be-algebras. Define $\psi: X / \varphi \circ f \rightarrow Y / \varphi$ by $\psi\left([x]_{\varphi \circ f}\right)=[f(x)]_{\varphi}$ for all $x \in X$. Suppose that $[x]_{\varphi \circ f}=$ $[y]_{\varphi \circ f}$. Then $(x, y) \in \theta_{\varphi \circ f}$ and so $\varphi \circ f(x * y)+\varphi \circ f(y * x)=0$. Since f is a homomorphism, $\varphi(f(x) * f(y))+\varphi(f(y) * f(x))=0$. Hence $(f(x), f(y)) \in \theta_{\varphi}$ and so $[f(x)]_{\varphi}=[f(y)]_{\varphi}$. Thus $\psi\left([x]_{\varphi \circ f}\right)=\psi\left([y]_{\varphi \circ f}\right)$, that is ψ is well defined. Now, we show that ψ is a homomorphism.
(i) $\psi\left([1]_{\varphi \circ f}\right)=[f(1)]_{\varphi}=[1]_{\varphi}$.
(ii) $\psi\left([x]_{\varphi \circ f} \odot[y]_{\varphi \circ f}\right)=\psi\left([x * y]_{\varphi \circ f}\right)=[f(x * y)]_{\varphi}=[f(x) * f(y)]_{\varphi}=[f(x)]_{\varphi} \odot$ $[f(y)]_{\varphi}=\psi\left([x]_{\varphi \circ f}\right) \odot \psi\left([x]_{\varphi \circ f}\right)$.
Finally, we show that ψ is a bijection. Let $[y]_{\varphi} \in Y / \varphi$. Since f is surjective, there exists $x \in X$ such that $y=f(x)$. Hence $\psi\left([x]_{\varphi \circ f}\right)=[f(x)]_{\varphi}=[y]_{\varphi}$ and ψ is surjective. Suppose that $\psi\left([x]_{\varphi \circ f}\right)=\psi\left([y]_{\varphi \circ f}\right)$. Then $[f(x)]_{\varphi}=[f(y)]_{\varphi}$. Thus $\varphi(f(x) * f(y))+\varphi(f(y) * f(x))=0$. Since f is a homomorphism, $\varphi \circ f(x * y)+$ $\varphi \circ f(y * x)=0$. Hence $[x]_{\varphi \circ f}=[x]_{\varphi \circ f}$ and ψ is injective.

Lemma 4. Let φ be a pseudo-valuatin on a BE-algebra X and X / φ be the corresponding quotient algebra. Then the map $\pi_{\varphi}: X \rightarrow X / \varphi$ defined by $\pi_{\varphi}(x)=[x]_{\varphi}$ for all $x \in X$ is an epimorphism.

Corollary 2. Let φ be a pseudo-valuatin on a BE-algebra X and X / φ be the corresponding quotient algebra. For each pseudo-valuation $\overline{\varphi_{1}}$ on $B E$-algebra X / φ, there exists a pseudo-valuation φ_{1} on BE-algebra X such that $\varphi_{1}=\overline{\varphi_{1}} \circ \pi_{\varphi}$.

Proof. It follows from Lemma 4 and Lemma 3.
If τ is a topology on X, then the set $\left\{U \subseteq X / \varphi: \pi_{\varphi}^{-1}(U) \in \tau\right\}$ is a topology on X / φ and is called quotient topology on X / φ.

Theorem 9. Let φ be a pseudo-valuatin on a BE-algebra X. Then the metric topology induced by $d^{*}\left([x]_{\varphi},[y]_{\varphi}\right)=d_{\varphi}(x, y)$ coincides with quotient topology on X / φ.

Proof. Let $\tau_{d^{*}}$ be the topology induced by d^{*} and τ be the quotient topology on X / φ. We have to show that $\tau_{d^{*}}=\tau$. It is clear that the map $\pi_{\varphi}: X \rightarrow X / \varphi$ is continuous, because $d^{*}\left([x]_{\varphi},[y]_{\varphi}\right)=d^{*}\left(\pi_{\varphi}(x), \pi_{\varphi}(y)\right)=d_{\varphi}(x, y)$. If $U \in \tau_{d^{*}}$, then $\pi_{\varphi}^{-1}(U) \in \tau_{d_{\varphi}}$ and by definition of quotient topology, $U \in \tau$. Conversely, Let $W \in$ τ. Then $\pi_{\varphi}^{-1}(W) \in \tau_{d_{\varphi}}$. Hence $\pi_{\varphi}^{-1}(W)=\cup_{x \in \pi_{\varphi}^{-1}(W)} B_{\varepsilon}(x)$. Since π_{φ} is an epimorphism, $\pi_{\varphi}\left(\cup_{x \in \pi_{\varphi}^{-1}(W)} B_{\varepsilon}(x)\right)=W$. It is easy to proof that $\pi_{\varphi}\left(\cup_{x \in \pi_{\varphi}^{-1}(W)} B_{\varepsilon}(x)\right)=$ $\cup_{x \in \pi_{\varphi}^{-1}(W)} B_{\varepsilon}^{*}\left([x]_{\varphi}\right)=\cup_{x \in \pi_{\varphi}^{-1}(W)}\left\{[y]_{\varphi} \in X / \varphi: d^{*}\left([y]_{\varphi},[x]_{\varphi}\right)<\varepsilon\right\} \in \tau_{d^{*}}$. Thus $W \in \tau_{d^{*}}$. Therefore $\tau_{d^{*}}=\tau$.

