Bulletin of the *Transilvania* University of Braşov Series III: Mathematics and Computer Science, Vol. 1(63), No. 1 - 2021, 129-142 https://doi.org/10.31926/but.mif.2021.1.63.1.10

PSEUDO-VALUATIONS ON COMMUTATIVE BE-ALGEBRAS

J. GOLZARPOOR¹, M. MEHRPOOYA² and S. MEHRSHAD^{*,3}

Abstract

In this paper, we study pseudo-valuations on commutative BE-algebras and obtain some related results. Using the pseudo-metrics induced by pseudo valuations we introduce a congruence relation on BE-algebras.

2000 Mathematics Subject Classification: 06F35, 03G25, 08A30. Key words: BE-algebra, valuation, pseudo-valuation, filter.

1 Introduction

The study of BCK/BCI-algebras was initiated by K. Iséki as a generalization of the concept of set-theoretic difference and propositional calculus ([3], [4]). In [9], J.Neggeres and H. S. Kim introduced the notion of d-algebras which is a generalization of BCK-algebras. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim [5] introduced a new notion, called BH-algebras, which is a generalization of BCK/BCI-algebras. Recently, as another generalization of BCK-algebras, the notion of BE-algebras was introduced by H. S. Kim and Y. H. Kim [6]. Lee in [7] introduced the notion of pseudo-valutions on BE-algebras and investigated several properties. He provided relations between pseudo-valutions and some subalgebras of BE-algebras. Using the notion of a pseudo-valuation he constructed (pseudo)metric space and showed that the binary operation of * in BE-algebras is uniformly continuous. In this paper, we study pseudo-valuations on BE-algebras and investigate its properties. We discuss the relation between pseudo-valuations and filters of a BE-algebra. We obtain some results of pseudo-metrics induced by pseudo-valuations on BE-algebras. Also, we prove that the pseudo-metric induced by a pseudo-valuation φ is a metric on a BE-algebra if and only if φ is a valuation. Finally, using the pseudo-metrics induced by pseudo-valuations we construct the quotient structures and investigate related properties.

¹Faculty of Science, Zabol, University of Zabol, Iran, e-mail: javad-golzarpoor@uoz.ac.ir

²Faculty of Science, *Bojnord*, Kosar University of Bojnord, Iran, e-mail: mohammad.mehrpooya@kub.ac.ir

³* Corresponding author, Faculty of Science, Zabol, University of Zabol, Iran, e-mail: smehrshad@uoz.ac.ir

2 Preliminary

2.1 BE-algebras

Definition 1. [11] A BE-algebra is an algebra (X, *, 1) of type (2, 0) such that satisfying the following axioms:

(1) x * x = 1 for all $x \in X$, (2) x * 1 = 1 for all $x \in X$, (3) 1 * x = x for all $x \in X$, (4) x * (y * z) = y * (x * z), for all $x, y, z \in X$.

A relation \leq on X is defined by $x \leq y$ if and only if x * y = 1. If X is a BE-algebra and $x, y \in X$, then x * (y * x) = 1.

Definition 2. [11] We say that a BE-algebra X is commutative if (x * y) * y = (y * x) * x for all $x, y \in X$.

Proposition 1. [1] Let X be a commutative BE-algebra and $x, y, z \in X$. Then, (5) $x * y = y * x = 1 \Rightarrow x = y$, (6) (x * y) * ((y * z) * (x * z)) = 1.

Definition 3. [11] We say that a BE-algebra X is transitive if $(y * z) \le (x * y) * (x * z)$ for all $x, y, z \in X$.

Proposition 2. [11] If X is a commutative BE-algebra, then it is transitive.

Definition 4. [11] Let A be a BE-algebra. A filter is a nonempty set $F \subseteq X$ such that for all $x, y \in A$ (i) $1 \in F$, (ii) $x \in F$ and $x * y \in F$ imply $y \in F$.

Let F be a filter in X. If $x \in F$ and $x \leq y$ then $y \in F$.

Definition 5. [11] A filter F of a BE-algebra X is said to be normal if it satisfies the following condition:

$$x * y \in F \Rightarrow [(z * x) * (z * y) \in F \text{ and } (y * z) * (x * z) \in F]$$

for all $x, y, z \in X$.

Proposition 3. [11] If X is a transitive BE-algebra, then every filter of X is normal.

Definition 6. An equivalence relation θ on a *BE*-algebra X is called a congruence relation on X, if $(x, y) \in \theta$ implies $(x * z, y * z) \in \theta$ and $(z * x, z * y) \in \theta$ for all $x, y, z \in X$.

Pseudo-valuations on commutative BE-algebras

Proposition 4. [11] Let F be a normal filter of a BE-algebra X. Define

$$x \equiv^F y \Leftrightarrow x * y, y * x \in F$$

Then,

(i) \equiv^F is a congruence relation on X.

(ii) Let $[x]_F = \{y \in x : x \equiv^F y\}$ be an equivalence class of x and $X/F = \{[x]_F : x \in X\}$. Then X/F is a BE-algebra under the binary operations given by:

$$[x]_F \oplus [y]_F = [x * y]_F.$$

Definition 7. [2] Let X be a BE-algebra. If there exists an element 0 satisfying $0 \le x$ (or 0 * x = 1) for all $x \in X$, then X is called a bounded BE-algebra.

Definition 8. [12] Let X = (X, *, 1) and X' = (X', *', 1') be two BE-algebras. A mapping $f: X \to X'$ is called a BE-algebra homomorphism from X into X' if for any $x, y \in X$, f(x * y) = f(x) *' f(y).

