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QUASI INVO-CLEAN RINGS

Peter V. DANCHEV 1

Abstract

An element v of an arbitrary ring R is called an involution if v2 = 1 and
a quasi-involution if either v or 1− v is an involution. We thereby define R
to be quasi invo-clean as the one whose elements are written in the form of
a sum of an idempotent and a quasi-involution. This considerably extends
the class of invo-clean rings introduced by the present author in Commun.
Korean Math. Soc. (2017) and the class of weakly tripotent rings introduced
by Breaz and Ĉımpean in Bull. Korean Math. Soc. (2018). We, more-
over, prove the curious fact that the newly defined class of quasi invo-clean
rings actually coincides with the class of weakly invo-clean rings defined by
Danchev in Afr. Mat. (2017).
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1 Introduction and Preliminaries

Throughout the text of the current article, all rings R are assumed to be
associative possessing the identity element 1 which differs from the zero element
0. Our standard terminology and notation are mainly in agreement with [7]. For
instance, U(R) denotes the set of all units in R, Id(R) the set of all idempotents
in R, Nil(R) the set of all nilpotents in R, J(R) the Jacobson radical of R, and
C(R) the center of R. The specific notions and notations will be given explicitly
in what follows.

Recall that an element y of a ring R is called tripotent if the equality y3 = y
holds. If each element of R is equipped with this property, the ring R is said
to be tripotent as well. The complete description of such rings is given in [6].
Specifically, they are a subdirect product (= a subring of a direct product) of a
family of copies of the fields Z2 and Z3.
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It is worth noticing that special tripotent elements are the involutions, i.e.,
the units v of order at most 2 (writing v2 = 1) as well as all idempotents (writing
e2 = e).

In a similar vein, in [1] were recently defined and explored the so-called weakly
tripotent rings that are rings in which, for every element x, at least one of the
elements x or 1 + x is a tripotent. It is immediate that weakly tripotent rings of
characteristic 3 are always tripotent, because (1+x)3 = 1+x3 = 1+x yields that
x3 = x. Also, referring to [1, Proposition 2], the given conditions on x and 1 + x
to be tripotents are obviously equivalent to either x or 1 − x to be tripotent by
replacing x with −x.

On the other hand, recently in [2] invo-clean rings were introduced as those
rings R such that, for each element r ∈ R, there exists an involution v ∈ R and an
idempotent e ∈ R depending on r such that r = v + e. In particular, if ve = ev,
invo-clean rings are termed strongly invo-clean. We hereafter shall respectively
call such elements r invo-clean and strongly invo-clean as well. These rings were
intensively studied in [4], [8] and [9], respectively. Some further generalization to
such rings was established in [3] by defining the class of weakly invo-clean rings R
for which at least one of the equalities r = v + e or r = v − e holds – henceforth
we shall call such elements r weakly invo-clean too. We will somewhat comment
in detail these rings below.

In the light of the above element-wise elementary observations about weakly
tripotents, one can note the simple but useful fact that the element r is (strongly)
invo-clean exactly when the element 1−r is (strongly) invo-clean. In fact, r = v+e
implies that 1 − r = (−v) + (1 − e), where −v is an involution and 1 − e is an
idempotent. Reciprocally, the writing 1 − r = w + f , for some involution w and
an idempotent f , forces that r = (−w) + (1− f), as required.

In that way, what can be said for any weakly invo-clean element r, is the
following:

• r is weakly invo-clean ⇐⇒ r or 1 + r is invo-clean.

Indeed, if r = v − e, then r + 1 = v + (1 − e). Conversely, r + 1 = w + f for
some involution w and some idempotent f gives that r = w− (1− f), as needed.

• r is weakly invo-clean ⇐⇒ r = v + e, where v or 1 + v is an involution.

Indeed, r = v − e with involution v can be equivalently written as r = (v −
1) + (1− e) with involution 1 + (v− 1) = v. Reversibly, r = v + e with involution
1 + v is equivalent to r = (1 + v)− (1− e), as expected.

That is why, inspired by these two equivalencies and by analogy with the
property of the already commented above weakly tripotent rings, it will be of
interest to consider those records v + e in a ring for which e2 = e and either
v2 = 1 or (1 − v)2 = 1 – such an element v will be called in the sequel a quasi-
involution.

