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MONOTONICITY FORMULAE AND F-STRESS ENERGY

Nour Elhouda DJAA!, Ahmed MOHAMED CHERIF? and
Kaddour ZEGGA*3

Abstract

The goal of this work is the application of the f-stress energy of differ-
ential forms to study the generalized monotonicity formulae and generalized
vanishing theorems. We obtain some generalized monotonicity formulas for
p-forms w € AP(£), which satisfy the generalized f-conservation laws, with
f € C*(M x R) satisfying some conditions.
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1 Introduction

In 1980, Baird and Eells [2] introduced the stress-energy tensor for maps be-
tween Riemannian manifolds, which unifies various results on harmonic maps.
Following [2], Sealey [13] introduced the stress-energy tensor for p-forms with
values in vector bundles and established some vanishing theorems for harmonic
p-forms. Since then, the stress-energy tensors have become a useful tool for inves-
tigating the energy behavior of vector bundle valued p-forms in various problems.
In [7] the authors presented a unified method to establish monotonicity formulae
for p-forms with values in vector bundles by means of the stress-energy tensors of
various energy functionals in geometry and physics.

Recently in 2010, M. Djaa and all introduced the notion of f-harmonic and
f-stress energy [11], [4] and studied by many authors Chiang [3], Y.L. Ou [12], S.
Feng [8], W.J. Lu [10] and others.

The goal of this work is the application of the f-stress energy of differential
forms to study the generalized monotonocity formulae and generalized vanishing
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theorem (Theorem 3.1, Theorem 3.3 and Theorem 3.4).

Let (M, g) be a Riemannian manifold and £ : E — M be a smooth Rieman-
nian vector bundle over M. Set:

AP(E) = NPT*M @ E
the space of smooth p-froms on M with values in the vector bundle £ : E — M.

For a linear connection VZ on E we define the covariant derivative on AP(¢)

(VW) (X1 ooy Xp) = VRW(X1, oo Xp) = Y w(X1, 0, Vi Xy s Xp) (1)
=1

The exterior covariant differentiation dv : AP(¢) — APT1(€) relative to the
connection V¥ is defined by

p+1
(dVw) (X1, X, ., Xpi1) = Y (=1 (Vx,w) (X1, Xo, o0, Xiy ooy Xpy1),
=1

where the symbols covered by "are omitted and X; € T'(TM) for i = 1,...,p + 1.
The codifferential operator §V : AP(¢) — AP~1(£) characterized as the adjoint
of dV is defined by

m

(6Vw) (X1, Xo, oy Xpo1) = — Z(Veiw)(ez’, X1, Xo,.., Xp-1).

i=1
Here {e1, e, ..,ep} is a local frame field on (M, g).

For w € AP(¢), we define the generalized f-energy functional of w as follows:

w2
Bi) = [ @, )

where f: M xR — R, (z,s) — f(z, s) is a smooth function such that f(x,0) =
0, for all x € M and f(x,s) > 0, for all (x,s) € M x R%. Here:

Wl =< w,w >= Z < W(€ips Cigy -y €y )y W(€iy s €iys oy €7)) >
11 <12 <..<ip

If f(z,s) = f(x)s, ¥(x,s) € M x R we deduce the energy functional of w defined

in [9], where f: M — (0,00) is a smooth function.
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2 Generalized f-stress energy tensor

If (g); is a smooth 1-parameter family of metrics with go = g, then the variation
dg

0g = §|t:0 is a smooth symmetric tensor on M. We have:
Proposition 1. Let (M,g) be a Riemannian manifold and £ : E — M be a
smooth Riemannian vector bundle over M with a metric compatible connection

VE and w € AP(€), then

d 1
GBI =5 [ <Si(hbe >, (3)
where:
Sew) = fug — fow O w, (4)

is called generalized f-stress energy tensor for w, f, € C°(M) is a smooth func-
tion defined by:
jw|?
fulz) = f(z, T), Ve e M

and fU/J € C®(M) is a smooth function defined by:

0 2 2.9
= [ [5 (@ 55 ) + s 50 w],
B 10 |w? of, |w? lw|?,
= /M T R I (= S O]

gt(’w;))t:o =—<wduw,dg >,
and:
gt(vgt) o % < 9,09 > vg,
so that
%Ef(w)’tzo - ;/M < fug— fwowdg> v,