For a homomorphism $f: X \to X'$, we have f(1) = 1'.

2.2 Pseudo-valuations

Definition 9. [7] A real-valued function φ on a BE-algebra X is called a pseudovaluation on X if it satisfies the following condition: (i) $\varphi(1) = 0$, (ii) $\varphi(x * z) \leq \varphi(x * (y * z)) + \varphi(y)$, for all $x, y, z \in X$.

A pseudo-valuation φ on a BE-algebra X satisfying the following condition:

$$x \neq 1 \Rightarrow \varphi(x) \neq 0 \quad \forall x \in X \quad (7)$$

is called a valuation on X.

Let φ be a pseudo-valuation on a BE-algebra X. Then for all $x, y, z \in X$,

(8) φ is order reversing, (9) $\varphi(x * y) \leq \varphi(y)$, (10) $\varphi((x * (y * z)) * z) \leq \varphi(x) + \varphi(y)$, (11) $\varphi(x) \geq 0$, for all $x \in X$, (12) $\varphi(y) \leq \varphi(x * y) + \varphi(x)$, (13) $x \leq y * z \Rightarrow \varphi(z) \leq \varphi(x) + \varphi(y)$, (14) $\varphi((x * y) * y) \leq \varphi(x)$.[See,[7]]

Proposition 5. [7] Let X be a transitive BE-algebra. Every pseudo-valuation φ on X satisfies the following inequality,

$$\varphi(x*z) \le \varphi(x*y) + \varphi(y*z) \quad \forall x, y, z \in X.$$
 (15)

For a real-valued function φ on a BE-algebra X define a mapping $d_{\varphi} : X \times X \to \mathbb{R}$ by $d_{\varphi}(x, y) = \varphi(x * y) + \varphi(y * x)$ for all $(x, y) \in X \times X$. **Theorem 1.** [7] Let X be a transitive BE-algebra. If a real-valued function φ on X is a pseudo-valuation on X, then d_{φ} is a pseudo-metric on X, and so (X, d_{φ}) is a pseudo-metric space.

Suppose that (X, d) is a pseudo-metric space. Then

(i) For each $x \in X$ and $\varepsilon > 0$, the set $B_{\varepsilon}(x) = \{y \in X : d(y, x) < \varepsilon\}$ is called the ball of radius ε with center at x.

(*ii*) We say that $U \subseteq X$ is open in (X, d) if for each $x \in U$ there is an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$.

(*iii*) The topology τ_d induced by d is the collection of all open sets in (X, d).

Theorem 2. [7] Let X be a transitive BE-algebra such that

 $x * y = y * x = 1 \Rightarrow x = y \quad \forall x, y \in X$

If $\varphi: X \to \mathbb{R}$ is a valuation on X, then (X, d_{φ}) is a metric space.

Proposition 6. [7] Let X be a transitive BE-algebra satisfying in following condition:

$$x * y = y * x = 1 \Rightarrow x = y \quad \forall x, y \in X.$$

Then,

 $(16) \ d_{\varphi}(x,y) \ge d_{\varphi}(z \ast x, z \ast y),$ $(17) \ d_{\varphi}(x,y) \ge d_{\varphi}(x \ast z, y \ast z),$ $(18) \ d_{\varphi}(x \ast y, z \ast w) \le d_{\varphi}(x \ast y, z \ast y) + d_{\varphi}(z \ast y, z \ast w),$ for all $x, y, z, w \in X.$

notation. From now on, in this paper X is a commutative BE-algebra.

3 Pseudo-valuations on commutative BE-algebras

Proposition 7. Let (X, *, 1) be a BE-algebra. Then for each filter F of X there exists a pseudo-valuation φ_F on X which is called the pseudo-valuation induced by filter F. Moreover φ_F is a valuation if and only if $F = \{1\}$.

Proof. Let s be a positive element of \mathbb{R} . Define $\varphi_F : X \to \mathbb{R}$ by

$$\varphi_F(x) = \begin{cases} 0 & \text{if } x \in F \\ s & \text{if } x \notin F. \end{cases}$$

We show that φ_F is a pseudo-valuation on X. Since $1 \in F$, $\varphi_F(1) = 0$. Let $x, y, z \in X$. We consider following cases:

Case 1. If $x * z \in F$, then $\varphi_F(x * z) = 0$.

(i) If $y \in F$, then $y * (x * z) \in F$. Hence $\varphi_F(y * (x * z)) = 0$. By (4) we have,

$$\varphi_F(x*z) = 0 \le \varphi_F(y*(x*z)) + \varphi_F(y) = \varphi_F(x*(y*z)) + \varphi_F(y) = 0.$$

(*ii*) If $y \notin F$, then $\varphi_F(y) = s$. Hence

$$\varphi_F(x*z) = 0 \le s = \varphi_F(y) \le \varphi_F(y*(x*z)) + \varphi_F(y) = \varphi_F(x*(y*z)) + \varphi_F(y).$$

Case 2. If $x * z \notin F$, then $\varphi_F(x * z) = s$. (i) If $y \in F$, then $\varphi_F(y) = 0$. Since $y \in F$, $y * (x * z) \notin F$ because if $y * (x * z) \in F$, then $x * z \in F$ which is a contradiction. Hence $\varphi_F(y * (x * z)) = s$. Therefore,

$$\varphi_F(x*z) = s \le s + 0 = \varphi_F(y*(x*z)) + \varphi_F(y) = \varphi_F(x*(y*z)) + \varphi_F(y).$$

(*ii*) If $y \notin F$, then $\varphi_F(y) = s$. Hence,

$$\varphi_F(x*z) = s \le \varphi_F(y*(x*z)) + \varphi_F(y) = \varphi_F(x*(y*z)) + \varphi_F(y).$$

Hence φ_F is a pseudo-valuation on X. It is clear that φ_F is a valuation if and only if $F = \{1\}$.

