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SOME INEQUALITIES OF JENSEN-MERCER TYPE FOR
CONVEX FUNCTIONS ON LINEAR SPACES

Silvestru Sever DRAGOMIR/!

Abstract

In this paper we extend Mercer’s discrete inequality for univariate func-
tions to the case of convex functions on convex subsets of linear spaces and
provide some natural applications for norms.
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1 Introduction

The Jensen inequality for convex functions plays a crucial role in the Theory
of Inequalities due to the fact that other inequalities such as that arithmetic
mean-geometric mean inequality, Holder and Minkowski inequalities, Ky Fan’s
inequality etc. can be obtained as particular cases of it.

Let C' be a convex subset of the linear space X and f a convex function on C.
If p= (p1,...,pn) is a probability sequence and x = (x1,...,z,) € C", then

f <Zpil‘i> <Y pif (wi), (1)
=1 =1

is well known in the literature as Jensen’s inequality.
Recently the author obtained the following refinement of Jensen’s inequality

(see [8])
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FYopi] < min [(1 — k) f (Zj:lpjwj _pkxk> +pkf($k)] (2)

= ke{l 1 —pi
1| > i1 DjTj — DK a
<= A-m)f 1 + ) pif (zr)
n | <= — Pk —
k=1 k=1
> i1 PiTj — P,
< p [(1 — i) f ( 2 119_ka + i f (x)

j=1

where f,x; and pg are as above.
The above result provides a different approach to the one that J. Pecari¢ and
the author obtained in 1989, namely (see [23]):

n

f (sz%) < D) o ---pz‘kﬂf( = 1 zk“) (3)
i=1 i1y p1=1
n
€Ti + oo _|_ €T
01t =1
n
<) pif (i),
i=1

for £ > 1 and p, x as above.
If g1,...,q > 0 with Z;’C:l ¢; = 1, then the following refinement obtained in
1994 by the author [5] also holds:

f (ZPz%) < > pi-pit (W) (4)
i=1

i1y yip=1

n
< Z DPiy - - 'pikf(qlxil 4 +Qkxik)

i1 ymig=1
n

<> pif (),
i=1

where 1 < k < n and p, x are as above.

For other refinements and applications related to Ky Fan’s inequality, the
arithmetic mean-geometric mean inequality, the generalized triangle inequality,
the f-divergence measures etc. see [2]-[8].

In 2003, A. McD. Mercer [17] obtained the following inequality for convex
functions of a real variable f : [m, M] C R — R and the finite sequences x €
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[m, M], and py >0, k € {1,...,n} with >7_, p = 1,

f (m—i—M ZPk%) < f(m) Zpkf (k) (5)

k=1

and applied it to derive a Ky-Fan’s type inequality.

Since then, this result has attracted the attention of many authors that ex-
tended it for positive linear functionals and integrals [1], [15], [18], [24], in rela-
tion with majorization theory [22], for convex functions of selfadjoint operators
in Hilbert spaces [14], [16], [19], [20] and for operator convex functions in Hilbert
spaces [21] and [24].

Motivated by the above results, we extend this inequality for convex func-
tions on convex subsets of linear spaces and provide some natural applications for
normed spaces.

2 Main Results
We have:
Theorem 1. Let f : C C X — R be a convex function on the convex subset C

and z, y € C. If xp, := (1 —ty) x + tpy with ti, € [0,1] and pr > 0, k € {1,...,n}
with > p_, pr = 1, then

f (ﬂsﬂ/ me) <> pef (@ +y— ) (6)
k=1 k=1

(g (o

<fly Zpkf (k)

Proof. By Jensen’s discrete inequality we have

f<$+y—2pkxk> =f<2pk($+y—$k)> < et (w+y—a)

k=1 k=1 k=1

= pef @ty —(1—te)z—tyy)
k=1

= pef (thr + (1 —te)y),

k=1

which proves the first inequality in (6).
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By making use of the convexity of f on C, we derive

Zpkf (tkx + (1 —tp)y) < Zpk (tef () + (1 —tx) f (y)]