1
:/ < Sp(w),dg > vg.
2 Jm
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Proposition 2. Let (M,g) be a Riemannian manifold and £ : E — M be a
smooth Riemannian vector bundle over M with a metric compatible connection
VE, f: M xR — (0,00), (x,5) — f(x,s) a smooth function and w € AP(),
then:

(divSp(w)(X) = X(flo— <igaq p w,ixw >

+f;[<5vw,ixw>+<ixde,w>], (5)

for all X € T(TM), where X(f), € C®°(M) is a smooth function defined by:

w 2
X(u(e) = X(P)e, 5, e M

Proof. Let {e1,..,em,} be an orthonormal frame on (M, g), such that at x € M,
Ve,e; = 0. By using (4), we have:

(div Sy (w =" [vel Sp(w))(es, X) — Sp(w))(es, VeiX)]
1

.
I

I
Ms

Ve | fuglen X) = flw @ w(er, X)|

i=1
S (6)
— > | fo9(Ve X e) + fow ©w(Ve X, )
i=1
= dfw(X)— < igradf’ w,ixw >
- Zf Ve, <lew,ixw > — <, iy, xw >].
i=1
The first term in the right side of (6) is
dfu(X) = X(f)
_ jw|?
= X(f(z, =) (7)
wl?,
= X(fo + X ()
From the Lemma (1.2) in ([9]), we deduce that:
jw|”
X(T) = Z <wl(ei ey i,y ) (Vew) (X ey, e5, 1) >

J1<.<Jp—1,%
. \%
+ <ixdYw,w >,

so that:
df(X) = X(flo + [, < ixd w,w >

Y <wlen e ey ) (Vew) (X eyseg, ) > . ()
J1<j2<..<Jp—1,t
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for the third term in the right side of (6), we have:

v

<6Vw,ixw > =<V wle;,, iy 1), wW(X ey, e, ) >

m
=—-< Z(Veiw)(ei,ejl, i) w(X, e,y e, 1) >

i=1
m
=—< Zveiw(ei,eﬁ, €y y),w(X, ey, e, 1) >
i=1
m
= —Zvei < w(e;, €5y, ..,ejp_l),w(X, €j1, -~a€jp_1) >
i=1

+ E <w(ei,ejl,..,ejpfl),Veiw(X, ejl,..,ejpfl) >
J1<42<..<Jp—1,%

m
= - E Vei < leW,txwW >
i=1

+ Z <iew, (Ve,w) (X, €515 €5,1) +w(Ve, X, €51, 5 €5,1) >
J1<..<Jp—1,%

m
= _Z[V&' g, ixw > — < le,w, iy, xW) >]
i=1
+ Z <w(ei,ejl,..,ejpfl),Veiw(X, ejl,..,ejpfl) >,

J1<j2<..<jp—1,t

that is:

m

Z[v&,‘ < ieiwviXW > =< ieiw’iv%Xw) >] -
=1

Z <w(eisejyy-ej,_ 1), Ve,w(X, €5, .n€j, 1) > — < Vw,ixw > . 9)
J1<..<Jp—1,t

Finally, by replacing (8) and (9) in (6), we obtain the result of the proposition
(2). O

Definition 1. w € AP(§) (p > 1) is said to satisfy a generalized f-conservation
law if it satisfies the following equation:

(div S (w)(X) = X (f)ew-

By applying T'= S¢,, in (7) (see [9]), we have:

Stw(X,v)dsy = / [(Sf,w, %Lxg> + X (f)w|dvg. (10)
oD D

Let T'o(TM) be a subset of I'(T'M) consisting of all elements with compact
supports contained in the interior of M.
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Definition 2. w € AP(§) (p > 1) is said to salisfy a generalized integral f-
conservation law if it satisfies the following equation:

/M(div Stw)(X)dvy = /M X(f)wdvg,

for any X € To(TM).
From the equation (7) in [9], we have:

1 :
/M [<T 5LXg> + (div T)(X)}dvg =0, (11)
for any X € I'o(TM). From Definition (2) and equation (11), we have:
1
[ (s gxa) + X (11 v, =0, (12)

for any X € I'o(TM) and w € AP(§) (p > 1) satisfies the generalized integral
f-conservation law.