Theorem 10. Let φ be a pseudo-valuatin on a BE-algebra X. Then $\bar{\varphi}: X / \varphi \rightarrow \mathbb{R}$ defined by $\bar{\varphi}\left([x]_{\varphi}\right)=\varphi(x)$ is a pseudo-valuation.

Proof. It is enough to show that $\bar{\varphi}$ is well defined. Let $[x]_{\varphi}=[x]_{\varphi}$. Then $\varphi(x *$ $y)+\varphi(y * x)=0$. Thus $\varphi(x * y)=\varphi(y * x)=0$. Hence

$$
\varphi(x) \leq \varphi(y * x)+\varphi(y)=\varphi(y) \quad \text { and } \quad \varphi(y) \leq \varphi(x * y)+\varphi(x)=\varphi(x)
$$

Thus $\varphi(x)=\varphi(y)$ and so $\bar{\varphi}$ is well defined. Now, we have $\bar{\varphi}\left([1]_{\varphi}\right)=\varphi(1)=0$ and

$$
\begin{aligned}
\bar{\varphi}\left([x]_{\varphi} \odot[z]_{\varphi}\right) & =\bar{\varphi}\left([x * z]_{\varphi}\right) \\
& =\varphi(x * z) \\
& \leq \varphi(x *(y * z))+\varphi(y) \\
& =\bar{\varphi}\left([x *(y * z)]_{\varphi}\right)+\bar{\varphi}\left([y]_{\varphi}\right) \\
& =\bar{\varphi}\left([x]_{\varphi} \odot\left([y]_{\varphi} \odot[z]_{\varphi}\right)\right)+\bar{\varphi}\left([y]_{\varphi}\right)
\end{aligned}
$$

For all $x, y, z \in X$. Therefore $\bar{\varphi}$ is a pseudo-valuation on X.

References

[1] Ahn. S.S., Kim. Y.H. and Ko. J.M., Filters in commutative BE-algebras, Commun Korean Math. Soc. 27 (2012), no. 2, 233-242.
[2] Ciloglu. Z. and Ceven. Y., Commutative and bounded BE-algebras, Hindawi Publishing Corporation Algebra 2013, (2013), article ID 473714.
[3] Iséki. K., On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
[4] Iséki. K. and Tanaka, S., An introduction to theory of BCK-algebras, Math. Japonica 23(1978), 1-26.
[5] Jun. Y.B., Roh. E.H. and Kim. H.S., On BH-algebras, Sci. Math. Jpn. 1 (1998), 347-354.
[6] Kim. H. S. and Kim. Y. H., On BE-algebras, Sci. Math. Jpn. (2006), 12991302.
[7] Lee. K. J., Pseudo-Valuations on BE-algebras, Appl. Math. Sci. 7, (2013), no. 125, 6199-6207.
[8] Mehrshad. S. and Golzarpoor. J., On topological BE-algebras, Mathematica Moravica, 21 (2017), no. 2, 1-13.
[9] Neggers. J. and Kim. H.S., On d-algebra, Math. Slovaca, 49 (1999), 19-26.
[10] Walendziak. A., On commutative BE-algebras, Sci. Math. Jpn. (e-2008), 585588.
[11] Walendziak. A., On normal filters and congruence relations in BE-algebras, Comment. Math. 52, (2012), 199-205.
[12] Yon. Y.H., Lee. S.M. and Kim. K.H., On congruences and BE-relations in BE-algebras, International Mathematical Forum, 5, (2010), 2263-2270.

[^0]: ${ }^{1}$ Faculty of Science, Zabol, University of Zabol, Iran, e-mail: javad-golzarpoor@uoz.ac.ir
 ${ }^{2}$ Faculty of Science, Bojnord, Kosar University of Bojnord, Iran, e-mail: mohammad.mehrpooya@kub.ac.ir
 ${ }^{3 *}$ Corresponding author, Faculty of Science, Zabol, University of Zabol, Iran, e-mail: smehrshad@uoz.ac.ir