Example. Let $X = \{a, b, c, 1\}$. If the operation * given by the following table

*	1	a	b	\mathbf{c}
1	1	a	b	с
a b	1	1	b	\mathbf{c}
b	1	1	1	1
с	1	a	с	1

then (X, *, 1) is a BE-algebra (see [7]). Let $F = \{a, 1\}$. Then F is a filter of X. Define $\varphi_F : X \to \mathbb{R}$ by

$$\varphi_F(x) = \begin{cases} 0 & \text{if } x \in F \\ 2 & \text{if } x \notin F. \end{cases}$$

Then φ_F is a pseudo-valuation on X.

Proposition 8. Let φ be a pseudo-valuation on BE-algebra X. Then $F_{\varphi} = \{x \in X : \varphi(x) = 0\}$ is a filter of X which is called the filter induced by pseudo-valuation φ .

Proof. Since $\varphi(1) = 0, 1 \in F_{\varphi}$. Let $x, x * y \in F_{\varphi}$. Then $\varphi(x) = \varphi(x * y) = 0$. By (11) and (12) we have,

$$0 \le \varphi(y) \le \varphi(x \ast y) + \varphi(x) = 0.$$

Hence $y \in F_{\varphi}$.

Example. By assumptions of the previous example, we have $F_{\varphi_F} = \{a, 1\}$.

Proposition 9. Let F be a filter of a BE-algebra X. Then $F_{\varphi_F} = F$.

Proof. We have $F_{\varphi_F} = \{x \in X : \varphi_F(x) = 0\} = \{x \in X : x \in F\} = F.$

Proposition 10. Let φ be a pseudo-valuation on a BE-algebra X. Then φ is a valuation if and only if d_{φ} is a metric on X.

Proof. If φ is a valuation on X, then by Theorem 2, d_{φ} is a metric. Conversely, suppose that φ is not a valuation on X. Then there exists $x \in X$ such that $x \neq 1$ and $\varphi(x) = 0$. Hence $x, 1 \in F_{\varphi}$. Therefore

$$d_{\varphi}(1,x) = \varphi(1*x) + \varphi(x*1) = \varphi(x) + \varphi(1) = 0.$$

Hence $d_{\varphi}(1, x) = 0$. Since d_{φ} is a metric on X, x = 1 which is a contradiction. \Box

Theorem 3. Let φ be a pseudo-valuation on a BE-algebra X. Then φ is continuous.

Proof. By Theorem 1, (X, d_{φ}) is a pseudo-metric space. Let $x_0 \in X$ be an arbitrary element. For each $x \in X$ by (12) we have

$$\varphi(x_0) - \varphi(x) \le \varphi(x * x_0)$$
 and $\varphi(x) - \varphi(x_0) \le \varphi(x_0 * x)$.

Hence

$$\varphi(x_0) - \varphi(x) \le \varphi(x * x_0) + \varphi(x_0 * x) = d_{\varphi}(x, x_0)$$

$$\varphi(x) - \varphi(x_0) \le \varphi(x * x_0) + \varphi(x_0 * x) = d_{\varphi}(x, x_0).$$

Thus $-d_{\varphi}(x, x_0) \leq \varphi(x) - \varphi(x_0) \leq d_{\varphi}(x, x_0)$ and so $|\varphi(x) - \varphi(x_0)| \leq d_{\varphi}(x, x_0)$. Therefore φ is continuous.

Corollary 1. If φ is a pseudo-valuation on X, then F_{φ} is a closed subset of X.

Proof. Since $F_{\varphi} = \{x \in X : \varphi(x) = 0\} = \varphi^{-1}(\{0\})$, by Theorem 3, the proof is clear.

Let X be a BE-algebra and τ be a topology on X. $(X, *, \tau)$ is a topological BEalgebra, if $x * y \in U \in \tau$, then there are two open sets V and W containing x and y respectively, such that $V * W \subseteq U$, for all $x, y \in X$.

Theorem 4. Let $\tau_{d_{\varphi}}$ be the topology induced by d_{φ} . Then $(X, *, \tau_{d_{\varphi}})$ is a topological BE-algebra.

Proof. Let $x * y \in B_{\epsilon}(x * y)$. We claim that $B_{\frac{\varepsilon}{2}}(x) * B_{\frac{\varepsilon}{2}}(y) \subseteq B_{\varepsilon}(x * y)$. Let $z \in B_{\frac{\varepsilon}{2}}(x) * B_{\frac{\varepsilon}{2}}(y)$. Then there exist $p \in B_{\frac{\varepsilon}{2}}(x)$ and $q \in B_{\frac{\varepsilon}{2}}(y)$ such that z = p * q. Hence $d_{\varphi}(x, p) \leq \frac{\varepsilon}{2}$ and $d_{\varphi}(y, q) \leq \frac{\varepsilon}{2}$. By (16) and (17) we have $d_{\varphi}(x * y, p * y) \leq d_{\varphi}(x, p)$ and $d_{\varphi}(p * y, p * q) \leq d_{\varphi}(y, q)$. By (18), $d_{\varphi}(x * y, p * q) \leq d_{\varphi}(x * y, p * y) + d_{\varphi}(p * y, p * q) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Thus $z = p * q \in B_{\varepsilon}(x * y)$. Therefore $(X, *, \tau)$ is a topological BE-algebra.