= <Zpktk> f(z)+ (1 - Zpk%) f ()
k=1 k=1

which proves the second inequality in (6).
Now, by the convexity of f we also have

FA=tr)x+tey) < (1 —tg) f(2) + S (y)

for k € {1,...,n}. If we multiply this inequality by px > 0, k € {1,...,n} and sum
over k from 1 to n, then we deduce

> e () < Zpk (1 —t&) [ (2) + tef (y)] (7)
k=1 =

(g

(S
(S (S e

n

< F)+f@) =) pef (@),
k=1

which proves the last part of (6). O

Therefore, by (7)

(im%) f(x) +
k=1

Remark 1. We observe that the inequality (6) is equivalent to the inequality

S [f fo (Ep)oo]

Sf(iU)Jrf(y)—Zpkf(ﬂCer—ﬂck)

k=1
Sf(x)Jrf(y)—f(?Cer—Zpkﬂ?k),
k=1

where f : C C X — R is a convex function on the conver subset C, x, y € C,
zp = (1 —tg) z + try with t, € [0,1] and py, > 0, k € {1,...,n} with > };_, pr = 1.
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Since the distance between the extreme terms is greater than the distance
between the internal ones, we can state the following corollary as well:

Corollary 1. With the assumptions of Theorem 1 we have

0< [1 - (Zm%)] f )+ <Zpk:tk) F@ =Y pf@+y—z) (9

k=1
<fly Zpkf k) (33 +y— ZPMk) :
k=1

Further on, we recall the following result obtained by the author in [10] that
provides a refinement and a reverse for the weighted Jensen’s discrete inequality:

. 1 1
nze{r{unn} {pi} [n ; O (z;)— P (n ZZ;&)] (10)
=P, £ Di Xy P, vt Dilq
1 n
< i (I) 3 - % )
Yl tpi} [ Z o (”;x”

where @ : C' — R is a convex function defined on the convex subset C' of the linear
space X, {Zi};cqq, ny C C are vectors and {p;};c(y ) are nonnegative numbers
with P, := """ p; > 0.

We also have:

Theorem 2. With the assumptions of Theorem 1 we also have

f ($+y2pk$k) (11)

k=1
< cmin {pi} [Zf w+y—xk)—nf<w+y—zxk>]
el k=1
+f<$+y—2pkl’k>
<Zpkf (+y—map) < f(= Epkf )
k=1

Proof. By the convexity of f we have

f+y—zr)+ f(oe) < f(x)+ f(y)

for k € {1,...,n}.
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Indeed, since zx = (1 — tx) © + txy, then

flty—ap)+ flap)=f@+ty— 10—tz —ty) + f (1 —t) z+ ty)
= flez+ (1 —te)y) + [ (1 —tp)z+ tyy)
<tef (2) + (L —te) f(y) + (L —tx) f (@) + xS (y)
=f(x)+ 1),
for k € {1,...,n}.
If we multiply this inequality by py > 0 and summing over k from 1 to n, then
we get
S opef @ty —a)+ > pef (@) < fl@)+ ),
k=1 k=1

namely

Zpkf (zt+y—zp) < f(z Zpkf (zk)

This implies that

> ooif(@+y—m) - f <$+y—2pkwk> (12)
k=1

k=1

+f <$+y—2pk$k>

k=1

<T@+ F ) = pef ().
k=1

If we apply the first inequality in (10) for the convex function @ (t) = f (x +y — t),
t € [z,y] then we have

0< _min {p} [Zf x+y—xk>—nf<x+y—2xk)] (13)

""" k=1 k=1

<Zpkf(:v+y—:vk)—f<x+y—zpkka>

k=1 k=1

By making use of (12) and (13) we get the desired result (11). O

We also have:
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Corollary 2. With the assumptions of Theorem 2, we have

OSZPkf($+y—$k)—f<$+y—2pkxk> (14)

k=1

_ZG{I{HD {pi} [Zf x+y—xk)—nf<x+y—2xk>]

< F@)+f ) =Y pef(x) = f <x+y - Zpkﬂﬁk) :
k=1 k=1

The proof follows by Theorem 2 observing that the difference between the
extreme terms is greater than the difference between the internal ones.