3 Monotonicity Formulas and Vanishing Theorems

Let (M, go) be a complete Riemannian manifold with a pole xg. Denote by
r(z) the go distance function relative to the pole xg, that is r(z) = disg, (z, zo).
Set:

B(r)={ze M™ :r(x) <r}.
It is known that % is always an eigenvector of Hessg, (r?) associated to eigenvalue

2. Denote by Apaz (resp. Amin) the maximum (resp. minimal) eigenvalues of
Hess,, (r?) — 2dr ® dr at each point of M — {zo}.

From now on, we suppose that w € AP () satisfies the generalized f-conservation
law and £ : E — (M, g) is a smooth Riemannian vector bundle over (M, g) where
g=¢%g0, 0 < o € @°(M). Clearly, the vector field v = @‘1% is an outer normal
vector field along 0B(r) C (M, g). We assume the following conditions for ¢:

(p1) 2se >

(p2) there is a constant Cy > 0 such that:
01 -1
[Ology  m

-2
(m 2 or 2

)\min +1- pmax(27 )\max) > 007

NOW We set ju = Supjrxge Tfalgf” < 0.

Theorem 1. Suppose thatw € AP(§) (p > 1) satisfies the generalized f-conservaion
law and & : E — (M, g) is a smooth Riemannian vector bundle over (M, ¢%gg).
If Co — >0, @ satisfies (¢1) , (p2) with s% < f, and g—ﬁ >0, then

fB(Pl) fudvg < fB(P2) fudvg
Co—p - Co—p 7’
P1 P2

for any 0 < p1 < p2
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Proof. We take D = B(r) and X = r% = %VO’I‘Q, where VY denotes the covariant
derivative determined by go. By a direct computation, we have :

(10 52x(0)) = (Spr o8 Lg 1+ L L)

- 81§§¢<Sﬂw,g> + %4,02<Sf7w,Hessgo(r2)>.

Let {e;}", be an orthonormal basis with respect to go and e, = %. We may
assume that Hessg,(r?) becomes a diagonal matrix with respect to {e;}, then
{é; = ¢~ le;} is an orthonormal basis with respect to g. For the first term of (13):

<Sf’w,g> = i Stw(€is€j)g(éi, €5)

(13)

ij=1
= > [fu9(6,6)9(6:, 65) — fo(w © w)(é, €)g(é, 65)]
ij=1 (14)
=mf, — f(:, Z <igw,lgw >
i=1
= mfu, ~ fplwl.
For the second term of (13), we have:
LSy Hessyy (1) = 5 3 570066 Hessg (1)@,
5P\ Srw Hessg(17) ) = 5 Z tw(€i,€j)Hessg, (r)(é;, €
ij=1
1, o o
= 5‘:02 Z [fwg(ei,ej)Hesng(TZ)(ei,ej)
ij=1
- f(:z(w O w)(€, éj>H68390<r2)(6~i7 é])
m (15)
1
— §fw Z Hessgy (%) (e, ;)
i=1
L~
2fw Z; <idgw,igw > Hessgy (1?)(e;, ;)
1 1 ’ 2
> if [( - 1))\mm + 2] - 5ma:c(2, Amax)pr|w‘ :
From (13), (14), (15), (¢ ) and (p2), we have:
1 / 2 1
(St 5Lx(9)) 2 022 [inf = fopleol?] + 5 ful(m = 1w +2)
— = max(2 Amax) wp|w|2
16)
dlogpy m—1 (
> .
Z (mr or + B Amin + 1) Jw
Olog ¢ s |wl?
_ <2p7" or +pmaX(2,)\max)>fw7,
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, 2
by using the condition sg—f: < f, we have fw% < fu, then:

1 dlogey m—1
(310 150 2 [on -2 2282

> COfw-

)\min + 1-— p max(2, )\max)] fw

(17)
On the other hand, by the Coarea formula and |Vr|, = ¢ ™!, we have:

/ Stw(X,v)dsg = / [fwg(X7 V) — f;(w Ow)(X,v)|dsg
OB(r) OB(r)
[ [halrg e 00 - @) o) ds,
OB(r)

r’ or’

= 'r/ Jwpdsg — / f;rtp_l(w O w)(0r, 0r)ds,
OB(r) OB(r)

<r / fopds,
OB(r)

d [" / fo
<r— ——ds, |dt
~dr g ( oB(r) V] g>
i /
<r— fudu,.
dr JaB(r) I
(18)

If w satisfies a generalized f-conservation law, then from (10), (18) and (17), we
obtain:

0 d
C fwdv —l—/ r(df(=—))wdvy < r— Sfwdv 19
* o 0 Lo (df (5, ))wdvg <7 o 1M (19)

On the other hand, we have
dlog f

L= sup r
Mij_’ or |

then p > —f%(%)w, so that ,uf7“ > —(%)w, and:

of
/L/ Juwdvg > —/ T )wdvg,
B(r) g B(r)( 8r) g
we get:
Co Jwdvg — p Jwdvg < r— Jwdvg,
B(r B(r) d )
that is:
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so that:

ifB(r) fudvg >0

dr rCo—n =
Therefore,

f fwdvg < fB (p2) fwd”g
C — C ’
pCo=# pSoH

for any 0 < p; < pa. This proves Theorem (1). O

Let w : M — N be an f-harmonic map. Then its differential du can be viewed
as a 1-form with values in the induced bundle «~'TN. Since w = du satisfies the
generalized conservation law (see [11]), we obtain the following Liouville-type
result:

Corollary 1. Suppose that u : (M,¢%gy) — N is an f-harmonic map. If
Co — p >0, ¢ satisfies (1), (p2) with S% < f and % >0, then

fB (p1) fudUg fB (p2) fud”g

Co—p — Co—p
P10 P20

for any 0 < p1 < pa, where f,, € C°(M) defined by:

Ffulz) = fz, 92 v e M.

Proof. This follows at once from Theorem 1 in which p =1 and w = du. O
From (19), we immediately get the following:

Corollary 2. Suppose that w € AP(§), (p > 1) satisfies the generalized f-
conservation law, and & : E — (M, g) is a smooth Riem(mman vector bundle
over (M, 0%qo). If ¢ satisfies (1), (p2) and f satisfies s < f, 8f >0, and
% >0, then

fB(m) Fudvg fB pz) Fudvg

— i

C
pr’ P2

for any 0 < p1 < pa.

Lemma 1. ([9]) Let (M, g) be a complete Riemannian manifold with a pole xg.
Denote by K, the radial curvature of M.

i) If —a® < K, < —B% witha > >0 and (m — 1) — 2pa > 0, then:

[(m — 1) Amin + 2pmax(2, Apax)] > 2(m — 7)

i) If — WSK< — B withe >0, A>0 and 0 < B < 2¢, then:

(1+r2)

[(m = 1) Amin + 2pmax(2, Amax)] > 2[1 + (m — 1)(1 — % — opei].
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iii) If — CQ+ s < K, with a >0, b €0, i] and c* >0, then:

14+ V1 —4b2 9 1+\/1+4a2]
_p .
2 2

2
2+2

[(m—1)Amin+2p max(2, Amax)] > 2|1+(m—1)

Theorem 2. Let (M, g) be an m-dimensional complete manifold with a pole x.
Assume that the radial curvature K, of M satisfies one of the following three
conditions:

i) —a2§KT§—,82 with a > >0 and (m — 1) — 2pa > 0;

__ B
(1+T2)1+6

iii) — 2+2§K§2+2 wz’thaZO,bQE[O,%]and > 0.
If w e AP(E), (p > 1) satisfies the generalized f-conservation law with s% <f,

%anndl\—,u>O, then

f fwdvg < fB (p2) fwdvg

Au — A—p )
P1 P2

for any 0 < p1 < po, where:

m— 2%&, if K, satisfies i)

1+ (m—-1)(1- %) 2pe£, if K, satisfies )
1+ (m— 1) 5741’2 — 2pltv 12+4“2, if K, satisfies 4i1).