4 Quotient BE-algebras induced by pseudo-valuations

Definition 10. Let φ be a pseudo-valuation on a BE-algebra X. Define the relation θ_{φ} by

$$(x,y) \in \theta_{\varphi} \Leftrightarrow d_{\varphi}(x,y) = 0$$

for all $x, y \in X$.

Proposition 11. Let φ be a pseudo-valuation on a BE-algebra X. Then θ_{φ} is a congruence relation on X which is called the congruence relation induced by φ .

Proof. Since θ_{φ} induced by a pseudo-metric, it is an equivalence relation on X. We show that θ_{φ} is a congruence relation. Let $(x, y), (z, w) \in \theta_{\varphi}$. Then $d_{\varphi}(x, y) = 0 = d_{\varphi}(z, w)$. By (11) and (17) we have $0 \leq d_{\varphi}(x * z, y * z) \leq d_{\varphi}(x, y) = 0$. Hence $d_{\varphi}(x * z, y * z) = 0$ and so $(x * z, y * z) \in \theta_{\varphi}$. Similarly, we can show that $(y * z, y * w) \in \theta_{\varphi}$. Since θ_{φ} is a equivalence relation, $(x * z, y * w) \in \theta_{\varphi}$. Therefore θ_{φ} is a congruence relation on X.

Proposition 12. Let φ be a pseudo-valuation on a BE-algebra and θ_{φ} be the congruence relation induced by φ . Then for all $x, y \in X$, (i) $(x, y) \in \theta_{\varphi} \Leftrightarrow (1, x * y), (1, y * x) \in \theta_{\varphi}$. (ii) $F_{\theta_{\varphi}} = \{x * y : (x, y) \in \theta_{\varphi}\}$ is a filter.

Proof. (i) We have,

$$\begin{array}{rcl} (1,x*y),(1,y*x)\in\theta_{\varphi}&\iff&d_{\varphi}(1,x*y)=0=d_{\varphi}(1,y*x),\\ &\iff&\varphi(1*(x*y))+\varphi((x*y)*1)=0\\ &=\varphi(1*(y*x))+\varphi((y*x)*1),\\ &\iff&\varphi(x*y)=0=\varphi(y*x),\\ &\iff&d_{\varphi}(x,y)=0,\\ &\iff&(x,y)\in\theta_{\varphi}. \end{array}$$

(*ii*) Let $x * y, x = 1 * x \in F_{\theta_{\varphi}}$. Then $d_{\varphi}(1, x) = 0 = d_{\varphi}(x, y)$. Hence $\varphi(x) = 0 = \varphi(x * y)$. By (11) and (12) we have,

$$0 \le d_{\varphi}(1, y) = \varphi(y) \le \varphi(x * y) + \varphi(x) = 0.$$

Hence $d_{\varphi}(1, y) = 0$ and so $y = 1 * y \in F_{\theta_{\varphi}}$.

Let φ be a pseudo-valuation on a BE-algebra X and θ_{φ} be the congruence relation induced by φ . Let $[x]_{\varphi} = \{y \in X : (x, y) \in \theta_{\varphi}\}$ and $X/\varphi = \{[x]_{\varphi} : x \in X\}$. Define a binary operation \odot on X/φ as follows:

$$[x]_{\varphi} \odot [y]_{\varphi} = [x * y]_{\varphi}.$$

The resulting algebra is denoted by X/φ and is called the quotient algebra of X induced by pseudo-valuation φ .

Theorem 5. Let φ be a pseudo-valuation on a BE-algebra X. Then $(X/\varphi, \odot, [1]_{\varphi})$ is a BE-algebra and $d^*([x]_{\varphi}, [y]_{\varphi}) = d_{\varphi}(x, y)$ is a metric on X/φ .

Proof. The proof is straightforward. We only show that d^* is well defined. Let x, y, a and b be in X and $[x]_{\varphi} = [a]_{\varphi}$ and $[y]_{\varphi} = [b]_{\varphi}$. Then $\varphi(x * a) = \varphi(a * a)$

 $\begin{aligned} x) &= \varphi(y * b) = \varphi(b * y) = 0. \text{ By (6) we have } x * y \leq (y * b) * (x * b) \text{ and} \\ x * b \leq (b * a) * (x * a). \text{ By (13)}, \ \varphi(x * b) \leq \varphi(x * y) + \varphi(y * b) = \varphi(x * y) \text{ and} \\ \varphi(b * a) \leq \varphi(x * a) + \varphi(x * b) = \varphi(x * b). \text{ Hence } \varphi(b * a) \leq \varphi(x * y). \text{ By a similar} \\ \text{argument we have } \varphi(x * y) \leq \varphi(b * a). \text{ Thus } \varphi(x * y) = \varphi(b * a). \text{ Similarly, we have} \\ \varphi(y * x) = \varphi(a * b). \text{ Hence } d_{\varphi}(x, y) = d_{\varphi}(a, b) \text{ and so } d^* \text{ is well defined.} \end{aligned}$