So, taking into account the second bullet point listed above, we come to our
key tool.
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Definition 1.1. We shall say that a ring R is quasi invo-clean if, for any r ∈ R,
there exists a quasi-involution v ∈ R and an idempotent e ∈ R both depending
on r such that r = v + e.

It is evident that invo-clean rings are both weakly invo-clean and quasi invo-
clean as this implication is extremely non-reversible by looking quickly at the field
Z5. Even something more, in an invo-clean ring R each element r ∈ R can be
written simultaneously in the form r = v + e = w + f such that e, f ∈ Id(R) and
both v and 1 − w are involutions. Indeed, the first record for r follows directly
from the definition of an invo-clean clean. Now, since r− 1 also belongs to R, we
may write that r − 1 = u + f for some involution u and idempotent f of R. So,
r = w + f , where w := 1 + u and hence seeing at once that 1 − w = −u is an
involution, too, as promised. We shall freely use this fact in Lemma 2.3 in the
sequel.

On the other side, a direct inspection shows that the field F4 consisting of four
elements is surely not a quasi invo-clean ring of characteristic 2.

Incidentally, the next relationship significantly strengthens [1, Corollary 4] and
is our basic point of view.

Proposition 1.2. Every weakly tripotent ring is strongly invo-clean.

Proof. For such a ring R, we have r3 = r or (1− r)3 = 1− r whenever r ∈ R. By
what we have shown above an element r is strongly invo-clean uniquely when the
element 1 − r is strongly invo-clean, so it suffices to consider only the tripotent
element r. Furthermore, one writes that r = (1 − r2) + (r2 + r − 1). A direct
manipulation shows that 1− r2 ∈ Id(R) as r2 ∈ Id(R) and that (r2 + r− 1)2 = 1,
observing elementarily that these two elements commute, as desired.

However, the next construction unambiguously illustrates that the reverse im-
plication in this statement is impossible even in the commutative case. Specifically,
the following assertion holds:

Example 1.3. There exists a commutative (strongly) invo-clean ring of charac-
teristic 2 which is not weakly tripotent.

In fact, let us consider the group ring R = BG, where B 6∼= Z2 is a Boolean
ring and G is a group consisting only of elements of order at most 2. Clearly, the
equality r4 = r2 is valid for each element r ∈ R as char(R) = 2. Consequently,
one writes that r = (1+r2)+(1+r+r2), where a routine direct check shows that
1 + r2 is an idempotent as so is r2, and 1 + r + r2 is an involution, as required.

However, as B contains non-trivial idempotents, elementary calculations show
that both inequalities r3 6= r2 and r3 6= r are fulfilled, which facts we leave to the
interested reader for an easy inspection. This, in turn, assures us that R cannot
be weakly tripotent, because the first given inequality r3 6= r2 is amounting to
the inequality (1− r)3 6= 1− r. This concludes the example and substantiates our
claim.
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It, however, manifestly seems that the non-commutative weakly tripotent rings
are not comprehensively characterized in [1], so that some more material in this
aspect is definitely needed. In fact, we already proved in Proposition 1.2 stated
above that these rings are strongly invo-clean. Moreover, as showed in [2, Corol-
lary 2.17], accomplishing this with the chief result from [5], if a ring R is strongly
invo-clean, then R is decomposable as R1 × R2, where R1 = {0} or R1/J(R1) is
Boolean with nil J(R1) of index of nilpotence at most 3, and R2 = {0} or R2 is
a subdirect product of a family of copies of the field Z3.

Resuming all details, our motivation in writing up the paper is to encompass
the two classes of weakly tripotent rings mentioned above and invo-fine rings
generalizing them to this new context of quasi invo-clean rings by obtaining a
complete description of their crucial properties.

2 Main Results and Problems

We begin our work with the following technicality which is a common strength-
ening of [1, Lemma 1 (3)].

Proposition 2.1. Each quasi invo-clean ring R decomposes as R ∼= R1×R2×R3,
where R1, R2, R3 are either zero rings or non-zero quasi invo-clean rings for which
8 = 0 in R1, 3 = 0 in R2 and 5 = 0 in R3, respectively.