A

Proof. From the proof of Theorem 1 for ¢ = 1 and Lemma 1, we have
d fB(r) fodug
— 2 >0,
dr rAr =

therefore, we get the monotonicity formula:

fB fwdvg fB fwdvg

Plu PQM

for any 0 < p1 < p2. O

Corollary 3. Let M , K, and A be as in Theorem 2. If w € AP(&) , (p > 1)
satisfies the generalized f-conservation law, with 5% < f %{: >0 and g—f >

then
fB(Pl) fudvg fB (p2) f‘”dvg
Py - P

: (20)

for any 0 < p1 < p2.

Proof. from Corollary (2) for ¢ = 1, we know that formula (20) is true. O
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From [9], we can say that the functional Ef(w) of w € AP() is slowly divergent

if there exists a positive function ¢ (r) with |’ ;3 MZ(T) =00 (Rp > 0), such that:
lim / Ldvg < 0. (21)
R—o0 Jp(r) ¥(r(7))

Theorem 3. Suppose that w € AP(§) (p > 1) satisfies the following equation:

/ (div S.) (X)dvy — / X (f)udv, (22)
M M

forany X e I(TM), and & : E — (M, g) is a smooth Riemannian vector bundle
over (M, ¢?go). If Co—pu > 0, ¢ satisfies (¢1), (¢2) and Ef(w) is slowly divergent
with s% < f and % >0, then w = 0.

Proof. From (17), we have:

<Sf7wv %Lx9> + (X () 2 (Co = p) fur (23)

On the other hand, taking D = B(r) and T' = Sy, in (7) of [9], we have

[(Sp: 1LXg> + (div S7.)(X)] oy,

Stw(X,v)dsg = / 5

oD D

so that: )
/ <Sf7w,fLXg>dvg —l—/ (div Sy ) (X)dyg
B(r) 2 B(r)

= / Stw(X,v)dsg
dB(r)

= / fwg(X,v)dsg — / f;(w Ow)(X,v)dsy
0B(r) 0B(r)
m (24)
=r fwpds, — / f(;goflr <iow,iow)ds
/6B(7") I OB(r) ; or or ) 7

< 1"/ fopdsg.
OB(r)

Here f; > 0 because g—g > 0. Now suppose that w is not always zero, so there
exists a constant R; > 0 such that for R > Ry,

/ fudvg > C3, C3 > 0. (25)
B(R)
From (22):

lim div Sy ,)(X)dv, = lim X (f))wdvy,
Jim B(R)( fw)(X)dvg = lim B(R)( (f))wdvg
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then, 4R, > R such that VR > Rs:

(Go-me, o / (div Sy )(X)dvy — [ X(Pludv, < LBy (2p)
2 B(R) B(R) 2

from (23), (24) and (26), we obtain

1
R/ Jupdsy > / < Stw, QLXg > dvg +/ (div St ) (X)dyg
OB(R) B(R) B(R)

(Co — )

5 O3

)

1
2/ |:<Sf,wa§LXg>+X(f)w}dvg_
B(R)

Ch —
> (Co — M)/ Jwdvg — (O2M)C3
B(R)

> MC&
2
that is:

/ forpdsy > M03. (27)
8B(R) 2R

From (27) and |Vr| = ¢!, we have:
. fu > dR /
lim / ————dv, = — fwipds
R—oo Jpry ¥(r(@)) 7 Jo  »(R) Jogm) I

* dR /
> —— Jwipds
Ry Y(R) JoB(r) I

Ry 2R w(R)
*© dR
(o= f, 2Ry
which contradicts (21), therefore w =0 O

Theorem 4. Suppose that w € AP(§) (p > 1), satisfies the generalized integral
f-conservation law, i.e.

/ (div S.) (X)dvy — / X (f)udv,
M M

and £ : E — (M, g) is a smooth Riemannian vector bundle over (M, ¢%go). If
Co — > 0, ¢ satisfies (p1) and (p2), with [, fudvy < oo and s% < f, then
w=0.