Example. Let $X = \{a, b, c, d, 1\}$. Define a binary operation * on X as follows:

			b		
1	1	a	b	с	d
a	1	1	b 1 b	с	d
b	1	1	1	с	d
с	1	a	b	1	d
d	1	1	1	с	1

Then (X, *, 1) is a BE-algebra. If $\varphi : X \to \mathbb{R}$ is defined by

$$\varphi = \begin{pmatrix} 1 & a & b & c & d \\ 0 & 3 & 3 & 0 & 3 \end{pmatrix}$$

then by Proposition 7, φ is a pseudo-valuation on X. It is easy to verify that

$$\theta_{\varphi} = \{(1,1), (a,a), (b,b), (c,c), (d,d), (0,c), (c,0)\}$$

and $X/\varphi = \{[a]_{\varphi}, [b]_{\varphi}, [d]_{\varphi}, [1]_{\varphi}\}$ where $[a]_{\varphi} = \{a\}, [b]_{\varphi} = \{b\}, [d]_{\varphi} = \{d\}$ and $[1]_{\varphi} = \{c, 1\}.$

Proposition 13. Let φ be a pseudo-valuation on a BE-algebra X. Then for all $x, y, z \in X$,

 $\begin{array}{l} (i) \ \ If \ [x]_{\varphi} \odot [y]_{\varphi} = [y]_{\varphi} \odot [x]_{\varphi} = [1]_{\varphi}, \ then \ [x]_{\varphi} = [y]_{\varphi}, \\ (ii) \ \ ([x]_{\varphi} \odot [y]_{\varphi}) \odot (([y]_{\varphi} \odot [z]_{\varphi}) \odot ([x]_{\varphi} \odot [z]_{\varphi})) = [1]_{\varphi}, \end{array}$

Proof. (i) Let $[x]_{\varphi} \odot [y]_{\varphi} = [y]_{\varphi} \odot [x]_{\varphi} = [1]_{\varphi}$ for some $x, y \in X$. Then $[x * y]_{\varphi} = [y * x]_{\varphi} = [1]_{\varphi}$ and so $(1, x * y), (1, y * x) \in \theta_{\varphi}$. By Proposition 12 part (i), we have $(x, y) \in \theta_{\varphi}$, that is $[x]_{\varphi} = [y]_{\varphi}$. (ii) The proof is straightforward.

Proposition 14. Let φ be a pseudo-valuation on a BE-algebra X. Then $F_{\varphi} = [1]_{\varphi}$. *Proof.* We have,

$$\begin{aligned} x \in [1]_{\varphi} & \iff (1, x) \in \theta_{\varphi}, \\ & \iff d_{\varphi}(1, x) = 0, \\ & \iff \varphi(1 * x) + \varphi(x * 1) = 0, \\ & \iff \varphi(x) = 0, \\ & \iff x \in F_{\varphi}. \end{aligned}$$

Proposition 15. Let φ be a pseudo-valuation on a BE-algebra X. Then $\overline{\varphi}([x]_{\varphi}) = inf\{\varphi(z) : z \in [x]_{\varphi}\}$ is a pseudo-valuation on X/φ .

Proof. Since for each $x \in X$, $\varphi(x) \ge 0$, $\overline{\varphi}([x]_{\varphi})$ is well defined. By Proposition 14, we have

$$\overline{\varphi}([1]_{\varphi}) = \inf\{\varphi(z) : z \in [1]_{\varphi}\} = \inf\{\varphi(z) : z \in F_{\varphi}\} = \varphi(1) = 0.$$

Now, we show that for each $x, y, z \in X$, $\overline{\varphi}([x]_{\varphi} \odot [z]_{\varphi}) \leq \overline{\varphi}([x]_{\varphi} \odot ([y]_{\varphi} \odot [z]_{\varphi})) + \overline{\varphi}([y]_{\varphi})$. Let $a \in [x]_{\varphi}, b \in [y]_{\varphi}$ and $c \in [z]_{\varphi}$. Then $a * c \in [x * z]_{\varphi} = [x]_{\varphi} \odot [z]_{\varphi}$. By (11), we have

$$\overline{\varphi}([x]_{\varphi} \odot [z]_{\varphi}) = \overline{\varphi}([x * z]_{\varphi}) \le \varphi(a * b) \le \varphi(a * (b * c)) + \varphi(b).$$

Hence

$$\begin{split} \overline{\varphi}([x]_{\varphi} \odot [z]_{\varphi}) &\leq \inf \{\varphi(a * (b * c) : a \in [x]_{\varphi}, b \in [y]_{\varphi}, c \in [z]_{\varphi}\} \\ &+ \inf \{\varphi(b) : b \in [y]_{\varphi}\}, \\ &= \overline{\varphi}([x]_{\varphi} \odot ([y]_{\varphi} \odot [z]_{\varphi})) + \overline{\varphi}([y]_{\varphi}). \end{split}$$

Proposition 16. Let φ be a valuation on a BE-algebra X. Then $\overline{\varphi}([x]_{\varphi}) = \inf\{\varphi(z) : z \in [x]_{\varphi}\}$ is a valuation on X/φ if and only if for each $x \in X$ the set $[x]_{\varphi}$ have a maximum.