Proof. Every element can be written as v+e, where e2 = e and v2 = 1 or v2 = 2v.
Since any of the elements 0, 1, 2, 3 clearly has such a trivial record, we approach
the element 4 = v+e. In the first case, we have that (4−e)2 = 1 ensuring 15 = 7e.
Squaring this, one has that 225 = 49e = 105 which means that 120 = 8.3.5 = 0.
In the second case, we deduce that (4 − e)2 = 2(4 − e) assuring 8 = 5e. The
squaring leads to 64 = 25e = 40 which amounts to 24 = 8.3 = 0. Finally, we
derive in both cases that 23.3.5 = 0, as promised.

But since (8, 3, 5) = 1 we, therefore, apply the Chinese Remainder Theorem
to get the wanted direct decomposition into the indicated above rings R1, R2 and
R3. It now easily follows by element-wise arguments that the three direct factors
R1, R2 and R3 are quasi invo-clean, as claimed.

Our next pivotal instruments are the following ones.

Lemma 2.2. A ring R of characteristic 5 is isomorphic to Z5 if, and only if,
every element of R satisfies at least one of the equations x3 = x or x3 = −x.

Proof. ”Necessity.” It is pretty straightforward to verify that all elements of
Z5 = {0, 1, 2, 3, 4 | 5 = 0} satisfy at least one of the equations x3 = x or x3 = −x.

”Sufficiency.” Letting P be the subring of R generated by 1, we see that P ∼=
Z5. We claim that P = R, so to show that we assume in a way of contradiction
that there exists b ∈ R \ P . With no loss of generality, we shall also assume that
b3 = b since b3 = −b obviously implies that (2b)3 = 2b as 5 = 0 and b 6∈ P ⇐⇒
2b 6∈ P .
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Let us now (1 + b)3 = −(1 + b). Hence b = b3 along with 5 = 0 enable us that
b2 = 1. This allows us to conclude that (1 + 2b)3 6= ±(1 + 2b), however. In fact,
if (1 + 2b)3 = 1 + 2b, then one deduces that 2b = 3 ∈ P (and so b = −1 = 4 ∈ P )
which is, certainly, manifestly untrue. If now (1 + 2b)3 = −1− 2b, then one infers
that 2b = 2 ∈ P which is, of course, false as well. That is why, (1 + b)3 = 1 + b
must hold. This, in turn, guarantees that b2 = −b. Moreover, b3 = b is equivalent
to (−b)3 = −b and, by what we have proved so far applied to −b 6∈ P , it follows
that −b = b2 = (−b)2 = −(−b) = b. Consequently, 2b = 0 = 6b = b ∈ P because
5 = 0, which is the wanted contradiction. We thus conclude that P = R, as
claimed.

We, however, notice the interesting fact that if R is a ring of characteristic
5 whose elements satisfy the equation x5 = x, then R is a subdirect product of
a family of copies of the field Z5 (see, for instance, [7]). In our situation both
x3 = x and x3 = −x imply x5 = x, but accomplishing this with the previously
mentioned fact is absolutely not enough to conclude our claim.

Lemma 2.3. The direct product P ×L of two rings P and L is a quasi invo-clean
ring if, and only if, both P and L are quasi invo-clean rings and at least one of
P or L is an invo-clean ring.

Proof. Given the ring P × L is quasi invo-clean, it readily follows by simple
element-wise arguments that both P and L are also quasi invo-clean. Further, we
assume in a way of contradiction that neither P nor L is invo-clean. As already
commented above, there will be elements a ∈ P and b ∈ L such that a is not
presentable as a = v + e with v2 = 1 and e2 = e for some v, e ∈ P and b is not
presentable as b = w + f with (1−w)2 = 1 and f2 = f for some w, f ∈ L. What
we claim now is that the pair (a, b) ∈ P × L is definitely not a quasi invo-clean
element of the direct product P × L, which fact has an easy direct verification
and thus leaving it to the interested reader for a confirmation, and which fact is
exactly the desired contradiction.

Conversely, given for concreteness that P is quasi invo-clean and L is invo-fine,
it easily follows from routine technical element-wise arguments by considering
the pair (a, b) ∈ P × L, which details we leave to the interested reader for an
inspection, that the direct product P × L is also quasi invo-clean, as claimed. If,
however, both P and L are invo-clean rings, then it follows directly from [2] that
the direct product P ×L is also an invo-clean ring, and thus it is quasi invo-clean,
as required.