Remark 2. Now, observe that by (3),

! <95 +y- Zpﬂ%) (15)
=1

Tig + o+ X
< Z pil---pik+1f<x+y_ 1 " k+1>

U1y 7ik+1_1

€T _‘_..._I_:Lu

zkl

| A

S”'SZPif(fL’er—l’i),
=1

and therefore by (14) we get the following chain of inequalities

n

"L’Z +..'+xl’

0= Z Diy "-pik,_Hf <$—i—y— ! - k+1> (16)

st +1

Z1,...,1k+1:1
_f<$+y—§ pk%)

k=1
. n 1 n

i ) [y o (40 13 )|

> i it <m+y—lk’“> —f<x+y—2pkfck>

1eyip=1 k=1

o in {pi} [;f +y—wk)—nf<w+y—;;xk>]
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<D mefl@+y—ap) — f <x+y—2pkka>
k=1

k=1

_le{r{un {pz [Zf +y—:ck —nf(x—l—y—Zxk)]
ot k=1
Sf(ﬂf)‘Ff(y)—Zpkf(xk)—f<$+y—2pk$k>7
k=1

k=1

provided that f : C C X — R is a conver function on the convexr subset C, x,
y € C, xp = (1 —tg)x + tyy with tx, € [0,1] and p > 0, k € {1,...,n} with
D1 Pk =1

Also, by (4),

n

u Tiy -+
f<x+y—zpm)ﬁ > pil'--pikf<x+y—lk’“> (17)
i=1

i1, ,ikfl

Z Piy - pinf @4y — (Qai, + -+ quziy))

B1yeeeylp=1

<Y pif(r+y—m),

i=1

which by (14) produce the following sequence of inequalities

06 S g (s ) .

Bl yeeeytp=1

—f <$+y—ZPkCEk>

*e{nlmn {pi} [Zf Tty — p) nf<$+yzxk>]

k=1

Z piy - Dip f (@ +y — (wi, + - + qrewiy))

=1

~f <m+y—2pkxk>

k=1

— min {p;} |>_fla+y—a) —nf x+y—fzxk
i€{1,...,n} 1 1
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§Zpkf(:r+y—:rk)—f<w+y—zpkxk>

k=1 k=1
) n 1 n
— min {p;} Zf(x+y—xk)—nf a;—l—y——z.?ck
1€{1,...,n} Pt n/kzl

< f@+fy) = puf (@)~ f <$+y—2pk$k> 7
k=1 k=1
where q1, . ..,q > 0 with Z§=1 ¢ =1

3 Norm Inequalities

If we write the inequality (6) for the convex function f(z) = |z||?, p > 1,
where ||-|| is a norm on X, then we get
n p n
vty = perk| <O prllet+y— el (19)
k=1 k=1

IN

[1 - (im)] ol + (im) o

n
< Iyl + lll” = oe el
k=1

where z, y € X, g := (1 — tg) © + txy with t € [0,1] and pr > 0, k € {1,...,n}
with >~} , pr, = 1. This implies that

0< [1 - (Zm%)] lyll” + (Zm%) ] — Zpk |z +y—al” (20)
k=1 k=1

k=1

VAN

n p

< Nyl + 2 l” = > pe e —
k=1

n
T+y— Zpkxk
k=1

Also, with the same assumptions for x, y € X, xy and py, > 0, k € {1,...,n},
we have

n p
x+y—2pkxk (21)

k=1

1 n
az—f—y—EZa:k

n
< min ; x+y—allP —n
< min {p} !Z |z +y — k| 2

’ k=1

p]

n p

Tty - Zpkflfk;
k=1

n

n
<D opellr+y—al” < yl” + lall” = i sl
k=1 k=1
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This implies that

n n p
O§Zpka+y—kap— :c—i—y—Zpkxk (22)
k=1 k=1
n 1 n p
—  min ; r+y—aglf —njlz+y—=) =z
min {pi} [;H y — y n; " ]
n p

n
< Nyl + 2l = > o llze” —
k=1

Tty - Zpkfﬂk
k=1
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