Proof. By Proposition 15, φ is a pseudo-valuation on X/φ . Let $\overline{\varphi}([x]_{\varphi}) = 0$ for some $x \in X$. By assumption, there exists $a \in X$ such that $a = max[x]_{\varphi}$. Since for each $z \in [x]_{\varphi}, z \leq a$, we get that $\varphi(a) \leq \varphi(z) \leq \overline{\varphi}([z]_{\varphi}) = \overline{\varphi}([x]_{\varphi})$ and so $\varphi(a) = 0$. Since φ is a valuation, a = 1. Hence $[x]_{\varphi} = [1]_{\varphi}$. Conversely, let $1 \neq x \in X$. If $[x]_{\varphi}$ does not have a maximum, then for each $y \in [x]_{\varphi}$ there exists $z \in [x]_{\varphi}$ such that $y \leq z$. Hence $\varphi(z) \leq \varphi(y)$. Therefore $\overline{\varphi}([x]_{\varphi}) = 0$. Since $\overline{\varphi}$ is a valuation, $[x]_{\varphi} = [1]_{\varphi}$ and hence $\varphi(x) = 0$. Since φ is a valuation we get that x = 1 which is a contradiction.

Proposition 17. Let φ be a pseudo-valuation on a BE-algebra X and F_{φ} be the filter induced by φ . Then $\equiv^{F_{\varphi}} = \theta_{\varphi}$.

Proof. We have,

$$\begin{array}{rcl} (x,y)\in \theta_{\varphi} & \Longleftrightarrow & d_{\varphi}(x,y)=0,\\ & \Longleftrightarrow & \varphi(x\ast y)+\varphi(y\ast x)=0,\\ & \Longleftrightarrow & \varphi(x\ast y)=\varphi(y\ast x)=0,\\ & \Leftrightarrow & x\ast y,y\ast x\in F_{\varphi}\\ & \longleftrightarrow & (x,y)\in\equiv^{F_{\varphi}}. \end{array}$$

Theorem 6. Let φ_1 and φ_2 be two different pseudo-valuations on a BE-algebra X such that $[1]_{\varphi_1} = [1]_{\varphi_2}$. Then $X/\varphi_1 = X/\varphi_2$.

Proof. Let $(x, y) \in \theta_{\varphi_1}$. By Proposition 12, $x * y, y * x \in [1]_{\varphi_1}$. Since $[1]_{\varphi_1} = [1]_{\varphi_2}$, $x * y, y * x \in [1]_{\varphi_2}$. Hence $[x]_{\varphi_2} \odot [y]_{\varphi_2} = [x * y]_{\varphi_2} \in [1]_{\varphi_2}$ and $[y]_{\varphi_2} \odot [x]_{\varphi_2} = [y * x]_{\varphi_2} \in [1]_{\varphi_2}$. By Proposition 13, $[x]_{\varphi_2} = [y]_{\varphi_2}$. Therefore $(x, y) \in \theta_{\varphi_2}$ and then $\theta_{\varphi_1} \subseteq \theta_{\varphi_2}$. Similarly, we have $\theta_{\varphi_2} \subseteq \theta_{\varphi_1}$. Hence $\theta_{\varphi_1} = \theta_{\varphi_2}$ and so $X/\varphi_1 = X/\varphi_2$.

Lemma 1. Let φ be a pseudo-valuation on a BE-algebra X and F be a filter of X such that $[1]_{\varphi} \subseteq F$. Denote $F/\varphi = \{[x]_{\varphi} : x \in F\}$. Then, (i) $x \in F$ if and only if $[x]_{\varphi} \in F/\varphi$ for all $x \in X$. (ii) F/φ is a filter of X/φ .

Proof. (i) Let $[x]_{\varphi} \in F/\varphi$. There exists $y \in F$ such that $[x]_{\varphi} = [y]_{\varphi}$. Hence $(x, y) \in \theta_{\varphi}$. By Proposition 12, $(1, y * x) \in \theta_{\varphi}$ and thus $y * x \in [1]_{\varphi}$. Since $[1]_{\varphi} \subseteq F$, $y * x, y \in F$. Hence $x \in F$. It is easy to show the Converse.

(ii) Since $1 \in F$, $[1]_{\varphi} \in F/\varphi$ by part (i). Let $[x]_{\varphi} \odot [y]_{\varphi}, [x]_{\varphi_1} \in F/\varphi$. Then $[x]_{\varphi} \odot [y]_{\varphi} = [x * y]_{\varphi}$. By part (i) we have $x * y, x \in F$. Since F is a filter, $y \in F$. Hence $[y]_{\varphi} \in F/\varphi$. Thus F/φ is a filter of X/φ .

Proposition 18. Let φ be a valuation on a BE-algebra X and F_{φ} be the filter induced by φ . Then $F/\varphi = \{[1]_{\varphi}\}$ if and only if $F = F_{\varphi}$.

Proof. By definition $F_{\varphi} = [1]_{\varphi} \subseteq F$. We show that $F \subseteq F_{\varphi}$. Suppose that $F \nsubseteq F_{\varphi}$. Then there exists $x \in F$ such that $\varphi(x) \neq 0$. Since $x \in F$, $[x]_{\varphi} \in F/\varphi$ by Proposition 1. By asymption $[1]_{\varphi} = [x]_{\varphi}$ and so $d_{\varphi}(1, x) = 0$. Therefore $\varphi(x) = 0$ which is a contradiction. Conversely, If $F = F_{\varphi}$, then

$$F_{\varphi}/\varphi = \{ [x]_{\varphi} : x \in F_{\varphi} \} = \{ [x]_{\varphi} : \varphi(x) = 0 \} = \{ [x]_{\varphi} : x = 1 \} = \{ [1]_{\varphi} \}.$$

Lemma 2. Let φ be a pseudo-valuation on a BE-algebra X and G be a filter of X/φ . Then $F = \{x \in X : [x]_{\varphi} \in G\}$ is a filter of X such that $[1]_{\varphi} \subseteq F$.