Let us remember the definition of a nil-clean ring which states as follows (see,
e.g., [5]): A ring is said to be nil-clean if every its element can be written as a
sum of a nilpotent and an idempotent.

We now arrive at our central result.

Theorem 2.4. A ring R is quasi invo-clean if, and only if, R ∼= R1 × R2 × R3,
where R1 = {0} or R1 is an invo-clean ring of characteristic not exceeding 8 which
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is nil-clean, R2 = {0} or R2 is a subdirect product of a family of copies of Z3, and
R3 = {0} or R3

∼= Z5.

Proof. ”⇒”. In virtue of Proposition 2.1, one may write that R ∼= R1 ×R2 ×R3,
where R1, R2, R3 are quasi invo-clean rings such that char(R1) ≤ 8 is a power of
2, char(R2) = 3 and char(R3) = 5.

We will now characterize any of the three direct factors R1, R2, R3 separately
as follows:

Characterizing R1: Here 8 = 0 and so 2 is a nilpotent. Our tactic here is to show
that R1 is an invo-clean ring for which z2 = 2z whenever z ∈ Nil(R1) and so it
will follow from [2, Proposition 2.10] that R1 is nil-clean as well. In doing that,
we shall consider the three possibilities about the characteristic of R1 separately,
namely:

• char(R1) = 2. For any r ∈ R1, one writes that r = v + e, where v, e ∈ R1

with v2 = 1 or v2 = 2v = 0, and e2 = e. In the case when v2 = 1, we write that
r = (v + 1) + (1 + e), where (v + 1)2 = 0 and (1 + e)2 = 1 + e, so we are set.

• char(R1) = 4. Writing for any r ∈ R1 that r = v + e for v ∈ R1 with
v2 = 1 or v2 = 2v and for e ∈ R1 with e2 = e, we are ready in the case when
v2 = 2v, because one observes that v3 = 2v2 = 0. However, in the case when
v2 = 1, one modifies the record for r as r = (v − 1 + 2e) + (1 − e), where
v−1 ∈ Nil(R1) since (v−1)2 = 2(1−v) and 2 ∈ Nil(R1) as 4 = 0. Consequently,
it is not too hard to check that v − 1 + 2e ∈ Nil(R1) because (v − 1 + 2e)2 =
(v−1)2+2(v−1)e+2e(v−1) = 2[(1−v)+(v−1)e+e(v−1)] and so (v−1+2e)4 = 0.

• char(R1) = 8. Since for any v ∈ R1 with v2 = 2v it must be that v4 = 4v2 =
0, the same manipulation as in the previous case allows us to conclude that R1 is
too nil-clean in this situation.

We now will prove that each nilpotent element z lying in R1 possesses the
identity z2 = 2z. In fact, if we write z = v + e for some v ∈ R1 with v2 = 1 and
e ∈ Id(R1), the application of [2, Corollary 2.6] leads to e = 1, and thus z = v+ 1
which, by squaring, gives that z2 = 2z, as pursued. But if now z = w+f for some
w ∈ R1 with (1 − w)2 = 1 (that is, w2 = 2w) and f ∈ Id(R1), one modifies this
record as −z + 2 = (1 − w) + (1 − f). Since −z + 2 is still a nilpotent in R1, as
so are both z and 2, again by applying [2, Corollary 2.6] we infer that 1− f = 1,
i.e., f = 0. Therefore, z = w and immediately z2 = 2z, as asked for.