Proof. We take X = d)(r)r% = 1¢(r)Vr2, where V° denote the covariant deriva-
tive determined by go and ¢(r) is a nonnegative function determined later. By a
direct computation, we have:

<Sf,w7 %Lxg> = ¢(7‘)7’81§§¢<5ﬁw79> + %¢2<Sf,wv L¢(r)rg90>- (28)
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Let {e;}™, be an orthonormal basis with respect to go and e, = %. We may
assume that Hessg, (%) becomes a diagonal matrix with respect to {e;}" . Then
{é; = ¢~ le;} is an orthonormal basis with respect to g. We compute:

1 ~ ~
902<Sf,w7 iL o(r) ro 90> 2 Zl wa 6176] ( )r%go)(elﬁe‘j)
7.7
= goQ[ Z fwg(éi7éj)(L(b(T)r%gO)(éi’éj)
3,j=1

— ol ©w)(En ) Lyy.2.90)(E0r )

= FulLy(yr2.90)(eir i)
=1

~ 3 Fow O @)@ ) Ly, 0 00) e ;)

3,j=1

T) Z fuHessg, (1) (es, €5) + 2fw7‘¢/(r)

=1

") D fulw ©w)(&, &) Hessg, (1) (e:, ;)

ij=1
- 2f¢;70¢/(7’)(w © W) (Ems €m)
> ¢(r) fuwl2 + (m — 1) Amin]

m—1
— o(r )f max (2, Amax) Z (wOw)(&,€é;)
i=1
+2f,r¢ (1) — 2£,7¢ (1) (W © W) (Em, ém)
> O(r) ful2 + (m — 1) Amin]
— 6(r) f, max(2, Amax)p|w]*2 7 (1)
— 2f;rq§/(r)(w O w)(Em, €m)-

2
As 59 < f we find that =) < £, we obtain:

902<Sf,wa %L¢(T)T%go> > ¢(r) ful2 + (m — 1) Amin
— 2pmax(2, Amax)] + 2£u76 (1) (29)
—2£,7¢ (1)(w © W) (Em, Em)-
From (14), (28) , (29) and (1), (122):

Olog (m—l))\

(Spsr3Lxa) 2 60 LB L m gy = 2ph) + 00) ol + 7 N = p1aX(2, A
+ furd (r) = o6 (1)@ © ) (Em &)
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> ¢(r)7“81§§spfw [m — 2p] + &(r) full + (m2_1))\mm — pmax(2, Amax)]
+ furd (r) = furd (r) (@ © W) (Em, ém)
> o) fullm —2p)r DB 1 Dy a2 Ae)] 0

+ furd (r) = ford (r) (@ © @) (Em, ém)
> Cod(r) fuo + furd (r) = furd (r)(w © w)(Em, ém).

= r|of .
From p = supp/yrs f‘ar |, we have:

1 of
w2 _rf(.T, S) (E)(x,s):VI(mvs) €M xR,
so that: L af b0
r

SRR}
that is:

X(f)w Z _Mfw¢(r)‘
We get:

(S 5Lx0) + X(Flo > (Co— W) fu + Ford (r) — ford (1) © ) (Em, ).
(31)

For any fixed R > 0, we take a smooth function ¢(r) which takes value 1 on
B%(azo), 0 outside Br(xp) and 0 < ¢(r) < 1 on Tr(zo) = Br(xo) — Bg(azo).

And ¢(r) also satisfies the condition: |¢' (r)] < % on M, where C is a positive
constant.
From (12) and (31), with the condition s% < f, we have:

0> /M<co W) fudvg + /M furd (r)dv, — /M F2r6 (1) (@ © w) (s )y

Tr(zo)

> [ G-y -G fudn -G [ fJePd,
Bg (z0) Tr(zo0) Tr(zo0)

> (Co— 1) / Fodvy — s / Fudvy — 2Cop / Fud,
B%(Io) Tr(zo

> [ Commpnt [ g0y [ L ) 00 e

Tr(zo0)

>(Co-w) [ fudiy—(+20)Co [ fude,
B% z0) Tr(zo0)
(32)
From [, fudvy < co, we obtain limp_,o fTR(a:o) fwdvg =0, so by equation (32),
we have:
0= (CO - M) Rhm fwdvga

> Bg(xo)
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that is:
0= (Co—p) [ fuds,
M
So that w = 0. ]
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