Proof. Since $[1]_{\varphi} \in G$, $1 \in F$ by definition of F. Suppose that $x * y, x \in F$. Then $[x]_{\varphi}, [x * y]_{\varphi} = [x]_{\varphi} \odot [y]_{\varphi} \in G$. Since G is a filter of X/φ , $[y]_{\varphi} \in G$. By definition of F, we have $y \in F$. Thus F is a filter of X. Let $x \in [1]_{\varphi}$. Then $[x]_{\varphi} = [1]_{\varphi}$. Hence $[x]_{\varphi} \in G$ and by definition of F we have $x \in F$. Thus $[1]_{\varphi} \subseteq F$. \Box

Theorem 7. Let φ be a pseudo-valuation on a BE-algebra X, $F(X, \varphi)$ the collection of all filters of X containing $[1]_{\varphi}$, and $F(X/\varphi)$ the collection of all filters of X/φ . Then $\psi: F(X, \varphi) \to F(X/\varphi)$, $F \to F/\varphi$ is a bijection.

Proof. Let $F, G \in F(X, \varphi)$ and $\psi(F) = \psi(G)$. Then $F/\varphi = G/\varphi$. Let $x \in F$. Then $[x]_{\varphi} \in F/\varphi = G/\varphi$. By Lemma 1 part $(i), x \in G$. Thus $F \subseteq G$. Similarly, we have $G \subseteq F$ and so F = G. Therefore ψ is injective. Now, suppose that $G \in F(X/\varphi)$. Put $F = \{x \in X : [x]_{\varphi} \in G\}$. By Lemma 2, F is a filter of X containing $[1]_{\varphi}$. We have $\psi(F) = F/\varphi = G$ because $[x]_{\varphi} \in F/\varphi$, if and only if $x \in F$ if and only if $[x]_{\varphi} \in G$. Hence ψ is surjective.

Lemma 3. Let X and Y be Be-algebras, $f : X \to Y$ a homomorphism and φ a pseudo-valuation on Y. Then $\varphi \circ f : X \to \mathbb{R}$ defined by $\varphi \circ f(x) = \varphi(f(x))$ for all $x \in X$ is a pseudo-valuation on X.

Proof. The proof is clear.

Theorem 8. Let X and Y be Be-algebras, $f : X \to Y$ a epimorphism and φ a pseudo-valuation on Y. Then $X/\varphi \circ f \cong Y/\varphi$.

Proof. By Lemma 3 and Theorem 5, $X/\varphi \circ f$ and Y/φ are Be-algebras. Define $\psi: X/\varphi \circ f \to Y/\varphi$ by $\psi([x]_{\varphi \circ f}) = [f(x)]_{\varphi}$ for all $x \in X$. Suppose that $[x]_{\varphi \circ f} = [y]_{\varphi \circ f}$. Then $(x, y) \in \theta_{\varphi \circ f}$ and so $\varphi \circ f(x * y) + \varphi \circ f(y * x) = 0$. Since f is a homomorphism, $\varphi(f(x) * f(y)) + \varphi(f(y) * f(x)) = 0$. Hence $(f(x), f(y)) \in \theta_{\varphi}$ and so $[f(x)]_{\varphi} = [f(y)]_{\varphi}$. Thus $\psi([x]_{\varphi \circ f}) = \psi([y]_{\varphi \circ f})$, that is ψ is well defined. Now, we show that ψ is a homomorphism.

(i) $\psi([1]_{\varphi \circ f}) = [f(1)]_{\varphi} = [1]_{\varphi}.$

 $\begin{array}{l} (ii) \ \psi([x]_{\varphi \circ f} \odot [y]_{\varphi \circ f}) = \psi([x \ast y]_{\varphi \circ f}) = [f(x \ast y)]_{\varphi} = [f(x) \ast f(y)]_{\varphi} = [f(x)]_{\varphi} \odot \\ [f(y)]_{\varphi} = \psi([x]_{\varphi \circ f}) \odot \psi([x]_{\varphi \circ f}). \end{array}$

Finally, we show that ψ is a bijection. Let $[y]_{\varphi} \in Y/\varphi$. Since f is surjective, there exists $x \in X$ such that y = f(x). Hence $\psi([x]_{\varphi \circ f}) = [f(x)]_{\varphi} = [y]_{\varphi}$ and ψ is surjective. Suppose that $\psi([x]_{\varphi \circ f}) = \psi([y]_{\varphi \circ f})$. Then $[f(x)]_{\varphi} = [f(y)]_{\varphi}$. Thus $\varphi(f(x) * f(y)) + \varphi(f(y) * f(x)) = 0$. Since f is a homomorphism, $\varphi \circ f(x * y) + \varphi \circ f(y * x) = 0$. Hence $[x]_{\varphi \circ f} = [x]_{\varphi \circ f}$ and ψ is injective. \Box

Lemma 4. Let φ be a pseudo-valuatin on a BE-algebra X and X/φ be the corresponding quotient algebra. Then the map $\pi_{\varphi} : X \to X/\varphi$ defined by $\pi_{\varphi}(x) = [x]_{\varphi}$ for all $x \in X$ is an epimorphism.

Corollary 2. Let φ be a pseudo-valuation on a BE-algebra X and X/φ be the corresponding quotient algebra. For each pseudo-valuation $\overline{\varphi_1}$ on BE-algebra X/φ , there exists a pseudo-valuation φ_1 on BE-algebra X such that $\varphi_1 = \overline{\varphi_1} \circ \pi_{\varphi}$.