Characterizing R2: Here 3 = 0, that is, char(R2) = 3. We claim that for any
x ∈ R2 the equality x3 = x holds and thus we may employ the major result from
[6] to get the desired characterization. To that goal, we foremost assert that the
ring R2 is reduced and hence abelian (that is, all its idempotents are central).
In fact, given u ∈ U(R2) with u3 = 1, we will derive that u2 = 1. So, write
u = v + e, where e ∈ Id(R2) and v ∈ R2 with v2 = 1 or (1 − v)2 = 1 as the
latter guarantees that v2 = 2v = −v. In the first case when v2 = 1, one finds that
1 = u3 = v + vev + ve + ev + eve. Multiplying this by the right with e leads to
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ve + e = veve − eve. Also, the multiplication of the last equality with v by the
left allows us to write that e+ ve = eve− veve. Thus, comparing both equations,
we extract that −ve − e = e + ve, i.e., that 2e = −2ve, i.e., e = −ve. Hence
ue = ve + e = 0 which means that e = 0 and u = v with u2 = 1. In the second
case when v2 = −v, one gets by the same token that 1 = u3 = v + vev + eve + e
and (1−e)−v = vev+eve, so by multiplying the last with e from the left enables
us that −ev = evev + eve. Therefore, its multiplication from the right with v is a
guarantor that ev = −evev + evev = 0. Thus 1− e = v and squaring this implies
that 1− e = e− 1, that is, 2e = 2, that is, −e = −1, that is, e = 1. Finally, v = 0
and u = 1 forcing u2 = 1. That is why, in both cases, we infer that u is a unit of
order at most 2, as expected.

Furthermore, given q ∈ Nil(R2) with q2 = 0, it follows that q3 = 0 and thus
(1 + q)3 = 1. By what we have shown above, (1 + q)2 = 1 which insures that
2q = −q = 0, i.e., q = 0, as asserted. This substantiates our initial claim that R2 is
a reduced whence abelian ring. Consequently, for every its element x = w+f with
f ∈ Id(R2) and w ∈ R2 such that w2 = 1 or w2 = −w (so, in both cases, w3 = w
as well as f3 = f), one concludes that x3 = (w + f)3 = w3 + f3 = w + f = x, as
claimed.

Characterizing R3: Here 5 = 0, that is, char(R3) = 5. Firstly, we claim that R3

is reduced. To show this, given q ∈ Nil(R3) with q2 = 0, we write q = v + e for
some v ∈ R3 with v2 = 1 or v2 = 2v and some e ∈ Id(R3). In the case when
v2 = 2v, one obtains by squaring that 2v + ve + ev + e = 0. Thus, multiplying
subsequently by e from the right and from the left, one gets that 3ve+eve+e = 0
and that 4eve + e = 0. Hence eve = e and substituting this above leads to
2ve = 2e. Similarly, using the same tricks, one has that 2ev = 2e and so 2ve = 2ev.
Furthermore, with this at hand, since 4v + 2ve + 2ev + 2e = 0 is tantamount to
4v+ 6e = 4v+ e = 0, one deduces that e = −4v = v. Therefore, e = e2 = 2e gives
that e = 0 = v and thus q = 0, as expected. Next, in the case when v2 = 1, the
squaring leads to 1 + ve+ ev+ e = 0. The multiplication of this equality from the
right by e implies that 2e+ve+eve = 0 and the multiplication of the last equation
by 2e from the left yields that eve = −e. The substitution of this relation above
enables us that ve = −e. Analogously, utilizing the same arguments, one has that
ev = −e and, after all, ev = ve. Consequently, 1−e−e+e = 0, i.e., e = 1 whence
v = −1. Finally, q = 0, as claimed.

Secondly, what we now assert is that Id(R3) = {0, 1}. To prove that, we
assume in a way of contradiction that there exists e ∈ Id(R3) \ {0, 1}. By what
we have already shown, e lies in C(R3), hence we may decompose R3 = R3e ⊕
R3(1 − e) ∼= P × L, where P ∼= R3e and L ∼= R3(1 − e) are both quasi invo-
clean rings of characteristic 5. However, as neither of them is not invo-clean, this
manifestly contradicts Lemma 2.3 and thereby guarantees our initial claim that
R3 is indecomposable.

Thirdly, we are sure that all elements of R3 satisfy at least one of the equations
x3 = x or x3 = −x and thus Lemma 2.2 now applies to detect the desired
isomorphism between R3 and Z5. In fact, one has for any r ∈ R3 that r = v or
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r = v + 1 for some v ∈ R3 such that v2 = 1 or v2 = 2v.

• r = v with v2 = 1. Hence r2 = 1 implying that r3 = r.

• r = v with v2 = 2v. Hence r2 = 2r and r3 = 2r2 = 4r = −r.

• r = v + 1 with v2 = 1. Hence r2 = 2r and r3 = 2r2 = 4r = −r.

• r = v + 1 with v2 = 2v. Hence v4 = −v2 and (v4)2 = v4. Then either
v4 = 0 or v4 = 1, i.e., v2 = 0 or v2 = −1, i.e., 2v = 0 or 2v = −1. Since
r2 = 1 − v, we have that r2 = r when 2v = 0 whence r3 = r. If now 2v = −1,
then −v = 4v = −2, so that v = 2 and r = 3 = −2 guaranteeing that r3 = −r.

Having in mind these four bullet points, we are done.

”⇐”. Since R1×R2 is invo-clean, the proof follows immediately by application
of Lemma 2.3.

Interestingly, as an immediate consequence, we derive the following surprising
assertion.

Corollary 2.5. The classes of quasi invo-clean rings and weakly invo-clean rings
coincide.

Proof. For convenience, we restate the main characterization theorem [3, Theorem
4.18] concerning weakly invo-clean rings in the following slightly modified form:
A ring R is weakly invo-clean ⇐⇒ R ∼= R1 × R2 × R3, where R1 = {0} or R1

is an invo-clean ring of characteristic 2k with k ∈ {1, 2, 3}, R2 = {0} or R2 is
embedding into the direct product of a family of copies of Z3, and either R3 = {0}
or R3

∼= Z5. Comparing this isomorphism characterization with Theorem 2.4,
which sounds in the same manner, and bearing in mind that every invo-clean ring
is simultaneously weakly invo-clean and quasi invo-clean, the statement follows
after all.

The next commentaries are somewhat elaborating on that.

Remark 2.6. As an alternative direct argument to show that the classes of quasi
invo-clean and weakly invo-clean rings do coincide, we also propose the following
one: As it was already mentioned above, an element r ∈ R is weakly invo-clean
if, and only if, r or r + 1 is invo-clean. Now, let us assume that r ∈ R is quasi
invo-clean. Then either r is invo-clean or r = v + e with e2 = e and (1− v)2 = 1.
In the second case we have r− 1 = (v− 1) + e and (v− 1)2 = (1− v)2 = 1. Hence
an element r ∈ R is quasi invo-clean if, and only if, r or r− 1 is invo-clean. That
is why, it is clear that quasi-invo-clean rings are exactly weakly invo-clean rings,
and vice versa.

Another more direct approach could be the following one: Firstly, assume
that R is quasi invo-clean and let r ∈ R. Then 1 − r admits the decomposition
1− r = v+e with e an idempotent and either v or 1−v an involution. In the first
case, r = 1− (1− r) = 1− (v + e) = −v + (1− e) with −v an involution and 1− e
an idempotent. In the second case, r = 1− (1− r) = 1− (v+ e) = (1−v)− e with



Quasi invo-clean rings 79

1 − v an involution and e an idempotent. So, in both cases, r is a weakly invo-
clean element, as needed. Secondly, assume that R is weakly invo-clean and let
r ∈ R. Then 1−r admits either the decomposition r = v+e or the decomposition
r = v−e with e an idempotent and v an involution. In the first case, and as above
demonstrated, r = 1−(1−r) = 1−(v+e) = −v+(1−e) with v an involution and
1−e an idempotent. In the second case, r = 1− (1− r) = 1− (v−e) = (1−v)+e
with v = 1− (1− v) an involution and e an idempotent. Thus, in both cases, r is
a quasi invo-clean element, as required.

Likewise, in the light of the corresponding results from [1] concerning weakly
tripotent rings discussed above and in accordance with Corollary 2.5, it is worth-
while emphasizing the fact that we actually have proved the incidental equivalence
that a ring R is quasi invo-clean if, and only if, each element r ∈ R has a special
representation as v+e, where v, e ∈ R such that e is an idempotent and v or 1−v
is an involution, if and only if, each element r ∈ R has a special representation
as w + f , where w, f ∈ R such that f is an idempotent and w or 1 + w is an
involution. This, however, is perhaps not true for any single element of R.

We close our work with the following intriguing and non-trivial question. Pre-
cisely, regarding [3, Problem 4] and the main result from [4], one may ask the
following:

Problem 2.7. If the ring R is quasi invo-clean, does it follow that the corner subring
eRe is also quasi invo-clean for any e ∈ Id(R)?
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