Proof. It follows from Lemma 4 and Lemma 3.

If τ is a topology on X, then the set $\{U \subseteq X/\varphi : \pi_{\varphi}^{-1}(U) \in \tau\}$ is a topology on X/φ and is called quotient topology on X/φ .

Theorem 9. Let φ be a pseudo-valuation on a BE-algebra X. Then the metric topology induced by $d^*([x]_{\varphi}, [y]_{\varphi}) = d_{\varphi}(x, y)$ coincides with quotient topology on X/φ .

Proof. Let τ_{d^*} be the topology induced by d^* and τ be the quotient topology on X/φ . We have to show that $\tau_{d^*} = \tau$. It is clear that the map $\pi_{\varphi} : X \to X/\varphi$ is continuous, because $d^*([x]_{\varphi}, [y]_{\varphi}) = d^*(\pi_{\varphi}(x), \pi_{\varphi}(y)) = d_{\varphi}(x, y)$. If $U \in \tau_{d^*}$, then $\pi_{\varphi}^{-1}(U) \in \tau_{d_{\varphi}}$ and by definition of quotient topology, $U \in \tau$. Conversely, Let $W \in \tau$. Then $\pi_{\varphi}^{-1}(W) \in \tau_{d_{\varphi}}$. Hence $\pi_{\varphi}^{-1}(W) = \bigcup_{x \in \pi_{\varphi}^{-1}(W)} B_{\varepsilon}(x)$. Since π_{φ} is an epimorphism, $\pi_{\varphi}(\bigcup_{x \in \pi_{\varphi}^{-1}(W)} B_{\varepsilon}(x)) = W$. It is easy to proof that $\pi_{\varphi}(\bigcup_{x \in \pi_{\varphi}^{-1}(W)} B_{\varepsilon}(x)) = \bigcup_{x \in \pi_{\varphi}^{-1}(W)} \{y|_{\varphi} \in X/\varphi : d^*([y]_{\varphi}, [x]_{\varphi}) < \varepsilon\} \in \tau_{d^*}$. Thus $W \in \tau_{d^*}$. Therefore $\tau_{d^*} = \tau$.

Theorem 10. Let φ be a pseudo-valuation on a BE-algebra X. Then $\overline{\varphi} : X/\varphi \to \mathbb{R}$ defined by $\overline{\varphi}([x]_{\varphi}) = \varphi(x)$ is a pseudo-valuation.

Proof. It is enough to show that $\overline{\varphi}$ is well defined. Let $[x]_{\varphi} = [x]_{\varphi}$. Then $\varphi(x * y) + \varphi(y * x) = 0$. Thus $\varphi(x * y) = \varphi(y * x) = 0$. Hence

$$\varphi(x) \le \varphi(y * x) + \varphi(y) = \varphi(y)$$
 and $\varphi(y) \le \varphi(x * y) + \varphi(x) = \varphi(x)$.

Thus $\varphi(x) = \varphi(y)$ and so $\overline{\varphi}$ is well defined. Now, we have $\overline{\varphi}([1]_{\varphi}) = \varphi(1) = 0$ and

$$\begin{split} \overline{\varphi}([x]_{\varphi} \odot [z]_{\varphi}) &= \overline{\varphi}([x * z]_{\varphi}), \\ &= \varphi(x * z), \\ &\leq \varphi(x * (y * z)) + \varphi(y), \\ &= \overline{\varphi}([x * (y * z)]_{\varphi}) + \overline{\varphi}([y]_{\varphi}) \\ &= \overline{\varphi}([x]_{\varphi} \odot ([y]_{\varphi} \odot [z]_{\varphi})) + \overline{\varphi}([y]_{\varphi}). \end{split}$$

For all $x, y, z \in X$. Therefore $\overline{\varphi}$ is a pseudo-valuation on X.

References

- Ahn. S.S., Kim. Y.H. and Ko. J.M., *Filters in commutative BE-algebras*, Commun Korean Math. Soc. **27** (2012), no. 2, 233-242.
- [2] Ciloglu. Z. and Ceven. Y., Commutative and bounded BE-algebras, Hindawi Publishing Corporation Algebra 2013, (2013), article ID 473714.
- [3] Iséki. K., On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
- [4] Iséki. K. and Tanaka, S., An introduction to theory of BCK-algebras, Math. Japonica 23(1978), 1-26.
- [5] Jun. Y.B., Roh. E.H. and Kim. H.S., On BH-algebras, Sci. Math. Jpn. 1 (1998), 347-354.
- [6] Kim. H. S. and Kim. Y. H., On BE-algebras, Sci. Math. Jpn. (2006), 1299-1302.
- [7] Lee. K. J., Pseudo-Valuations on BE-algebras, Appl. Math. Sci. 7, (2013), no. 125, 6199-6207.
- [8] Mehrshad. S. and Golzarpoor. J., On topological BE-algebras, Mathematica Moravica, 21 (2017), no. 2, 1-13.
- [9] Neggers. J. and Kim. H.S., On d-algebra, Math. Slovaca, 49 (1999), 19-26.

- [10] Walendziak. A., On commutative BE-algebras, Sci. Math. Jpn. (e-2008), 585-588.
- [11] Walendziak. A., On normal filters and congruence relations in BE-algebras, Comment. Math. 52, (2012), 199-205.
- [12] Yon. Y.H., Lee. S.M. and Kim. K.H., On congruences and BE-relations in BE-algebras, International Mathematical Forum, 5, (2010), 2263-2270.